Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T11:19:33.809Z Has data issue: false hasContentIssue false

16 - Targeted Genome Editing Using Nuclease-assisted Vector Integration

from Part IV - Genome Editing in Stem Cells and Regenerative Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 237 - 248
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959): 15091512.CrossRefGoogle ScholarPubMed
Brown, A, Woods, WS, Perez-Pinera, P. 2016. Multiplexed targeted genome engineering using a universal nuclease-assisted vector integration system. ACS Synth Biol 5(7): 582588.CrossRefGoogle ScholarPubMed
Byrne, SM, Ortiz, L, Mali, P, Aach, J, Church, GM. 2014. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3): e21.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819823.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346(6213): 1258096.CrossRefGoogle ScholarPubMed
Finocchiaro, G, Ito, M, Ikeda, Y, Tanaka, K. 1988. Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J Biol Chem 263(30): 1577315780.CrossRefGoogle ScholarPubMed
Fu, Y, Foden, JA, Khayter, C, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9): 822826.CrossRefGoogle ScholarPubMed
Fu, Y, Sander, JD, Reyon, D, Cascio, VM, Joung, JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3): 279284.CrossRefGoogle ScholarPubMed
Gonzalez, B, Schwimmer, LJ, Fuller, RP, et al. 2010. Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5(4): 791810.CrossRefGoogle ScholarPubMed
Guilinger, JP, Thompson, DB, Liu, DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6): 577582.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6): 12621278.CrossRefGoogle Scholar
Hsu, PD, Scott, DA, Weinstein, JA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9): 827832.CrossRefGoogle ScholarPubMed
Jackson, SP, Bartek, J. 2009. The DNA-damage response in human biology and disease. Nature 461(7267): 10711078.CrossRefGoogle ScholarPubMed
Jinek, M, East, A, Cheng, A, et al. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587): 490495.CrossRefGoogle ScholarPubMed
Liang, X, Potter, J, Kumar, S, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208: 4453.CrossRefGoogle ScholarPubMed
Lieber, MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79(1): 181211.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823826.CrossRefGoogle ScholarPubMed
Mandell, JG, Barbas, CF. 2006. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34(Web Server): W516W523.CrossRefGoogle ScholarPubMed
McVey, M, Lee, SE. 2008. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11): 529538.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326(5959): 1501.CrossRefGoogle ScholarPubMed
Moynahan, ME, Jasin, M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3): 196207.CrossRefGoogle ScholarPubMed
Nakade, S, Tsubota, T, Sakane, Y, et al. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5: 5560.CrossRefGoogle ScholarPubMed
Nussenzweig, A, Nussenzweig, MC. 2007. A backup DNA repair pathway moves to the forefront. Cell 131(2): 223225.CrossRefGoogle Scholar
Pabo, CO, Peisach, E, Grant, RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70(1): 313340.CrossRefGoogle ScholarPubMed
Pattanayak, V, Lin, S, Guilinger, JP, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9): 839843.CrossRefGoogle ScholarPubMed
Popp, MW, Maquat, LE. 2016. Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165(6): 13191322.CrossRefGoogle ScholarPubMed
Sakuma, T, Nakade, S, Sakane, Y, Suzuki, KT, Yamamoto, T. 2016. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1): 118133.CrossRefGoogle ScholarPubMed
Sakuma, T, Takenaga, M, Kawabe, Y, et al. 2015. Homologous recombination: independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10): 2384923866.CrossRefGoogle Scholar
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268): 8488.CrossRefGoogle ScholarPubMed
Tsai, SQ, Wyvekens, N, Khayter, C, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6): 569576.CrossRefGoogle ScholarPubMed
Wright, AV, Nunez, JK, Doudna, JA. 2016. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2): 2944.CrossRefGoogle Scholar
Yu, X, Liang, X, Xie, H, et al. 2016. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett 38(6): 919929.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×