Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T03:23:04.326Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 April 2019

Philip D. Gingerich
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Rates of Evolution
A Quantitative Synthesis
, pp. 351 - 371
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. (1918). Das Entwicklungstempo der Wirbeltierstämme. Vereines zur Verbreitung Naturwissenschaftlicher Kenntnisse, Schriften, Wien, 58, 91120.Google Scholar
Ager, D. V. (1976). The nature of the fossil record. Proceedings of the Geologists’ Association, London, 87, 131159.Google Scholar
Aguirre, W. E. and Bell, M. A. (2012). Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment. Biological Journal of the Linnean Society, 105, 817831.Google Scholar
Aguirre, W. E., Doherty, P. K., and Bell, M. A. (2004). Genetics of lateral plate and gillraker phenotypes in a rapidly evolving population of threespine stickleback. Behaviour, 141, 14651483.Google Scholar
Ashton, E. H. and Zuckerman, S. (1950). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabacus). I. A comparison between the teeth of the St. Kitts and the African Green monkey. Proceedings of the Royal Society of London, Series B, 137, 212238.Google Scholar
Ayala, F. J., Serra, L. and Prevosti, A. (1989). A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome, 31, 246255.Google Scholar
Babin-Fenske, J., Anand, M., and Alarie, Y. (2008). Rapid morphological change in stream beetle museum specimens correlates with climate change. Ecological Entomology, 33, 646651.Google Scholar
Bader, R. S. (1955). Variability and evolutionary rate in the oreodonts. Evolution, 9, 119140.Google Scholar
Baer, K. E. v. (1876). Reden Gehalten in Wissenschaftlichen Versammlungen Und Kleinere Aufsätze Vermischten Inhalts. Zweiter Theil: Studien Aus Dem Gebiete Der Naturwissenschaften. St. Petersburg, Schmitzdorff.Google Scholar
Bailey, D. W. (1959). Rates of subline divergence in highly inbred strains of mice. Journal of Heredity, 50, 2630.Google Scholar
Baker, A. J. and Marshall, H. D. (1999). Population divergence in chaffinches Fringilla coelebs assessed with control-region sequences. In Proceedings of the 22nd International Ornithological Congress, Durban, eds. Adams, N. J. and Slotow, R. H., Johannesburg, BirdLife South Africa, pp. 18991913.Google Scholar
Baker, A. J., Peck, M. K., and Goldsmith, M. A. (1990). Genetic and morphometric differentiation in introduced populations of common chaffinches (Fringilla coelebs) in New Zealand. Condor, 92, 7688.Google Scholar
Baker, J. A., Heins, D. C., Foster, S. A., and King, R. W. (2008). An overview of life-history variation in female threespine stickleback. Behaviour, 145, 579602.Google Scholar
Banerjee, M. K. and Basu, A. (1991). Uttar Pradesh: basic anthropometric data. All India Anthropometric Survey, North Zone (Anthropological Survey of India, Calcutta), 10, 1626.Google Scholar
Barrett, P. H., Gautrey, P. J., Herbert, S., Kohn, D., and Smith, S. (1987). Charles Darwin’s Notebooks, 1836–1844: Geology, Transmutation of Species, Metaphysical Enquiries. Cambridge, British Museum (Natural History) and Cambridge University Press.Google Scholar
Basu, A., Ganguly, P., Ghosh, G. C., and Basu, S. K. (1989). Maharashtra: basic anthropometric data. All India Anthropometric Survey, North Zone (Anthropological Survey of India, Calcutta), 4, 1550.Google Scholar
Bather, F. A. (1920). Fossils and life. Reports of the British Association for the Advancement of Science, London, 1920, 6186.Google Scholar
Bell, M. A. and Aguirre, W. E. (2013). Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback. Evolutionary Ecology Research, 15, 377411.Google Scholar
Bell, M. A., Aguirre, W. E., and Buck, N. J. (2004). Twelve years of contemporary armor evolution in a threespine stickleback population. Evolution, 58, 814824.Google Scholar
Bell, M. A., Baumgartner, J. V., and Olson, E. C. (1985). Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology, 11, 258271.Google Scholar
Bell, M. A. and Haglund, T. R. (1982). Fine-scale temporal variation of the Miocene stickleback Gasterosteus doryssus. Paleobiology, 8, 282292.CrossRefGoogle Scholar
Bell, M. A., Travis, M. P. and Blouw, D. M. (2006). Inferring natural selection in a fossil threespine stickleback. Paleobiology, 32, 562577.Google Scholar
Benson, R. B. J., Campione, N. E., Carrano, M. T., Mannion, P. D., Sullivan, C., Upchurch, P., and Evans, D. C. (2014). Rates of dinosaur body mass evolution indicate 170 Million years of sustained ecological innovation on the avian stem lineage. PLoS Biology, 12, e1001853.Google Scholar
Berg, H. C. (1983). Random Walks in Biology. Princeton, Princeton University Press.Google Scholar
Berg, L. S. (1926). Nomogenesis, or Evolution Determined by Law. London, Constable and Company.Google Scholar
Berger, J. (1986). Wild Horses of the Great Basin: Social Competition and Population Size. Chicago, University of Chicago Press.Google Scholar
Berry, R. J. (1964). The evolution of an island population of the house mouse. Evolution, 18, 468483.Google Scholar
Beurlen, K. (1932). Funktion und Form in der organischen Entwicklung. Naturwissenschaften, Berlin, 20, 7380.Google Scholar
Blanckenhorn, W. U. (2015a). Investigating yellow dung fly body size evolution in the field: Response to climate change? Evolution, 69, 22272234.Google Scholar
Blanckenhorn, W. U. (2015b). Data from: Investigating yellow dung fly body size evolution in the field: response to climate change? Dryad Digital Repository, https://doi.org/10.5061/dryad.3v4hn.CrossRefGoogle Scholar
Boag, P. T. and Grant, P. R. (1981). Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science, 214, 8285.Google Scholar
Bonner, J. T. (1965). Size and Cycle: An Essay on the Structure of Biology. Princeton, Princeton University Press.Google Scholar
Bookstein, F. L. (1987). Random walk and the existence of evolutionary rates. Paleobiology, 13, 446464.Google Scholar
Bookstein, F. L., Gingerich, P. D., and Kluge, A. G. (1978). Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology, 4, 120134.Google Scholar
Bowles, G. T. (1932). New Types of Old Americans at Harvard and at Eastern Women’s Colleges. Cambridge, Harvard University Press.Google Scholar
Brett, C. E. and Baird, G. C. (1995). Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In New Approaches to Speciation in the Fossil Record, eds. Erwin, D. H. and Anstey, R. L., New York, Columbia University Press, pp. 285315.Google Scholar
Brinkmann, R. (1929). Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten über Artbegriff und Stammesentwicklung. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Neue Folge, 13 (3), 1249.Google Scholar
Brown, C. R. and Brown, M. B. (1998a). Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution, 52, 14611475.Google Scholar
Brown, C. R. and Brown, M. B. (1998b). Fitness components associated with alternative reproductive tactics in cliff swallows. Behavioral Ecology, 9, 158171.Google Scholar
Brown, M. B. and Brown, C. R. (2011). Intense natural selection on morphology of cliff swallows (Petrochelidon pyrrhonota) a decade later: did the population move between adaptive peaks? Auk, 128, 6977.Google Scholar
Bruce, R. C. (1988). An ecological life table for the salamander Eurycea wilderae. Copeia, 1988, 1526.Google Scholar
Buckman, S. S. (1909). Yorkshire Type Ammonites, Volume 1, Part 1. London, Wheldon and Wesley.Google Scholar
Bulmer, M. G. (1977). Periodical insects. American Naturalist, 111, 10991117.Google Scholar
Bumpus, H. C. (1899). The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus. Biological Lectures Delivered at the Marine Biology Laboratory, Woods Hole, 1898, 209226.Google Scholar
Butler, M. A. and King, A. A. (2004). Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist, 164, 683695.Google Scholar
Calder, W. A. (1984). Size, Function, and Life History. Cambridge, Massachusetts, Harvard University Press.Google Scholar
Calhoun, J. B. (1947). The role of temperature and natural selection in relation to the variations in the size of the English sparrow in the United States. American Naturalist, 81, 203228.Google Scholar
Carroll, S. P. and Boyd, C. (1992). Host race radiation in the soapberry bug: natural history with the history. Evolution, 46, 10521069.Google Scholar
Carroll, S. P., Dingle, H., and Klassen, S. (1997). Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution, 51, 11821188.Google Scholar
Carroll, S. P., Hendry, A. P., Reznick, D. N., and Fox, C. W. (2007). Evolution on ecological time-scales. Functional Ecology, 21, 387393.Google Scholar
