Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T13:00:19.551Z Has data issue: false hasContentIssue false

Implications Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 199 - 235
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cui, X.-Y. and Ringer, S. P., “On the Nexus between Atom Probe Microscopy and Density Functional Theory Simulations,” Mater. Charact., vol. 146, pp. 347358, Dec. 2018, doi: https://doi.org/10.1016/j.matchar.2018.05.015.CrossRefGoogle Scholar
Jóhannesson, G. H., Bligaard, T., Ruban, A. V. et al., “Combined Electronic Structure and Evolutionary Search Approach to Materials Design,” Phys. Rev. Lett., vol. 88, no. 25, p. 255506, Jun. 2002, doi: https://doi.org/10.1103/PhysRevLett.88.255506.CrossRefGoogle ScholarPubMed
Balachandran, P. V., Young, J., Lookman, T., and Rondinelli, J. M., “Learning from Data to Design Functional Materials without Inversion Symmetry,” Nat. Commun., vol. 8, no. 1, Art. no. 1, Feb. 2017, doi: https://doi.org/10.1038/ncomms14282.Google Scholar
Pulido, A. et al., “Functional Materials Discovery Using Energy–Structure–Function Maps,” Nature, vol. 543, no. 7647, Art. no. 7647, Mar. 2017, doi: https://doi.org/10.1038/nature21419.CrossRefGoogle ScholarPubMed
Voorhees, P. and Spanos, G., “Modeling across Scales: A Roadmapping Study for Connecting Materials Models and Simulations across Length and Time Scales,” TMS, Warrendale, PA, vol. 14, 2015.Google Scholar
Lee, J. G., Computational Materials Science: An Introduction. CRC Press, 2016.CrossRefGoogle Scholar
Liddicoat, P. V. et al., “Nanostructural Hierarchy Increases the Strength of Aluminium Alloys,” Nat. Commun., vol. 1, no. 1, Art. no. 1, Sep. 2010, doi: https://doi.org/10.1038/ncomms1062.CrossRefGoogle ScholarPubMed
Sha, G., Marceau, R. K. W., Gao, X., Muddle, B. C., and Ringer, S. P., “Nanostructure of Aluminium Alloy 2024: Segregation, Clustering and Precipitation Processes,” Acta Mater., vol. 59, no. 4, pp. 16591670, Feb. 2011, doi: https://doi.org/10.1016/j.actamat.2010.11.033.Google Scholar
Peng, Z. and Yang, H., “Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property,” Nano Today, vol. 4, no. 2, pp. 143164, Apr. 2009, doi: https://doi.org/10.1016/j.nantod.2008.10.010.Google Scholar
Jiang, S. et al., “Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation,” Nature, vol. 544, no. 7651, Art. no. 7651, Apr. 2017, doi: https://doi.org/10.1038/nature22032.CrossRefGoogle ScholarPubMed
Nørskov, J. K., Bligaard, T., Rossmeisl, J., and Christensen, C. H., “Towards the Computational Design of Solid Catalysts,” Nat. Chem., vol. 1, no. 1, Art. no. 1, Apr. 2009, doi: https://doi.org/10.1038/nchem.121.Google Scholar
Perea, D. E. et al., “Determining the Location and Nearest Neighbours of Aluminium in Zeolites with Atom Probe Tomography,” Nat. Commun., vol. 6, no. 1, Art. no. 1, Jul. 2015, doi: https://doi.org/10.1038/ncomms8589.CrossRefGoogle ScholarPubMed
Curtarolo, S., Hart, G. L. W., Nardelli, M. B. et al., “The High-Throughput Highway to Computational Materials Design,” Nat. Mater., vol. 12, no. 3, Art. no. 3, Mar. 2013, doi: https://doi.org/10.1038/nmat3568.Google Scholar
Jain, A., Shin, Y., and Persson, K. A., “Computational Predictions of Energy Materials using Density Functional Theory,” Nat. Rev. Mater., vol. 1, no. 1, Art. no. 1, Jan. 2016, doi: https://doi.org/10.1038/natrevmats.2015.4.CrossRefGoogle Scholar