Carson, H. L. (1975). The genetics of speciation at the diploid level. American Naturalist, 109, 8392.Google Scholar
Carson, H. L. (1987). Population genetics, evolutionary rates and Neo-Darwinism. In Rates of Evolution, eds. Campbell, K. S. W. and Day, M. F., London, Allen and Unwin, pp. 209217.Google Scholar
Caruso, N. M., Sears, M. W., Adams, D. C., and Lips, K. R. (2014). Widespread rapid reductions in body size of adult salamanders in response to climate change. Global Change Biology, 20, 17511759.Google Scholar
Cavalli-Sforza, L. L. and Bodmer, W. F. (1971). The Genetics of Human Populations. San Francisco, W. H. Freeman and Company.Google Scholar
Chaline, J. (1984). Le concept d’évolution polyphasée et ses implications. Geobios, Lyon, 17, 783795.Google Scholar
Charlesworth, B. (1980). Evolution in Age-Structured Populations. Cambridge, Cambridge University Press.Google Scholar
Charlesworth, B. (1984). Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology, 10, 308318.Google Scholar
Charmantier, A., Kruuk, L. E. B., Blondel, J., and Lambrechts, M. M. (2004). Testing for microevolution in body size in three blue tit populations. Journal of Evolutionary Biology, 17, 732743.Google Scholar
Cheetham, A. H. (1968). Morphology and systematics of the bryozoan genus Metrarabdotos. Smithsonian Miscellaneous Collections, 153, 1121.Google Scholar
Cheetham, A. H. (1986). Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology, 12, 190202.Google Scholar
Cheetham, A. H. and Jackson, J. B. C. (1995). Process from pattern: tests for selection versus random change in punctuated bryozoan speciation. In New Approaches to Speciation in the Fossil Record, eds. Erwin, D. H. and Anstey, R. L., New York, Columbia University Press, pp. 184207.Google Scholar
Cheetham, A. H., Sanner, J. and Jackson, J. B. C. (2007). Metrarabdotos and related genera (Bryozoa: Cheilostomata) in the late Paleogene and Neogene of tropical America. Journal of Paleontology 81(1), Supplement, Paleontological Society Memoir, 67, 196.Google Scholar
Chiba, S. (1996). A 40,000-year record of discontinuous evolution of island snails. Paleobiology, 22, 177188.Google Scholar
Chiba, S. (2007). Morphological and ecological shifts in a land snail caused by the impact of an introduced predator. Ecological Research, 22, 884891.Google Scholar
Clark, D. B. (1980). Population ecology of Rattus rattus across a desert-montane forest gradient in the Galápagos Islands. Ecology, 61, 14221433.Google Scholar
Clutton-Brock, T. H., Guinness, F. E., and Albon, S. D. (1982). Red Deer: Behaviour and Ecology of Two Sexes. Chicago, University of Chicago Press.Google Scholar
Clutton-Brock, T. H. and Pemberton, J. M. eds. (2004). Soay Sheep: Dynamics and Selection in an Island Population, Cambridge, Cambridge University Press.Google Scholar
Clyde, W. C. and Gingerich, P. D. (1994). Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology, 20, 506522.Google Scholar
Clyde, W. C., Hamzi, W., Finarelli, J. A., Wing, S. L., Schankler, D. M., and Chew, A. (2007). Basin-wide magnetostratigraphic framework for the Bighorn Basin, Wyoming. Geological Society of America Bulletin, 119, 848859.Google Scholar
Colbert, E. H. (1948). Evolution of the horned dinosaurs. Evolution, 2, 145163.Google Scholar
Conant, S. (1988). Geographic variation in the Laysan finch (Telespyza cantans). Evolutionary Ecology, 2, 270282.Google Scholar
Conover, D. O. and Munch, S. B. (2002). Sustaining fisheries yields over evolutionary time scales. Science, 297, 9496.Google Scholar
Cooch, E. G., Lank, D. B., Rockwell, R. F., and Cooke, F. (1991). Long-term decline in body size in a snow goose population: evidence of environmental degradation? Journal of Animal Ecology, 60, 483496.Google Scholar
Cooke, F., Rockwell, R. F., and Lank, D. B. (1995). The Snow Geese of La Pérouse Bay: Natural Selection in the Wild. Oxford, Oxford University Press.Google Scholar
Cooper, G. A. and Williams, A. (1952). Significance of the stratigraphic distribution of brachiopods. Journal of Paleontology, 26, 326337.Google Scholar
Cope, E. D. (1887). The Origin of the Fittest, Essays on Evolution. New York, D. Appleton and Co. 467.Google Scholar
Cope, E. D. (1896). The Primary Factors of Organic Evolution. Chicago, Open Court.Google Scholar
COSEWIC. (2012). COSEWIC assessment and status report on the grizzly bear Ursus arctos. Committee on the Status of Endangered Wildlife in Canada, Ottawa, 1–84.Google Scholar
COSEWIC. (2013a). COSEWIC assessment and status report on the Plains Bison Bison bison bison and the Wood Bison Bison bison athabascae in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, 1–109.Google Scholar
COSEWIC. (2013b). COSEWIC assessment and status report on the giant threespine stickleback Gasterosteus aculeatus and the unarmoured threespine stickleback Gasterosteus aculeatus in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, 1–62.Google Scholar
Coulson, T. and Crawley, M. J. (2004). Appendix 3: How average life tables can mislead. In Soay Sheep: Dynamics and Selection in an Island Population, eds. Clutton-Brock, T. H. and Pemberton, J. M., Cambridge, Cambridge University Press, pp. 328331.Google Scholar
Crow, J. F. and Kimura, M. (1979). Efficiency of truncation selection. Proceedings of the National Academy of Sciences USA, 76, 396399.Google Scholar
Curry, G. B. (1982). Ecology and population structure of the recent brachiopod Terebratulina from Scotland. Palaeontology, 25, 227246.Google Scholar
Cuvier, G. (1812). Recherches sur les ossemens fossiles de quadrupèdes. Tomes I-IV. Paris,Google Scholar
Cuvier, G. (1817). Le règne animal, distribué d’aprés son organisation, pour servir De base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, Tome I. Paris, Deterville.Google Scholar
Cuvier, G. (1825). Discours sur les révolutions de la surface du globe, et sur les changemens qu’elles ont produits dans le règne animal. Dufour et d’Ocagne, Paris (reprinted 1969 by Culture et Civilisation, 115 Avenue Gabriel Lebon, Brussels) 400.Google Scholar
D’Agostino, R. B. (1986). Tests for the normal distribution. In Goodness-of-Fit Techniques, eds. D’Agostino, R. B. and Stephens, M. A., New York, Marcel Dekker, pp. 367419.Google Scholar
Dall, W. H. (1877). On a provisional hypothesis of saltatory evolution. American Naturalist, 11, 135137.Google Scholar
Darwin, C. R. (1839). Journal of Researches into the Geology and Natural History of the Various Countries Visited by the H. M. S. Beagle. London, Henry Colburn.Google Scholar
Darwin, C. R. (1859). On the Origin of Species by Means of Natural Selection. London, John Murray.Google Scholar
Darwin, C. R. (1875). The Variation of Animals and Plants under Domestication, Second Edition, Volumes 1 and 2. London, John Murray.Google Scholar
Darwin, E. (1794–1796). Zoonomia; or the Laws of Organic Life, Volumes I and II. London, J. Johnson.Google Scholar
Dawkins, R. (1976). The Selfish Gene. Oxford, Oxford University Press.Google Scholar
de Beer, G. R. (1960). Darwin’s notebooks on transmutation of species. Part I. First notebook (July 1837–February 1838). Bulletin of the British Museum (Natural History), Historical Series, 2, 2573.Google Scholar
Depéret, C. (1907). Les transformations du monde animal. Paris, Ernest FlammarionGoogle Scholar
de Vries, H. (1901). Die Mutationstheorie. Versuch Und Beobachtungen Über Die Entstehung Der Arten Im Pflanzenreich. Erster Band. Die Entstehung Der Arten Durch Mutation. Leipzig, Verlag von Veit.Google Scholar
de Vries, H. (1905). The evidence of evolution. Annual Report of the Smithsonian Institution, 1904, 389396.Google Scholar
de Vries, H. (1909). The Mutation Theory: Experiments and Observations on the Origin of Species in the Vegetable Kingdom. Chicago, Open Court Publishing.Google Scholar
Diamond, J. M., Pimm, S. L., Gilpin, M. E., and LeCroy, M. (1989). Rapid evolution of character displacement in myzomelid honeyeaters. American Naturalist, 134, 675708.CrossRefGoogle Scholar
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York, Columbia University Press.Google Scholar
Dobzhansky, T. and Spassky, B. (1967). Effects of selection and migration on geotactic and phototactic behaviour of Drosophila. I. Proceedings of the Royal Society of London, Series B, 168, 2747.Google Scholar
Dudley, J. W. and Lambert, R. J. (2004). 100 generations of selection for oil and protein in corn. Plant Breeding Reviews, 24, 79110.Google Scholar
Eastman, L. M., Morelli, T. L., Rowe, K. C., Conroy, C. J. and Moritz, C. (2012). Size increase in high elevation ground squirrels over the last century. Global Change Biology, 18, 14991508.Google Scholar
Edwards, A. W. F. (1972). Likelihood. Cambridge, Cambridge University Press.Google Scholar