Ringer, S. P., “Activity at the Surface,” Nat. Mater., vol. 17, no. 1, Art. no. 1, Jan. 2018, doi: https://doi.org/10.1038/nmat5058.CrossRefGoogle Scholar
Mao, Z., Sudbrack, C. K., Yoon, K. E., Martin, G., and Seidman, D. N., “The Mechanism of Morphogenesis in a Phase-Separating Concentrated Multicomponent Alloy,” Nat. Mater., vol. 6, no. 3, Art. no. 3, Mar. 2007, doi: https://doi.org/10.1038/nmat1845.CrossRefGoogle Scholar
Marquis, E. A. and Hyde, J. M., “Applications of Atom-Probe Tomography to the Characterisation of Solute Behaviours,” Mater. Sci. Eng: R: Reports, vol. 69, no. 4, pp. 3762, Jul. 2010, doi: https://doi.org/10.1016/j.mser.2010.05.001.Google Scholar
Sha, G. and Cerezo, A., “Kinetic Monte Carlo Simulation of Clustering in an Al–Zn–Mg–Cu Alloy (7050),” Acta Mater., vol. 53, no. 4, pp. 907917, Feb. 2005, doi: https://doi.org/10.1016/j.actamat.2004.10.048.Google Scholar
Marceau, R. K. W., Stephenson, L. T., Hutchinson, C. R., and Ringer, S. P., “Quantitative Atom Probe Analysis of Nanostructure Containing Clusters and Precipitates with Multiple Length Scales,” Ultramicroscopy, vol. 111, no. 6, pp. 738742, May 2011, doi: https://doi.org/10.1016/j.ultramic.2010.12.029.Google Scholar
Chen, S. J., Yao, X., Zheng, C., and Duan, W. H., “Quantification of Evaporation Induced Error in Atom Probe Tomography Using Molecular Dynamics Simulation,” Ultramicroscopy, vol. 182, pp. 2835, Nov. 2017, doi: https://doi.org/10.1016/j.ultramic.2017.06.006.Google Scholar
Pareige, C., Soisson, F., Martin, G., and Blavette, D., “Ordering and Phase Separation in Ni–Cr–Al: Monte Carlo Simulations vs Three-Dimensional Atom Probe,” Acta Mater., vol. 47, no. 6, pp. 18891899, Apr. 1999, doi: https://doi.org/10.1016/S1359-6454(99)00054-3.Google Scholar
The Minerals, Metals, and Materials Society, Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales. Warrendale, PA: The Minerals, Metals & Materials Society, 2015.Google Scholar
Nomoto, K., Sugimoto, H., Cui, X.-Y. et al., “Distribution of Boron and Phosphorus and Roles of Co-doping in Colloidal Silicon Nanocrystals,” Acta Mater., vol. 178, pp. 186193, Oct. 2019, doi: https://doi.org/10.1016/j.actamat.2019.08.013.Google Scholar
Hohenberg, P. and Kohn, W., “Physical review 136,” B864, 1964.CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp.A1133A1138, Nov. 1965, doi: https://doi.org/10.1103/PhysRev.140.A1133.Google Scholar
Jones, R. O., “Density Functional Theory: Its Origins, Rise to Prominence, and Future,” Rev. Mod. Phys., vol. 87, no. 3, pp. 897923, Aug. 2015, doi: https://doi.org/10.1103/RevModPhys.87.897.CrossRefGoogle Scholar
Cohen, A. J., Mori-Sánchez, P., and Yang, W., “Insights into Current Limitations of Density Functional Theory,” Science, vol. 321, no. 5890, pp. 792794, Aug. 2008, doi: https://doi.org/10.1126/science.1158722.CrossRefGoogle ScholarPubMed
Perdew, J. P. and Zunger, A., “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Phys. Rev. B, vol. 23, no. 10, pp. 50485079, May 1981, doi: https://doi.org/10.1103/PhysRevB.23.5048.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 38653868, Oct. 1996, doi: https://doi.org/10.1103/PhysRevLett.77.3865.Google Scholar