Edwards, A. W. F. (1992). Likelihood, Expanded Edition. Baltimore, Maryland, Johns Hopkins University Press.Google Scholar
Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 5477.Google Scholar
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York, Chapman and Hall 436.Google Scholar
Eisenberg, J. F. (1981). The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior. Chicago, University of Chicago Press.Google Scholar
Eldredge, N. (1971). The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25, 156167.Google Scholar
Eldredge, N. (1972). Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the middle Devonian of North America. Bulletin of the American Museum of Natural History, 147, 45114.Google Scholar
Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology, ed. Schopf, T. J. M., San Francisco, Freeman, Cooper and Company, pp. 82115.Google Scholar
Elliott, E. B. (1863). On the Military Statistics of the United States of America. Berlin, International Statistical Congress: R. v. Decker.Google Scholar
Elliott, E. B. (1865). On the military statistics of the United States of America. In Fünfte Internationalen Statistischen Congresses, ed. Engel, E., Berlin, Königlichen Geheimen Ober-Hofbuchdruckerei, pp. 715758.Google Scholar
Eloy de Amorim, M., Schoener, T. W., Santoro, G. R. C. C., Lins, A. C. R., Piovia-Scott, J., and Brand+úo, R. A. (2017). Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proceedings of the National Academy of Sciences USA, 114, 88128816.Google Scholar
Endler, J. A. (1986). Natural Selection in the Wild. Princeton, Princeton University Press 336.Google Scholar
Erickson, G. M., Currie, P. J., Inouye, B. D., and Winn, A. A. (2006). Tyrannosaur life tables: an example of nonavian dinosaur population biology. Science, 313, 213217.CrossRefGoogle ScholarPubMed
Erickson, G. M., Makovicky, P. J., Inouye, B. D., Zhou, C.–F., and Gao, K. −Q. (2009). A life table for Psittacosaurus lujiatunensis: initial insights into ornithischian dinosaur population biology. Anatomical Record, 292, 15141521.Google Scholar
Erickson, W. A. and Halvorson, W. L. (1990). Ecology and control of the roof rat (Rattus rattus) in Channel Islands National Park. Cooperative National Park Resources Studies Unit, Institute of Ecology, University of California, Davis, 38, 190.Google Scholar
Ernest, S. K. M. (2003). Life history characteristics of placental nonvolant mammals. Ecology, 84, 3402.Google Scholar
Estes, S. and Arnold, S. J. (2007). Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist, 169, 227244.Google Scholar
Falconer, D. S. (1973). Replicated selection for body weight in mice. Genetical Research, Cambridge, 22, 291321.Google Scholar
Falconer, D. S. (1977). Why are mice the size they are? In International Conference on Quantitative Genetics, eds. Pollack, E., Kempthorne, O., and Bailey, T. B., Ames, Iowa State University Press, pp. 1921.Google Scholar
Falconer, D. S. (1981). Introduction to Quantitative Genetics, Second Edition. London, Longman Group Limited.Google Scholar
Falconer, H. (1863). On the American fossil elephant of the regions bordering the Gulf of Mexico (E. columbi Falc.); with general observations on the living and extinct species. Natural History Review, Dublin, 3, 43114.Google Scholar
Fechner, G. T. (1860). Elemente Der Psychophysik. Leipzig, Breitkopf and Härtel.Google Scholar
Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Third Edition, Volume I. New York, John Wiley and Sons 509.Google Scholar
Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471492.Google Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 115.Google Scholar
Festing, M. F. W. (1973). A multivariate analysis of subline divergence in the shape of the mandible in C57BL/Gr mice. Genetical Research, Cambridge, 21, 121132.Google Scholar
Fisher, R. A. and Ford, E. B. (1950). The “Sewall Wright effect.” Heredity, 4, 117119.Google Scholar
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129152.Google Scholar
Forstén, A.-M. (1990). Dental size trends in an equid sample from the Sandalja II cave of northwestern Yugoslavia. Paläontologische Zeitschrift, 64, 153160.Google Scholar
Franks, S. J., Sim, S., and Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences USA, 104, 1278.Google Scholar
Freudenthal, M. and Martín-Suárez, E. (2013). Estimating body mass of fossil rodents. Scripta Geologica, 145, 1130.Google Scholar
Froese, D., Stiller, M., Heintzman, P. D., Reyes, A. V., Zazula, G. D., Soares, A. E. R., Meyer, M., Hall, E., Jensen, B. J. L., Arnold, L. J., MacPhee, R. D. E., and Shapiro, B. (2017). Fossil and genomic evidence constrains the timing of bison arrival in North America. Proceedings of the National Academy of Sciences USA, 114, 3457.Google Scholar
Gaillard, J.-M., Pontier, D., Allaine, D., Lebreton, J.-D., Trouvilliez, J. and Clobert, J. (1989). An analysis of demographic tactics in birds and mammals. Oikos, 56, 5976.Google Scholar
Galton, F. (1869). Hereditary Genius: An Inquiry into Its Laws and Consequences. London, Macmillan.Google Scholar
Galton, F. (1879). The geometric mean in vital and social statistics. Proceedings of the Royal Society of London, 29, 365367.Google Scholar
Galton, F. (1889). Natural Inheritance. London, MacMillan.Google Scholar
Galton, F. (1894). Discontinuity in evolution. Mind, a Quarterly Review of Psychology and Philosophy, London, 3, 362372.Google Scholar
Garland, T. (1992). Rate tests for phenotypic evolution using phylogenetically independent contrasts. American Naturalist, 140, 509519.Google Scholar
Garland, T. and Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, London, 229, 133151.Google Scholar
Gates, R. R. (1911). The mutation theory [book review]. American Naturalist, 45, 254256.Google Scholar
Gaudry, A. (1896). Essai De Paléontologie Philosophique. Paris, Masson.Google Scholar
Gauss, C. F. (1809). Theoria Motus Corporum Celestium. Hamburg, Perthes et Besser.Google Scholar
Gavrilets, S. and Vose, A. (2005). Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences USA, 102, 1804018045.Google Scholar
Geary, R. C. (1935). The ratio of the mean deviation to the standard deviation as a test of normality. Biometrika, 27, 310332.Google Scholar
Geiger, M., Sánchez-Villagra, M., and Lindholm, A. K. (2018). A longitudinal study of phenotypic changes in early domestication of house mice. Royal Society Open Science, 5, 172099.Google Scholar
Geoffroy Saint-Hilaire, É. (1828). Mémoire où l’on se propose de rechercher dans quels rapports de structure organique et de parenté sont entre eux les animalux des ages historiques et vivant actuellement et les espèces antédiluviennes et perdues. Mémoires du Muséum National d’Histoire Naturelle, Paris, 17, 209229.Google Scholar
Geoffroy Saint-Hilaire, I. (1836). Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux, ou traité de tératologie, tome troisième. Paris, J.-B. Baillière.Google Scholar
George, T. N. (1958). Rates of change in evolution. Science Progress, a Quarterly Review of Current Scientific Investigations, London, 46, 409428.Google Scholar
Gilchrist, G. W., Huey, R. B., Balanyà, J., Pascual, M., and Serra, L. (2004). A time series of evolution in action: a latitudinal cline in wing size in South American Drosophila subobscura. Evolution, 58, 768780.Google Scholar
Gilchrist, G. W., Huey, R. B., and Serra, L. (2001). Rapid evolution of wing size clines in Drosophila subobscura. Genetica, 112, 273286.Google Scholar
Gillespie, J. H. (1984). The molecular clock may be an episodic clock. Proceedings of the National Academy of Sciences USA, 81, 80098013.Google Scholar
Gingerich, P. D. (1974). Stratigraphic record of early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature, 248, 107109.Google Scholar
Gingerich, P. D. (1976). Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science, 276, 128.Google Scholar
Gingerich, P. D. (1983). Rates of evolution: effects of time and temporal scaling. Science, 222, 159161.Google Scholar
Gingerich, P. D. (1984). Punctuated equilibria – where is the evidence? Systematic Zoology, 33, 335338.Google Scholar
Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28, 197.Google Scholar
Gingerich, P. D. (1993). Quantification and comparison of evolutionary rates. American Journal of Science, 293, 453478.Google Scholar
Gingerich, P. D. (1994). New species of Apheliscus, Haplomylus, and Hyopsodus (Mammalia, Condylarthra) from the late Paleocene of southern Montana and early Eocene of northwestern Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 29, 119134.Google Scholar
Gingerich, P. D. (1995). Statistical power of EDF tests of normality and the sample size required to distinguish geometric-normal (lognormal) from arithmetic-normal distributions of low variability. Journal of Theoretical Biology, 173, 125136.Google Scholar
Gingerich, P. D. (2000). Arithmetic or geometric normality of biological variation: an empirical test of theory. Journal of Theoretical Biology, 204, 201221.Google Scholar
Gingerich, P. D. (2001). Rates of evolution on the time scale of the evolutionary process. Genetica, 112/113, 127144.Google Scholar
Gingerich, P. D. (2003). Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. In Causes and consequences of globally warm climates in the early Paleogene, eds. Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of America, Special Papers, 369: 463478.Google Scholar
Gingerich, P. D. (2010). Mammalian faunal succession through the Paleocene-Eocene thermal maximum (PETM) in western North America. Vertebrata PalAsiatica, Beijing, 48, 308327.Google Scholar
Gingerich, P. D. (2014). Species in the primate fossil record. Evolutionary Anthropology, 23, 3335.Google Scholar
Gingerich, P. D. (2015). Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). Journal of Mammalian Evolution, 23, 1731.Google Scholar
Gingerich, P. D. (2019). Data from: Rates of Evolution: A Quantitative Synthesis (Cambridge University Press). Dryad Digital Repository, https://doi.org/10.5061/dryad.1tn7123.Google Scholar
Gingerich, P. D., Smith, B. H. and Rosenberg, K. R. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81100.Google Scholar
Gingerich, P. D. and Smith, T. (2006). Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 31, 245303.Google Scholar
Goldschmidt, R. (1933). Some aspects of evolution. Science, 78, 539547.Google Scholar
Goldschmidt, R. (1940). The Material Basis of Evolution. New Haven, Yale University Press 436.Google Scholar
Goodwin, N. B., Grant, A., Perry, A. L., Dulvy, N. K., and Reynolds, J. D. (2006). Life history correlates of density-dependent recruitment in marine fishes. Canadian Journal of Fisheries and Aquatic Sciences, 63, 494509.Google Scholar
Gould, S. J. (1969). An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Zoology, Harvard University, 138, 407532.Google Scholar
Gould, S. J. (1984). Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science, 226, 994995.Google Scholar
Gould, S. J. (1985). The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11, 212.Google Scholar
Gould, S. J. (1988). Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology, 62, 319329.Google Scholar
Gould, S. J. and Eldredge, N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3, 115151.Google Scholar
Gowe, R. S. and Fairfull, R. W. (1985). The direct response to long-term selection for multiple traits in egg stocks and changes in genetic parameters with selection. In Poultry Genetics and Breeding, eds. Hill, W. G., Manson, J. M., and Hewitt, D., Harlow, British Poultry Science Ltd., pp. 125146.Google Scholar
Gowe, R. S., Johnson, A. S., Downs, J. H., Gibson, R., Mountain, W. F., Strain, J. H., and Tinney, B. F. (1959). Environment and poultry breeding problems: 4. The value of a random-bred control strain in a selection; study. Poultry Science, 38, 443462.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. eds. (2012). The Geological Time Scale 2012, Amsterdam, Elsevier.Google Scholar
Grant, B. R. and Grant, P. R. (2010). Songs of Darwin’s finches diverge when a new species enters the community. Proceedings of the National Academy of Sciences, 107, 2015620163.Google Scholar
Grant, P. R. (1981). Speciation and the adaptive radiation of Darwin’s finches. American Scientist, 69, 653663.Google Scholar
Grant, P. R. (1986). Ecology and Evolution of Darwin’s Finches. Princeton, Princeton University Press.Google Scholar
Grant, P. R. (1994). Population variation and hybridization: comparison of finches from two archipelagos. Evolutionary Ecology, 8, 598617.Google Scholar
Grant, P. R. and Grant, B. R. (1993). Evolution of Darwin’s finches caused by a rare climatic event. Proceedings of the Royal Society B: Biological Sciences, 251, 111117.Google Scholar
Grant, P. R. and Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296, 707711.Google Scholar
Grant, P. R. and Grant, B. R. (2014). 40 Years of Evolution: Darwin’s Fionches on Daphne Major Island. Princeton, Princeton University Press.Google Scholar
Grant, V. (1963). The Origin of Adaptations. New York, Columbia University Press.Google Scholar
Grave, B. H. (1930). The natural history of Bugula flabellata at Woods Hole, Massachusetts, including the behavior and attachment of the larva. Journal of Morphology, 49, 355383.Google Scholar
Haeckel, E. H. P. A. (1866). Generelle Morphologie Der Organismen. Zweiter Band. Allgemeine Entwicklungsgeschichte Der Organismen. Berlin, Georg Reimer.Google Scholar
Hairston, N. G. (1987). Community Ecology and Salamander Guilds. Cambridge, Cambridge University Press.Google Scholar
Haldane, J. B. S. (1949). Suggestions as to quantitative measurement of rates of evolution. Evolution, 3, 5156.Google Scholar
Haldane, J. B. S. (1958). The theory of evolution, before and after Bateson. Journal of Genetics, 56, 1127.Google Scholar
Haller, B. C. and Hendry, A. P. (2014). Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. Evolution, 68, 483500.Google Scholar
Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 13411351.Google Scholar
Hansen, T. F. and Martins, E. P. (1996). Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution, 50, 14041417.Google Scholar
Hargenvilliers, A.-A. (1817). Recherches et considérations sur la formation et le recrutement de l’armée en France. Paris, F. Didot.Google Scholar
Harmon, L. J., Losos, J. B., Jonathan Davies, T., Gillespie, R. G., Gittleman, J. L., Bryan Jennings, W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A. II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., and Mooers, A. Ø. (2010). Early bursts of size and shape evolution are rare in comparative data. Evolution, 64, 23852396.Google Scholar
Haugen, T. O. and Vøllestad, L. A. (2000). Population differences in early life-history traits in grayling. Journal of Evolutionary Biology, 13, 897905.Google Scholar
Haugen, T. O. and Vøllestad, L. A. (2001). A century of life-history evolution in grayling. Genetica, 112, 475491.Google Scholar
Hayami, I. (1984). Natural history and evolution of Cryptopecten (a Cenozoic-Recent pectinid genus). Bulletin of the University Museum, University of Tokyo, 24, 1149.Google Scholar
Hendry, A. P. and Kinnison, M. T. (1999). The pace of modern life: measuring rates of contemporary microevolution. Evolution, 53, 16371653.Google Scholar
Hendry, A. P. and Quinn, T. P. (1997). Variation in adult life history and morphology among Lake Washington sockeye salmon (Oncorhynchus nerka) populations in relation to habitat features and ancestral affinities. Canadian Journal of Fisheries and Aquatic Sciences, 54, 7584.Google Scholar
Heppell, S. S., Caswell, H., and Crowder, L. B. (2000). Life histories and elasticity patterns: perturbation analysis for species with minimal demographic data. Ecology, 81, 654665.Google Scholar
Herschel, J. (1850). Quetelet on probabilities. Edinburgh Review, 92, 157.Google Scholar
Hilgen, F. J. Lourens, L. J. Van Dam, J. A. Beu, A. G. Boyes, A. F. Cooper, R. A. Krijgsman, W. Ogg, J. G. Piller, W. E., and Wilson, D. S. (2012). The Neogene period. In The Geological Time Scale 2012, eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Amsterdam, Elsevier, pp. 923978.Google Scholar
Hoekstra, H. E., Hoekstra, J. M., Vignieri, S. N., Hoang, A., Beerli, P., and Kingsolver, J. G. (2002). Strength and tempo of directional selection in the wild. Proceedings of the National Academy of Sciences USA, 98, 91579160.Google Scholar
Holmes, M. W., Boykins, G. K. R., Bowie, R. C. K., and Lacey, E. A. (2016). Cranial morphological variation in Peromyscus maniculatus over nearly a century of environmental change in three areas of California. Journal of Morphology, 277, 96106.Google Scholar
Hooks, A. P. (2013). Prey plasticity responses to a native and nonnative predator. M.Sc. thesis, Stony Brook, Stony Brook University, 45 pp.Google Scholar
Hopkins, C. G. (1899). Improvement in the chemical composition of the corn kernel. Illinois Agriculture Experimental Station Bulletin, 55, 205240.Google Scholar
House, M. R. (1963). Bursts in evolution. Report of the British Association for the Advancement of Science, London, 19, 499507.Google Scholar
Huber, P. J. (1981). Robust Statistics. New York, John Wiley and Sons.Google Scholar
Hudson, J. D. and Martill, D. M. (1994). The Peterborough Member (Callovian, Middle Jurassic) of the Oxford Clay Formation at Peterborough, UK. Journal of the Geological Society, 151, 113.Google Scholar