Zhao, Y. and Truhlar, D. G., “A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions,” J. Chem. Phys., vol. 125, no. 19, p. 194101, Nov. 2006, doi: https://doi.org/10.1063/1.2370993.Google Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., “Hybrid Functionals Based on a Screened Coulomb Potential,” J. Chem. Phys., vol. 118, no. 18, pp. 82078215, Apr. 2003, doi: https://doi.org/10.1063/1.1564060.Google Scholar
Cui, X. Y., Medvedeva, J. E., Delley, B. et al., “Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN,” Phys. Rev. Lett., vol. 95, no. 25, p. 256404, Dec. 2005, doi: https://doi.org/10.1103/PhysRevLett.95.256404.CrossRefGoogle ScholarPubMed
Weston, L., Cui, X. Y., Ringer, S. P., and Stampfl, C., “Density-Functional Prediction of a Surface Magnetic Phase in SrTiO3/LaAlO3 Heterostructures Induced by Al Vacancies,” Phys. Rev. Lett., vol. 113, no. 18, p. 186401, Oct. 2014, doi: https://doi.org/10.1103/PhysRevLett.113.186401.CrossRefGoogle Scholar
Fulcher, B. D., Cui, X. Y., Delley, B., and Stampfl, C., “Hardness Analysis of Cubic Metal Mononitrides from First Principles,” Phys. Rev. B, vol. 85, no. 18, p. 184106, May 2012, doi: https://doi.org/10.1103/PhysRevB.85.184106.Google Scholar
Kresse, G. and Furthmüller, J., “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B, vol. 54, no. 16, pp. 1116911186, Oct. 1996, doi: https://doi.org/10.1103/PhysRevB.54.11169.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D., “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys. Rev. B, vol. 59, no. 3, pp. 17581775, Jan. 1999, doi: https://doi.org/10.1103/PhysRevB.59.1758.Google Scholar
Delley, B., “From Molecules to Solids with the DMol3 Approach,” J. Chem. Phys., vol. 113, no. 18, pp. 77567764, Oct. 2000, doi: https://doi.org/10.1063/1.1316015.CrossRefGoogle Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., “Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients,” Rev. Mod. Phys., vol. 64, no. 4, pp. 10451097, Oct. 1992, doi: https://doi.org/10.1103/RevModPhys.64.1045.Google Scholar
Hautier, G., Fischer, C. C., Jain, A., Mueller, T., and Ceder, G., “Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory,” Chem. Mater., vol. 22, no. 12, pp. 37623767, Jun. 2010, doi: https://doi.org/10.1021/cm100795d.Google Scholar
Jain, A. et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation,” APL Mater., vol. 1, no. 1, p. 011002, Jul. 2013, doi: https://doi.org/10.1063/1.4812323.Google Scholar
Li, Y., Hao, J., Liu, H., Li, Y., and Ma, Y., “The Metallization and Superconductivity of Dense Hydrogen Sulfide,” J. Chem. Phys., vol. 140, no. 17, p. 174712, May 2014, doi: https://doi.org/10.1063/1.4874158.CrossRefGoogle ScholarPubMed
Duan, D. et al., “Pressure-Induced Decomposition of Solid Hydrogen Sulfide,” Phys. Rev. B, vol. 91, no. 18, p. 180502, May 2015, doi: https://doi.org/10.1103/PhysRevB.91.180502.CrossRefGoogle Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., and Shylin, S. I., “Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System,” Nature, vol. 525, no. 7567, Art. no. 7567, Sep. 2015, doi: https://doi.org/10.1038/nature14964.Google Scholar
Einaga, M. et al., “Crystal Structure of the Superconducting Phase of Sulfur Hydride,” Nat. Phys., vol. 12, no. 9, Art. no. 9, Sep. 2016, doi: https://doi.org/10.1038/nphys3760.Google Scholar
Berland, K. et al., “van der Waals Forces in Density Functional Theory: A Review of the vdW-DF Method,” Rep. Prog. Phys., vol. 78, no. 6, p. 066501, May 2015, doi: https://doi.org/10.1088/0034-4885/78/6/066501.CrossRefGoogle Scholar
Lihe, C., “Recent Progress in Density Functional Theory and Its Numerical Methods,” Prog. Chem., vol. 17, no. 02, p. 192, Mar. 2005.Google Scholar
Cohen, A. J., Mori-Sánchez, P., and Yang, W., “Challenges for Density Functional Theory,” Chem. Rev., vol. 112, no. 1, pp. 289320, Jan. 2012, doi: https://doi.org/10.1021/cr200107z.CrossRefGoogle ScholarPubMed
Freysoldt, C. et al., “First-Principles Calculations for Point Defects in Solids,” Rev. Mod. Phys., vol. 86, no. 1, pp. 253305, Mar. 2014, doi: https://doi.org/10.1103/RevModPhys.86.253.Google Scholar
Marsman, M., Paier, J., Stroppa, A., and Kresse, G., “Hybrid Functionals Applied to Extended Systems,” J. Phys.: Condens. Matter, vol. 20, no. 6, p. 064201, Jan. 2008, doi: https://doi.org/10.1088/0953-8984/20/6/064201.Google ScholarPubMed
Tran, F., Kalantari, L., Traoré, B., Rocquefelte, X., and Blaha, P., “Nonlocal van der Waals Functionals for Solids: Choosing an Appropriate One,” Phys. Rev. Materials, vol. 3, no. 6, p. 063602, Jun. 2019, doi: https://doi.org/10.1103/PhysRevMaterials.3.063602.Google Scholar
Tran, F., Stelzl, J., and Blaha, P., “Rungs 1 to 4 of DFT Jacob’s Ladder: Extensive Test on the Lattice Constant, Bulk Modulus, and Cohesive Energy of Solids,” J. Chem. Phys., vol. 144, no. 20, p. 204120, May 2016, doi: https://doi.org/10.1063/1.4948636.Google Scholar
Slabanja, M., Angenete, J., Stiller, K. et al., “Early Stages of Phase Separation Using Three-Dimensional Atom Probe and Atomistic Modelling,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 178183, 2007, doi: https://doi.org/10.1002/sia.2485.Google Scholar
Hasting, H. S. et al., “Composition of β″ Precipitates in Al–Mg–Si alloys by Atom Probe Tomography and First Principles Calculations,” J. Appl. Phys., vol. 106, no. 12, p. 123527, Dec. 2009, doi: https://doi.org/10.1063/1.3269714.Google Scholar
Gault, B. et al., “Atom Probe Microscopy Investigation of Mg Site Occupancy within δ′ Precipitates in an Al–Mg–Li Alloy,” Scr. Mater., vol. 66, no. 11, pp. 903906, Jun. 2012, doi: https://doi.org/10.1016/j.scriptamat.2012.02.021.Google Scholar
Biswas, A., Siegel, D. J., Wolverton, C., and Seidman, D. N., “Precipitates in Al–Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation,” Acta Mater., vol. 59, no. 15, pp. 61876204, Sep. 2011, doi: https://doi.org/10.1016/j.actamat.2011.06.036.Google Scholar
Yeoh, W. K. et al., “On the Roles of Graphene Oxide Doping for Enhanced Supercurrent in MgB2 Based Superconductors,” Nanoscale, vol. 6, no. 11, pp. 61666172, May 2014, doi: https://doi.org/10.1039/C4NR00415A.CrossRefGoogle ScholarPubMed
Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C., and Ozoliņš, V., “Mg Segregation at Al/Al_3Sc Heterophase Interfaces on an Atomic Scale: Experiments and Computations,” Phys. Rev. Lett., vol. 91, no. 3, p. 036101, Jul. 2003, doi: https://doi.org/10.1103/PhysRevLett.91.036101.Google Scholar
Pogatscher, S. et al., “Diffusion on Demand to Control Precipitation Aging: Application to Al-Mg-Si Alloys,” Phys. Rev. Lett., vol. 112, no. 22, p. 225701, Jun. 2014, doi: https://doi.org/10.1103/PhysRevLett.112.225701.Google Scholar