Hughes, M., Gerber, S., and Wills, M. A. (2013). Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences USA, 110, 1387513879.Google Scholar
Hunt, G. (2004). Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology, 30, 426443.Google Scholar
Hunt, G. (2006). Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology, 32, 578601.Google Scholar
Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61, 15601576.Google Scholar
Hunt, G. and Roy, K. (2006). Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA, 103, 13471352.Google Scholar
Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770808.Google Scholar
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist, 93, 145159.Google Scholar
Huxley, J. S. (1924). Constant differential growth-ratios and their significance. Nature, 114, 895.Google Scholar
Huxley, J. S. (1932). Problems of Relative Growth. London, Methuen.Google Scholar
Huxley, J. S. (1942). Evolution, the Modern Synthesis. New York, Harper and Brothers.Google Scholar
Huxley, J. S. and Teissier, G. (1936). Terminalogy of relative growth. Nature, 137, 780781.Google Scholar
Huxley, L. (1900). Life and Letters of Thomas Henry Huxley, Volume 1. London, Macmillan.Google Scholar
Huxley, T. H. (1859). Letter to Charles Lyell dated 25 June 1859. In Life and Letters of Thomas Henry Huxley, Volume 1 (1900), ed. Huxley, L., London, Macmillan, pp. 185187.Google Scholar
Ingram, T., Harmon, L. J., and Shurin, J. B. (2012). When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model. Journal of Evolutionary Biology, 25, 19021910.Google Scholar
Jablonski, D. (1997). Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature, 385, 250252.Google Scholar
Jaeckel, O. (1902). Über Verschiedene Wege Phylogenetischer Entwicklung. Jena, Gustav Fischer.Google Scholar
Jancović, I., Ahern, J. C. M., Karavanić, I., Stockton, T. ,and Smith, F. H. (2012). Epigravettian human remains and artifacts from Sandalja II, Istria, Croatia. PaleoAnthropology, 2012, 87122.Google Scholar
Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodids. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications, eds. Damuth, J. D. and MacFadden, B. J., Cambridge, Cambridge University Press, pp. 255299.Google Scholar
Jensen, H., Steinsland, I., Ringsby, T. H., and Saether, B.-E. (2008). Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution, 62, 12751293.Google Scholar
Jepsen, G. L., Mayr, E., and Simpson, G. G. eds. (1949). Genetics, Paleontology, and Evolution, Princeton, Princeton University Press.Google Scholar
Johannsen, W. L. (1909). Elemente Der Exakten Erblichkeitslehre. Jena, Gustav Fischer.Google Scholar
Johnston, R. F. and Selander, R. K. (1964). House sparrows: rapid evolution of races in North America. Science, 144, 548550.Google Scholar
Johnston, R. F. and Selander, R. K. (1971). Evolution in the house sparrow. II. Adaptive differentiation in North American populations. Evolution, 25, 128.Google Scholar
Kaufmann, R. (1933). Variationsstatistische Untersuchungen über die “Artabwandlung” und “Artumbildung” an der oberkambrischen Trilobitengattung Olenus Dalm. Abhandlungen aus dem Geologisch-Palaeontologisches Institut der Universität Greifswald, 10, 155.Google Scholar
Kellogg, D. E. (1975). The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology, 1, 359370.Google Scholar
Kennett, J. P. (1966). The Globorotalia crassiformis bioseries in north Westland and Marlborough, New Zealand. Micropaleontology, 12, 235245.Google Scholar
Kerk, M. v. d., de Kroon, H., Conde, D. A., and Jongejans, E. (2013). Carnivora population dynamics are as slow and as fast as those of other mammals: implications for their conservation. PLoS One, 8, e70354.Google Scholar
Kimura, M. (1964). Diffusion models in population genetics. Journal of Applied Probability, 1, 177232.Google Scholar
Kimura, Y., Flynn, L. J. ,and Jacobs, L. L. (2015). A palaeontological case study for species delimitation in diverging fossil lineages. Historical Biology, 28, 189198.Google Scholar
Klepaker, T. (1993). Morphological changes in a marine population of threespined stickleback, Gasterosteus aculeatus, recently isolated in fresh water. Canadian Journal of Zoology, 71, 12511258.Google Scholar
Koontz, T. L., Shepherd, U. L., and Marshall, D. (2001). The effect of climate change on Merriam’s kangaroo rat, Dipodomys merriami. Journal of Arid Environments, 49, 581591.Google Scholar
Kristjánsson, B. K. (2005). Rapid morphological changes in threespine stickleback, Gasterosteus aculeatus, in freshwater. Environmental Biology of Fishes, 74, 357363.Google Scholar
Kristjánsson, B. K., Skúlason, S., and Noakes, D. L. G. (2002). Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evolutionary Ecology Research, 4, 659672.Google Scholar
Kruuk, L. E. B., Merilä, J., and Sheldon, B. C. (2001). Phenotypic selection on a heritable size trait revisited. American Naturalist, 158, 557571.Google Scholar
Kruuk, L. E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F., and Clutton-Brock, T. H. (2002). Antler size in red deer: heritability and selection but no evolution. Evolution, 56, 16831695.Google Scholar
Kubitschek, H. E. (1974). Operation of selection pressure on microbial populations. Symposia of the Society for General Microbiology, 24, 105130.Google Scholar
Kurtén, B. (1955). Sex dimorphism and size trends in the cave bear, Ursus spelaeus Rosenmüller and Heinroth. Acta Zoologica Fennica, 90, 148.Google Scholar
Kurtén, B. (1959). Rates of evolution in fossil mammals. Cold Spring Harbor Symposia on Quantitative Biology, 24, 205215.Google Scholar
Kurtén, B. (1963). The rate of evolution. In Science in Archaeology: A Comprehensive Survey of Progress and Research, eds. Brothwell, D. R. and Higgs, E., Bristol, Thames and Hudson, pp. 217223.Google Scholar
Kurtén, B. (1965). Evolution in geological time. In Ideas in Modern Biology, ed. Moore, J. A., Garden City, New York, Natural History Press, pp. 329354.Google Scholar
Lack, D. (1940). Variation in the introduced English sparrow. Condor, 42, 239241.Google Scholar
Lack, D. (1947). Darwin’s Finches, an Essay on the General Biological Theory of Evolution. Cambridge, Cambridge University Press.Google Scholar
Lamarck, J.-B. (1809). Philosophie Zoologique, Tome Premier, Tome Second. Paris, Librarie Dentu.Google Scholar
Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314334.Google Scholar
Lande, R. (1977). On comparing coefficients of variation. Systematic Zoology, 26, 214217.Google Scholar
Langergraber, K. E., Prüfer, K., Rowney, C., Boesch, C., Crockford, C., Fawcett, K., Inoue, E., Inoue-Muruyama, M., Mitani, J. C., Muller, M. N., Robbins, M. M., Schubert, G., Stoinski, T. S., Viola, B., Watts, D., Wittig, R. M., Wrangham, R. W., Zuberbühler, K., Pääbo, S., and Vigilant, L. (2012). Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proceedings of the National Academy of Sciences, 109, 1571615721.Google Scholar
Larsson, K., Jeugd, H. P. v. d., and Veen, I. T. v. d. F. P. (1998). Body size declines despite positive directional selection on heritable size traits in a barnacle goose population. Evolution, 52, 11691184.Google Scholar
Lawler, R. R. (2011). Historical demography of a wild lemur population (Propithecus verreauxi) in southwest Madagascar. Population Ecology, 53, 229240.Google Scholar
Lee, A. H. and Werning, S. (2008). Sexual maturity in growing dinosaurs does not fit reptilian growth models. Proceedings of the National Academy of Sciences USA, 105, 582587.Google Scholar
Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie, 16, 1110.Google Scholar
Lerner, I. M. (1954). Genetic Homeostasis. Edinburgh, Oliver and Boyd.Google Scholar
Lerner, I. M. and Dempster, E. R. (1951). Attenuation of genetic progress under continued selection in poultry. Heredity, 5, 7594.Google Scholar
Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 19431967.Google Scholar
Levinton, J. S. (1979). A theory of diversity equilibrium and morphological evolution. Science, 204, 335336.Google Scholar
Lewontin, R. C. (1966). On the measurement of relative variability. Systematic Zoology, 15, 141142.Google Scholar
Lexis, W. (1877). Zur Theorie Der Massenerscheinungen in Der Menschlichen Gesellschaft. Freiburg im Briesgau, Friedrich Wagner.Google Scholar
Lich, D. K. (1990). Cosomys primus: a case for stasis. Paleobiology, 16, 384395.Google Scholar
Linnaeus, C. (1735). Systema Naturae, Sive Regna Tria Naturae Systematice Proposita Per Classes, Ordines, Genera, Species. Leiden, Lugduni Batavorum.Google Scholar
Lister, A. M. (1989). Rapid dwarfing of red deer on Jersey in the last interglacial. Nature, 342, 539542.Google Scholar