Devaraj, A. et al., “Three-Dimensional Nanoscale Characterisation of Materials by Atom Probe Tomography,” Int. Mater. Rev., vol. 63, no. 2, pp. 68101, Feb. 2018, doi: https://doi.org/10.1080/09506608.2016.1270728.Google Scholar
Geng, W. T., Ping, D. H., Gu, Y. F., Cui, C. Y., and Harada, H., “Stability of Nanoscale Co-precipitates in a Superalloy: A Combined First-Principles and Atom Probe Tomography Study,” Phys. Rev. B, vol. 76, no. 22, p. 224102, Dec. 2007, doi: https://doi.org/10.1103/PhysRevB.76.224102.Google Scholar
Liu, L. et al., “Segregation of the Major Alloying Elements to Al3(Sc,Zr) Precipitates in an Al–Zn–Mg–Cu–Sc–Zr Alloy,” Mater. Charact., vol. 157, p. 109898, Nov. 2019, doi: https://doi.org/10.1016/j.matchar.2019.109898.Google Scholar
Zhu, S. Q., Shih, H. C., Cui, X.-Y., Yu, C. Y., and Ringer, S. P., “Design of Solute Clustering during Thermomechanical Processing of AA6016 Al–Mg–Si Alloy,” Acta Mater., Nov. 2020, doi: https://doi.org/10.1016/j.actamat.2020.10.074.Google Scholar
Nag, S. et al., “Novel Mixed-Mode Phase Transition Involving a Composition-Dependent Displacive Component,” Phys. Rev. Lett., vol. 106, no. 24, p. 245701, Jun. 2011, doi: https://doi.org/10.1103/PhysRevLett.106.245701.CrossRefGoogle ScholarPubMed
Biswas, A., Siegel, D. J., and Seidman, D. N., “Simultaneous Segregation at Coherent and Semicoherent Heterophase Interfaces,” Phys. Rev. Lett., vol. 105, no. 7, p. 076102, Aug. 2010, doi: https://doi.org/10.1103/PhysRevLett.105.076102.Google Scholar
Yeoh, W. K. et al., “Direct Observation of Local Potassium Variation and Its Correlation to Electronic Inhomogeneity in Ba_(1-x)K_xFe_2As_2 Pnictide,” Phys. Rev. Lett., vol. 106, no. 24, p. 247002, Jun. 2011, doi: https://doi.org/10.1103/PhysRevLett.106.247002.CrossRefGoogle Scholar
Park, J. T. et al., “Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Superconductor Ba_(1-x)K_xFe_2As_2,” Phys. Rev. Lett., vol. 102, no. 11, p. 117006, Mar. 2009, doi: https://doi.org/10.1103/PhysRevLett.102.117006.Google Scholar
Marsik, P. et al., “Coexistence and Competition of Magnetism and Superconductivity on the Nanometer Scale in Underdoped BaFe1.89Co0.11As2,” Phys. Rev. Lett., vol. 105, no. 5, p. 057001, Jul. 2010, doi: https://doi.org/10.1103/PhysRevLett.105.057001.Google Scholar
Cai, P. et al., “Visualizing the Microscopic Coexistence of Spin Density Wave and Superconductivity in Underdoped NaFe 1−x Co x As,” Nat. Commun., vol. 4, no. 1, Art. no. 1, Mar. 2013, doi: https://doi.org/10.1038/ncomms2592.CrossRefGoogle Scholar
Awschalom, D. D. and Flatté, M. E., “Challenges for Semiconductor Spintronics,” Nat. Phys., vol. 3, no. 3, Art. no. 3, Mar. 2007, doi: https://doi.org/10.1038/nphys551.CrossRefGoogle Scholar
Li, L. et al., “Magnetism of Co-Doped ZnO Epitaxially Grown on a ZnO Substrate,” Phys. Rev. B, vol. 85, no. 17, p. 174430, May 2012, doi: https://doi.org/10.1103/PhysRevB.85.174430.Google Scholar
Kim, S. J. et al., “Direct Observation of Deuterium in Ferromagnetic Zn_0.9Co_0.1O:D,” Phys. Rev. B, vol. 81, no. 21, p. 212408, Jun. 2010, doi: https://doi.org/10.1103/PhysRevB.81.212408.Google Scholar
Cui, X.-Y. et al., “Effect of H on the Crystalline and Magnetic Structures of the YCo_3-H(D) System. I. YCo_3 from Neutron Powder Diffraction and First-Principles Calculations,” Phys. Rev. B, vol. 76, no. 18, p. 184443, Nov. 2007, doi: https://doi.org/10.1103/PhysRevB.76.184443.CrossRefGoogle Scholar
Liu, J. et al., “Effect of H on the Crystalline and Magnetic Structures of the YCo_3-H(D) System. II. YCo_3-H(D)_x from X-Ray and Neutron Powder Diffraction,” Phys. Rev. B, vol. 76, no. 18, p. 184444, Nov. 2007, doi: https://doi.org/10.1103/PhysRevB.76.184444.CrossRefGoogle Scholar
Leitner, K. et al., “How Grain Boundary Chemistry Controls the Fracture Mode of Molybdenum,” Mater. Des., vol. 142, pp. 3643, Mar. 2018, doi: https://doi.org/10.1016/j.matdes.2018.01.012.Google Scholar
Chen, Y.-S. et al., “Direct Observation of Individual Hydrogen Atoms at Trapping Sites in a Ferritic Steel,” Science, vol. 355, no. 6330, pp. 11961199, Mar. 2017, doi: https://doi.org/10.1126/science.aal2418.Google Scholar
Pundt, A. and Kirchheim, R., “Hydrogen in Metals: Microstructural Aspects,” Annu. Rev. Mater. Res., vol. 36, no. 1, pp. 555608, 2006, doi: https://doi.org/10.1146/annurev.matsci.36.090804.094451.CrossRefGoogle Scholar
Van de Walle, C. G. and Neugebauer, J., “Hydrogen in Semiconductors,” Annu. Rev. Mater. Res., vol. 36, no. 1, pp. 179198, 2006, doi: https://doi.org/10.1146/annurev.matsci.36.010705.155428.Google Scholar
Chen, Y.-S. et al., “Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates,” Science, vol. 367, no. 6474, pp. 171175, Jan. 2020, doi: https://doi.org/10.1126/science.aaz0122.CrossRefGoogle ScholarPubMed
Moody, M. P. et al., “Atomically Resolved Tomography to Directly Inform Simulations for Structure–Property Relationships,” Nat. Commun., vol. 5, no. 1, Art. no. 1, Nov. 2014, doi: https://doi.org/10.1038/ncomms6501.Google Scholar
Mann, A., “Core Concept: Nascent Exascale Supercomputers Offer Promise, Present Challenges,” PNAS, vol. 117, no. 37, pp. 2262322625, Sep. 2020, doi: https://doi.org/10.1073/pnas.2015968117.Google Scholar
“International Roadmap for Devices and Systems (IRDSTM) 2020 Edition – IEEE IRDSTM: More Moore,” 2020. https://irds.ieee.org/editions/2020.Google Scholar

References

Raphael, M., “Fifty Years Ago, The World’s First Electronic Computer,” AP NEWS, Feb. 11, 1996. https://apnews.com/89547f672d37a89620d5cddb7959a9ee (accessed Jul. 24, 2020).Google Scholar
Clarkt, D. R. et al., “Probing Grain-Boundary Chemistry and Electronic Structure in Proton-Conducting Oxides by Atom Probe Tomography,” Nano Lett., vol. 16, no. 11, pp. 69246930, Nov. 2016, doi: https://doi.org/10.1021/acs.nanolett.6b02918.Google Scholar
Diercks, D. R. et al., “Three-Dimensional Quantification of Composition and Electrostatic Potential at Individual Grain Boundaries in Doped Ceria,” J. Mater. Chem. A, vol. 4, no. 14, pp. 51675175, Mar. 2016, doi: https://doi.org/10.1039/C5TA10064 J.CrossRefGoogle Scholar
Stokes, A., Al-Jassim, M., Diercks, D. R., Egaas, B., and Gorman, B., “3-D Point Defect Density Distributions in Thin Film Cu(In,Ga)Se2 Measured by Atom Probe Tomography,” Acta Mater., vol. 102, pp. 3237, Jan. 2016, doi: https://doi.org/10.1016/j.actamat.2015.09.035.Google Scholar
Burton, G. L., Ricote, S., Foran, B. J., Diercks, D. R., and Gorman, B. P., “Quantification of Grain Boundary Defect Chemistry in a Mixed Proton-Electron Conducting Oxide Composite,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 32173230, 2020, doi: https://doi.org/10.1111/jace.17014.CrossRefGoogle Scholar