Lovtrup (Løvtrup), S. (1974). Epigenetics, a Treatise on Theoretical Biology. New York, John Wiley and Sons.Google Scholar
Lyell, C. (1832). Principles of Geology, Volume II. London, John Murray.Google Scholar
Lynch, M. (1988). The rate of polygenic mutation. Genetical Research, Cambridge, 51, 137148.Google Scholar
Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist, 136, 727741.Google Scholar
Mac Gillavry, H. J. (1968). Modes of evolution mainly among marine invertebrates. Bijdragen tot de Dierkunde, 38, 6974.Google Scholar
MacFadden, B. J. (1985). Patterns of phylogeny and rates of evolution in fossil horses: hipparions from the Miocene and Pliocene of North America. Paleobiology, 11, 245257.Google Scholar
MacFadden, B. J. (1986). Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope’s law, and the evolution of body size. Paleobiology, 12, 355369.Google Scholar
MacFadden, B. J. (1988). Fossil horses from “Eohippus” (Hyracotherium) to Equus, 2: rates of dental evolution revisited. Biological Journal of the Linnean Society, London, 35, 3748.Google Scholar
MacFadden, B. J. (1992). Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge, Cambridge University Press.Google Scholar
MacFadden, B. J. and Hulbert, R. C. (1990). Body size estimates and size distribution of ungulate mammals form the Late Miocene Love Bone Bed of Florida. In Body Size in Mammalian Paleobiology: Estimation an Biological Implications, eds. Damuth, J. D. and MacFadden, B. J., Cambridge, Cambridge University Press, pp. 337363.Google Scholar
MacLeod, N. (1991). Punctuated anagenesis and the importance of stratigraphy to paleobiology. Paleobiology, 17, 167188.Google Scholar
Maglio, V. J. (1973). Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society, 63, 1149.Google Scholar
Malmgren, B. A., Berggren, W. A. and Lohmann, G. P. (1983). Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology, 9, 377389.Google Scholar
Malmgren, B. A. and Kennett, J. P. (1981). Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage; DSDP site 284, southwest Pacific. Paleobiology, 7, 230240.Google Scholar
Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636638.Google Scholar
Mandelbrot, B. B. (1983). Fractal Geometry of Nature. San Francisco, W. H. Freeman.Google Scholar
Manser, A., Lindholm, A. K., König, B., and Bagheri, H. C. (2011). Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution, 65, 24352447.Google Scholar
Mayr, E. (1942). Systematics and the Origin of Species. New York, Columbia University Press.Google Scholar
Mayr, E. (1954). Change of genetic environment and evolution. In Evolution As a Process, ed. Huxley, J. S., Hardy, A. C. and Ford, E. B., London, George Allen and Unwin, pp. 157180.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, Massachusetts, Harvard University Press.Google Scholar
McAlister, D. (1879). The law of the geometric mean. Proceedings of the Royal Society of London, 29, 367376.Google Scholar
McCluskey, J., Olivier, T. J., Freedman, L., and Hunt, E. (1974). Evolutionary divergences between populations of Australian wild rabbits. Nature, 249, 278279.Google Scholar
McDonald, J. N. (1981). North American Bison: Their Classification and Evolution. Berkeley, University of California Press.Google Scholar
McKellar, A. E. and Hendry, A. P. (2009). How humans differ from other animals in their levels of morphological variation. PLoS One, 4, e6876.Google Scholar
McPeek, M.-A. (2008). The ecological dynamics of clade diversification and community assembly. American Naturalist, 172, E270E284.Google Scholar
McPhail, J. D. (1984). Ecology and evolution of sympatric sticklebacks (Gasterosteus): morphological and genetic evidence for a species pair in Enos Lake, British Columbia. Canadian Journal of Zoology, 62, 14021408.Google Scholar
Meehan, T. (1875). Change by Gradual Modification Not the Universal Law. Salem, Massachusetts, Salem Press.Google Scholar
Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn, Abhandlungen, 4, 347.Google Scholar
Michaux, B. (1988). Organotaxism: an alternative “way of seeing” the fossil record. Journal of Theoretical Biology, 133, 397408.Google Scholar
Millar, J. S. and Zammuto, R. M. (1983). Life histories of mammals: an analysis of life tables. Ecology, 64, 631635.Google Scholar
Miller, G. S. (1912). Catalogue of the Mammals of Western Europe. London, British Museum (Natural History).Google Scholar
Millien, V., Ledevin, R., Boué, C., and Gonzalez, A. (2017). Rapid morphological divergence in two closely related and co-occurring species over the last 50 years. Evolutionary Ecology, 31, 847864.Google Scholar
Milner, J. M., Albon, S. D., Illius, A. W., Pemberton, J. M., and Clutton-Brock, T. H. (1999). Repeated selection of morphometric traits in the Soay sheep on St Kilda. Journal of Animal Ecology, 68, 472488.Google Scholar
Miracle, P. T. (1995). Broad-Spectrum Adaptations Re-Examined: Hunter-Gatherer Responses to Late Glacial Environmental Changes in the Eastern Adriatic. Ph.D., Ann Arbor, University of Michigan, 577 pp.Google Scholar
Mivart, St. G. J. (1871). On the Genesis of Species. London, Macmillan 342.Google Scholar
Møller, A. P. and Szép, T. (2005). Rapid evolutionary change in a secondary sexual character linked to climatic change. Journal of Evolutionary Biology, 18, 481495.Google Scholar
Moorjani, P., Amorim, C. E. G., Arndt, P. F., and Przeworski, M. (2016). Variation in the molecular clock of primates. Proceedings of the National Academy of Sciences USA, 113, 1060710612.Google Scholar
Moss, C. J. (2001). The demography of an African elephant (Loxodonta africana) population in Amboseli, Kenya. Journal of Zoology, 255, 145156.Google Scholar
Müller, F. (1886). Ein Züchtungsvesuch an Mais. Kosmos, Stuttgart, 19, 2226.Google Scholar
Nengovhela, A., Baxter, R. M., and Taylor, P. J. (2015). Temporal changes in cranial size in South African vlei rats (Otomys): evidence for the “third universal response to warming,” African Zoology, 50, 233239.Google Scholar
Neumayr, M. and Paul, C. M. (1875). Die Congerien- und Paludinenschichten Slavoniens und deren Faunen. Ein Beitrag zur Descendenz-Theorie. Abhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, Wien, 7(3), 1113.Google Scholar
Newell, N. D. (1949). Phyletic size increase -- an important trend illustrated by fossil invertebrates. Evolution, 3, 103124.Google Scholar
Niel, C. and Lebreton, J.-D. (2005). Using demographic invariants to detect overharvested bird populations from incomplete data. Conservation Biology, 19, 826835.Google Scholar
Ogg, J. G. Hinnov, L. A., and Huang, C. (2012). Jurassic. In The Geological Time Scale 2012, eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Amsterdam, Elsevier, pp. 731791.Google Scholar
Orbigny, A. D. d. (1851). Cours Élémentaire De Paléontologie Et De Géologie Stratigraphiques, Tome Second. Paris, Victor Masson.Google Scholar
Osborn, H. F. (1905). Present problems in paleontology. Popular Science Monthly, 66, 226242.Google Scholar
Osborn, H. F. (1925). The origin of species as revealed by vertebrate palaeontology. Nature, 115, 925926, 961–963.Google Scholar
Ovcharenko, V. N. (1969). Transitional forms and species differentiation of brachiopods. Paleontological Journal, 3, 5763.Google Scholar
Owen, R. (1868). Anatomy of Vertebrates. Volume III. Mammals. London, Longmans, Green, and Co. 915.Google Scholar
Palmer, A. R. (1965). Biomere -- a new kind of biostratigraphic unit. Journal of Paleontology, 39, 149153.Google Scholar
Paradis, E. (2012). Analysis of Phylogenetics and Evolution With R, Second Edition. New York, Springer.Google Scholar
Patton, J. L., Yang, S. Y. ,and Myers, P. (1975). Genetic and morphologic divergence among introduced rat populations (Rattus rattus) of the Galapagos archipelago, Ecuador. Systematic Zoology, 24, 296310.Google Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C. (2009). Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences, 106, 2427.Google Scholar
Pearson, E. S. and Hartley, H. O. (1966). Biometrika Tables for Statisticians, Volume I, Third Edition. Cambridge, Cambridge University Press.Google Scholar
Pearson, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society of London, Series A, 185, 71110.Google Scholar
Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London, Series A, 186, 343414.Google Scholar
Pearson, K. (1905). The problem of the random walk. Nature, 72, 294, 342.Google Scholar
Pearson, K. (1924). The Life, Letters and Labours of Francis Galton. Volume II-- Researches of Middle Life. London, Cambridge University Press.Google Scholar
Pegueroles, G., Papaceit, M., Quintana, A., Guillén, A., Prevosti, A., and Serra, L. (1995). An experimental study of evolution in progress: clines for quantitative traits in colonizing and Palearctic populations of Drosophila. Evolutionary Ecology, 9, 453465.Google Scholar
Peirce, C. S. (1873). On the theory of errors of observations. U. S. Coast Survey Report for 1870, Appendix 21, 1870, 200224.Google Scholar
Pergams, O. R. W. and Ashley, M. V. (1999). Rapid morphological change in island deer mice. Evolution, 53, 15731581.Google Scholar
Pergams, O. R. W., Byrn, D., Lee, K. L. Y., and Jackson, R. (2015). Rapid morphological change in black rats (Rattus rattus) after an island introduction. Peer J, 3, e812.Google Scholar
Peters, R. H. (1983). Ecological Implications of Body Size. Cambridge, Cambridge University Press.Google Scholar
Petren, K., Grant, B. R., and Grant, P. R. (1999). A phylogeny of Darwin’s finches based on microsatellite DNA length variation. Proceedings of the Royal Society of London, Series B, 266, 321329.Google Scholar
Pfeifer, S. P. (2017). The demographic and adaptive history of the African green monkey. Molecular Biology and Evolution, 34, 10551065.Google Scholar
Philiptschenko, J. (1927). Variabilität Und Variation. Berlin, Gebrüder Borntraeger.Google Scholar
Phillimore, A. B. and Price, T. D. (2008). Density-dependent cladogenesis in birds. PLoS Biology, 6, e71.Google Scholar
Playfair, J. (1802). Illustrations of the Huttonian Theory of the Earth. Edinburgh, William Creech.Google Scholar
Porter, W. T. (1894). The growth of St. Louis children. Transactions of the Academy of Science of St. Louis, 6, 263380.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989). Numerical Recipes: The Art of Scientific Computing (Fortran Version). Cambridge, Cambridge University Press.Google Scholar
Przybylo, R., Sheldon, B. C., and Merilä, J. (2000). Climatic effects on breeding and morphology: evidence for phenotypic plasticity. Journal of Animal Ecology, 69, 395403.Google Scholar
Quetelet, A. (1835). Sur l’homme et le développement de ses facultés, ou essai de physique sociale, Tome Premier. Paris, Bachelier.Google Scholar
Quetelet, A. (1846). Lettres sur la théorie des probabilities, appliquée aux sciences morales et politiques. Bruxelles, M. Hayez.Google Scholar
Quetelet, A. (1849). Letters Addressed to H.R.H. the Grand Duke of Saxe Coburg and Gotha, on the Theory of Probabilities As Applied to the Moral and Political Sciences Translated From the French by Olinthus Gregory Downes. London, C. and E. Layton.Google Scholar
Quetelet, A. (1869). Physique sociale, ou essay sur le développement des facultés, Tome I. Brussels, C. Muquardt.Google Scholar
Quetelet, A. (1870). Anthropométrie ou mesure des différentes facultés de l’homme. Brussels, C. Muquardt.Google Scholar
R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Rabosky, D. L. and Lovette, I. J. (2008). Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution, 62, 18661875.Google Scholar
Raup, D. M. and Crick, R. E. (1981). Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology, 7, 200215.Google Scholar
Reiss, M. J. (1989). The Allometry of Growth and Reproduction. Cambridge, Cambridge University Press.Google Scholar
Rensch, B. (1943). Die paläontologischen Evolutionsregeln in zoologischer Betrachtung. Biologia Generalis, Vienna, 17, 155.Google Scholar
Rensch, B. (1947). Neuere Probleme Der Abstammungslehre: Die Transspezifische Evolution. Stuttgart, Ferdinand Enke Verlag.Google Scholar
Reznick, D. N., Shaw, F. H., Rodd, F. H., and Shaw, R. G. (1997). Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science, 275, 19341937.Google Scholar
Richard, A. F., Dewar, R. E., Schwartz, M., and Ratsirarson, J. (2000). Mass change, environmental variability and female fertility in wild Propithecus verreauxi. Journal of Human Evolution, 39, 381391.Google Scholar
Richard-Hansen, C., Vié, J.-C., Vidal, N., and Kéravec, J. (1999). Body measurements on 40 species of mammals from French Guiana. Journal of Zoology, 247, 419428.Google Scholar
Richardson, L. F. (1961). The problem of contiguity: an appendix to Statistics of Deadly Quarrels. General Systems Yearbook, Society for the Advancement of General Systems Theory, 6, 139187.Google Scholar
Rickwood, A. E. (1977). Age, growth and shape of the intertidal brachiopod Waltonia inconspicua Sowerby, from New Zealand. American Zoologist, 17, 6373.Google Scholar
Roden, M. K., Parrish, R. R., and Miller, D. S. (1990). The absolute age of the Eifelian Tioga Ash bed, Pennsylvania. Journal of Geology, 98, 282285.Google Scholar
Sander, P. M., Christian, A., Clauss, M., Fechner, R., Gee, C. T., Griebeler, E.-M., Gunga, H.-C., Hummel, J., Mallison, H., Perry, S. F., Preuschoft, H., Rauhut, O. W. M., Remes, K., Tütken, T., Wings, O., and Witzel, U. (2011). Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews, 86, 117155.Google Scholar
Sato, A., Tichy, H., O’hUigin, C., Grant, P. R., Grant, B. R., and Klein, J. (2001). On the origin of Darwin’s finches. Molecular Biology and Evolution, 18, 299311.Google Scholar
Saunders, W. B. (1984). Nautilus growth and longevity: evidence from marked and recaptured animals. Science, 224, 992990.Google Scholar
Schindewolf, O. H. (1936). Paläontologie, Entwicklungslehre Und Genetik: Kritik Und Synthese. Berlin, Gebrüder Borntraeger.Google Scholar
Schindewolf, O. H. (1950). Grundfragen Der Paläontologie: Geologische Zeitmessung, Organische Stammesentwinklung, Biologische Systematik. Stuttgart, Erwin Nägele.Google Scholar
Schluter, D. (1984). Morphological and phylogenetic relations among the Darwin’s finches. Evolution, 38, 921930.Google Scholar
Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford, U.K., Oxford University Press.Google Scholar
Schmalhausen, I. I. (1935). Determination of basic concepts and methods of investigations of growth [in Russian]. In The Growth of Animals, ed. Kaplansky, S., Moscow, pp. 860.Google Scholar
Schmalhausen, I. I. (1943). [Rate of evolution and factors which determine it]. Zhurnal Obshchei Biologii, Moskva, 4, 253285 [Russian with English summary].Google Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? Cambridge, Cambridge University Press.Google Scholar
Schneider, D. C. (1994). Scale-dependent patterns and species interactions in marine nekton. In Aquatic Ecology: Scale, Pattern, and Process, eds. Giller, P. and Rafaelli, D. H. A., London, Blackwell, pp. 441467.Google Scholar
Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A., and Krigbaum, J. (2012). Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science, 335, 959962.Google Scholar
Seeley, R. H. (1986). Intense natural selection caused by a rapid morphological transition in a living marine snail. Proceedings of the National Academy of Sciences USA, 83, 68976901.Google Scholar
Selander, R. K. and Johnston, R. F. (1967). Evolution in the house sparrow. I. Intra-population variation in North America. Condor, 69, 217258.Google Scholar
Sewertzoff, A. N. (1931). Morphologische Gesetzmässigkeiten Der Evolution. Jena, Gustav Fischer Verlag.Google Scholar
Sheets, H. D. and Mitchell, C. E. (2001). Uncorrelated change produces the apparent dependence of evolutionary rate on interval. Paleobiology, 27, 429445.Google Scholar
Simberloff, D. S., Dayan, T., Jones, C., and Ogura, G. (2000). Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology, 81, 20862099.Google Scholar
Simpson, G. G. (1943). Criteria for genera, species, and subspecies in zoology and paleontology. Annals of the New York Academy of Sciences, 44, 145178.Google Scholar
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York, Columbia University Press.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution. New York, Columbia University Press 434.Google Scholar
Slobodkin, L. B. (1961). Growth and Regulation of Animal Populations. New York, Holt, Reinhart, and Winston.Google Scholar
Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., McCain, C., Okie, J. G., Saarinen, J. J., Sibly, R. M., Stephens, P. R., Theodor, J., and Uhen, M. D. (2010). The evolution of maximum body size of terrestrial mammals. Science, 330, 12161219.Google Scholar
Smith, F. A., Browning, H., and Shepherd, U. L. (1998). The influence of climate change on the body mass of woodrats Neotoma in an arid region of New Mexico, USA. Ecography, 21, 140148.Google Scholar
Smith, T. B., Freed, L. A., Lepson, J. K., and Carothers, J. H. (1995). Evolutionary consequences of extinctions in populations of a Hawaiian honeycreeper. Conservation Biology, 9, 107113.Google Scholar
Sokal, R. R. and Rohlf, F. J. (1981). Biometry, Second Edition. San Francisco, W. H. Freeman.Google Scholar