Kirchhofer, R., Diercks, D. R., and Gorman, B. P., “Near Atomic Scale Quantification of a Diffusive Phase Transformation in (Zn, Mg) O/Al2O3 Using Dynamic Atom Probe Tomography,” J. Mater. Res., vol. 30, no. 8, pp. 11371147, 2015.Google Scholar
Valley, J. W. et al., “Hadean Age for a Post-magma-ocean Zircon Confirmed by Atom-Probe Tomography,” Nat. Geosci., vol. 7, p. 219, Feb. 2014, doi: https://doi.org/10.1038/NGEO2075.Google Scholar
Mai, H. L., Cui, X.-Y., and Ringer, S. P., “Mechanical Properties of Ultrathin Gold Nanowires from First Principles: Interdependencies between Size, Morphology, and Twin Boundaries,” Phys. Rev. Mater., vol. 4, no. 8, p. 086003, Aug. 2020, doi: https://doi.org/10.1103/PhysRevMaterials.4.086003.Google Scholar
Panitz, J. A., “On the Feasibility of Imaging Unstained DNA by Field-Ion Tomography,” Proc 29th IFES, pp. 249255, 1982.Google Scholar
Panitz, J. A., “Ferritin Deposition on Tungsten and Its Desorption in a High Electric Field,” J. Vac. Sci. Technol., vol. 20, pp. 895896, 1982.Google Scholar
Panitz, J. A., “In Search of the Chimera: Molecular Imaging in the Atom Probe,” Microsc. Microanal., vol. 11 (Suppl. 2), pp. 92–3, Aug. 2005, doi: https://doi.org/10.1017/s1431927605500059.Google Scholar
Kelly, T. F., Nishikawa, O., Panitz, J. A., and Prosa, T. J., “Prospects for Nanobiology with Atom-Probe Tomography,” MRS Bull., vol. 34, no. 10, pp. 744749, Oct. 2009.Google Scholar
Prosa, T. J., Keeney, S. K., and Kelly, T. F., “Atom Probe Tomography Analysis of Poly(3-alkylthiophene)s,” J. Microsc., vol. 237, no. 2, pp. 155167, Feb. 2010, doi: https://doi.org/10.1111/j.1365-2818.2009.03320.x.Google Scholar
Nishikawa, O., Taniguchi, M., and Ikai, A., “Atomic Level Analysis of Biomolecules by the Scanning Atom Probe,” Appl. Surf. Sci., vol. 256, no. 4, pp. 12101213, Nov. 2009, doi: https://doi.org/10.1016/j.apsusc.2009.05.154.Google Scholar
Perea, D. E. et al., “Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin,” Sci. Rep., vol. 6, p. 22321, Feb. 2016, doi: https://doi.org/10.1038/srep22321.CrossRefGoogle ScholarPubMed
McCarroll, I. E., Bagot, P., Devaraj, A., Perea, D., and Cairney, J. M., “New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems,” Mater. Today Adv., vol. 7, p. 100090, Sep. 2020, doi: https://doi.org/10.1016/jmtadv.2020.100090.CrossRefGoogle ScholarPubMed
Stephenson, L. T. et al., “The Laplace Project: An Integrated Suite for Preparing and Transferring Atom Probe Samples under Cryogenic and UHV Conditions,” PLOS ONE, vol. 13, no. 12, p. e0209211, Dec. 2018, doi: https://doi.org/10.1371/journal.pone.0209211.Google Scholar
Schreiber, D. K., Perea, D. E., Ryan, J. V., Evans, J. E., and Vienna, J. D., “A Method for Site-Specific and Cryogenic Specimen Fabrication of Liquid/Solid Interfaces for Atom Probe Tomography,” Ultramicroscopy, vol. 194, pp. 8999, 2018, doi: https://doi.org/10.1016/j.ultramic.2018.07.010.CrossRefGoogle ScholarPubMed
Petersen, T. C. and Ringer, S. P., “Electron Tomography Using a Geometric Surface-Tangent Algorithm: Application to Atom Probe Specimen Morphology,” J. Appl. Phys., vol. 105, p. 103518, 2009.Google Scholar
Petersen, T. C. and Ringer, S. P., “An Electron Tomography Algorithm for Reconstructing 3D Morphology Using Surface Tangents of Projected Scattering Interfaces,” Comput. Phys. Commun., vol. 181, pp. 676682, 2010.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×