Spanbauer, T. L., Fritz, S. C., and Baker, P. A. (2018). Punctuated changes in the morphology of an endemic diatom from Lake Titicaca. Paleobiology, 44, 89100.Google Scholar
Spitzer, F. L. (1964). Principles of Random Walk. Princeton, Van Nostrand.Google Scholar
St. Louis, V. L. and Barlow, J. C. (1991). Morphometric analysis of introduced and ancestral populations of the Eurasian tree sparrow. VVilson Bulletin, 103, 1:12.Google Scholar
Stanley, S. M. (1973). An explanation for Cope’s rule. Evolution, 27, 126.Google Scholar
Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA, 72, 646650.Google Scholar
Stanley, S. M. (1989). The empirical case for the punctuational model of evolution. Journal of Social and Biological Structures,Google Scholar
Stanley, S. M. and Yang, X. (1987). Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology, 13, 113139.Google Scholar
Stearns, S. C. (1983). The genetic basis of differences in life history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution, 37, 618627.Google Scholar
Stigler, S. M. (1986). The History of Statistics: Measurement of Uncertainty Before 1900. Cambridge, MA, Harvard University Press.Google Scholar
Stuart, Y. E., Campbell, T. S., Hohenlohe, P. A., Reynolds, R. G., Revell, L. J., and Losos, J. B. (2014). Rapid evolution of a native species following invasion by a congener. Science, 346, 463466.Google Scholar
Sylvester-Bradley, P. C. (1959). Iterative evolution in fossil oysters. In Proceedings of the 15th International Congress of Zoology, pp. 193–197.Google Scholar
Sylvester-Bradley, P. C. (1977). Biostratigraphical tests of evolutionary theory. In Concepts and Methods of Biostratigraphy, eds. Kauffman, E. G. and Hazel, J. E., Stroudsburg, Pa., Dowden, Hutchinson and Ross, pp. 4163.Google Scholar
Szuma, E. (2003). Microevolutionary trends in the dentition of the Red fox (Vulpes vulpes). Journal of Zoological Systematics and Evolutionary Research, 41, 4756.Google Scholar
Taylor, B. L., Chivers, S. J., Larese, J., and Perrin, W. F. (2007). Generation Length and Percent Mature Estimates for IUCN Assessments of Cetaceans. Administrative Report LJ-07–01, La Jolla, California, Southwest Fisheries Science Center.Google Scholar
Taylor, J. M. (1974). Morphological skull variation in the Australian wild rabbit: a multivariate analysis. Bachelor of Medical Science thesis, Perth, University of Western Australia, 182 pp.Google Scholar
Taylor, J. M., Freedman, L., Olivier, T. J., and McCluskey, J. (1977). Morphometric distances between Australian wild rabbit populations. Australian Journal of Zoology, 25, 721732.Google Scholar
Theriot, E. C., Fritz, S. C., Whitlock, C., and Conley, D. J. (2006). Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 3854.Google Scholar
Todor, K. (2016). The growth of bacterial populations. In Online Textbook of Bacteriology, Madison, University of Wisconsin, http://textbookofbacteriology.net/growth_3.html.Google Scholar
Tseng, M., Kaur, K. M., Soleimani Pari, S., Sarai, K., Chan, D., Yao, C. H., Porto, P., Toor, A., Toor, H. S., and Fograscher, K. (2018a). Decreases in beetle body size linked to climate change and warming temperatures. Journal of Animal Ecology, 87, http://dx.doi.org/10.1111/1365–2656.12789.Google Scholar
Tseng, M., Kaur, K. M., Soleimani Pari, S., Sarai, K., Chan, D., Yao, C. H., Porto, P., Toor, A., Toor, H. S., and Fograscher, K. (2018b). Decreases in beetle body size linked to climate change and warming temperatures. Dryad Digital Repository, https://doi.org/10.5061/dryad.5164v.Google Scholar
Turner, J. R. G. (1986). The genetics of adaptive radiation: a neo-Darwinian theory of punctuational evolution. In Patterns and Processes in the History of Life, eds. Raup, D. M. and Jablonski, D., Berlin, Springer, pp. 183207.Google Scholar
Uyeda, J. C., Hansen, T. F., Arnold, S. J., and Pienaar, Jason. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences USA, 108, 1590815913.Google Scholar
Van Valen, L. M. (1974). Two modes of evolution. Nature, 252, 298300.Google Scholar
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications, eds. Damuth, J. D. and MacFadden, B. J., Cambridge, Cambridge University Press, pp. 181205.Google Scholar
Vandenberghe, N. Hilgen, F. J. Speijer, R. P. Ogg, J. G. Gradstein, F. M. Hammer, O. Hollis, C. J., and Hooker, J. J. (2012). The Paleogene period. In The Geological Time Scale 2012, eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Amsterdam, Elsevier, pp. 855921.Google Scholar
Vermeij, G. J. (1977). The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology, 3, 245258.Google Scholar
Vermeij, G. J. (1982). Environmental change and the evolutionary history of the periwinkle Littorina littorea in North America. Evolution, 36, 561580.Google Scholar
Villermé, L. R. (1829). Mémoire sur la taille de l’homme en France. Annales d’Hygiene Publique et de Medecine Legale, 1, 351399.Google Scholar
Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229236.Google Scholar
Waagen, W. H. (1869). Die Formenreihe des Ammonites subradiatus: Versuch einer paläontologischen Monographie. Geognostisch-Paläontologische Beiträge, München, 2, 179256.Google Scholar
Waddington, C. H. (1939). An Introduction to Modern Genetics. London, George Allen and Unwin.Google Scholar
Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563565.Google Scholar
Wedekind, R. (1920). Über Virenzperioden (Blüteperioden). Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, 1920 (2), 1831.Google Scholar
Weidenreich, F. (1943). The skull of Sinanthropus pekinensis: a comparative study on a primitive hominid skull. Palaeontologica Sinica, New Series D, 10, 1485.Google Scholar
Weismann, A. (1872). Ueber Den Einfluss Der Isolirung Auf Die Artbildung. Leipzig, Wilhelm Engelmann 108.Google Scholar
Weismann, A. (1883). Über Die Vererbung. Jena, Gustav Fischer.Google Scholar
Weldon, W. F. R. (1893). On certain correlated variations in Carcinus maenas. Proceedings of the Royal Society of London, 54, 318329.Google Scholar
Weldon, W. F. R. (1895). Attempt to measure the death-rate due to the selective destruction of Carcinus moenas with respect to a particular dimension. Proceedings of the Royal Society of London, 57, 360379.Google Scholar
Wiedmann, J. (1973). Evolution or revolution of ammonoids at Mesozoic system boundaries? Biological Reviews, Cambridge, 48, 159194.Google Scholar
Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385397.Google Scholar
Williams, H. S. (1910). Persistence of fluctuating variations as illustrated by the fossil genus Rhipidomella. Geological Society of America Bulletin, 21, 295312.Google Scholar
Williamson, P. G. (1981). Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, 293, 437443.Google Scholar
Williamson, S. H. (2017). Daily Closing Value for the Dow Jones Average, 1885 to Present. https://measuring worth.com/DJA/.Google Scholar
Wood, A. R., Zelditch, M. L., Rountrey, A. N., Eiting, T. P., Sheets, H. D., and Gingerich, P. D. (2007). Multivariate stasis in the dental morphology of the Paleocene-Eocene condylarth Ectocion. Paleobiology, 33, 248260.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97159.Google Scholar
Wright, S. (1968). Evolution and the Genetics of Populations. Volume 1: Genetic and Biometric Foundations. Chicago, University of Chicago Press.Google Scholar
Wright, S. (1969). Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies. Chicago, University of Chicago Press.Google Scholar
Yablokov, A. V. (1974). Variability of Mammals. New Delhi, Amerind Publishing.Google Scholar
Yarwood, C. E. (1956). Generation time and the biological nature of viruses. American Naturalist, 40, 97102.Google Scholar
Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London, Series B, 213, 2187.Google Scholar
Zakrzewski, R. J. (1969). The rodents from the Hagerman local fauna, upper Pliocene of Idaho. Contributions from the Museum of Paleontology, University of Michigan, 23, 136.Google Scholar
Zeleny, C. (1922). The effect of selection for eye facet number in the white bar-eye race of Drosophila melanogaster. Genetics, 7, 1115.Google Scholar
Zeng, Z. and Brown, J. H. (1987). Population ecology of a desert rodent: Dipodomys merriami in the Chihuahuan Desert. Ecology, 68, 13281340.Google Scholar
Zeuner, F. E. (1946). Dating the Past: An Introduction to Geochronology. London, Methuen and Company.Google Scholar
Ziegler, A. M. (1966). The Silurian brachiopod Eocoelia hemisphaerica (J. de C. Sowerby) and related species. Palaeontology, 9, 523543.Google Scholar
Zimmermann, W. (1953). Evolution: Die Geschichte Ihrer Probleme Und Erkenntnisse. Freiburg, Karl Alber.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×