Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-28T14:16:05.309Z Has data issue: false hasContentIssue false

5 - From Inflamm-Aging to Immunosenescence

from Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Aging is a complex process which occurs with various speeds in all vertebrate species. So far, most of the studies aiming at understanding of the mechanisms of human aging have involved animal models; recently it became evident that if we would like to better understand the aging in humans we should study it in humans. There are several theories to capture the process of aging, which have a common denominator of age-dependent loss of multiple bodily functions. However, it seems now very important to change this paradigm and to reconsider aging as a process of multidirectional dysregulation of many systems either intertwined or in parallel. The immune system is not an exception. The immune changes during aging are the consequence of the body immunological history reflecting continuous challenges by various antigenic aggressions. Both parts of the immune response are reacting but aging differentially. Thus, the sum of the immune changes reflects the continuous adaptations and remodelling either in increase or in decrease. Inflammaging and immunosenescence are the same but the two sides of the medal as one cannot exist without the other. The immune changes in connection with the neuroendocrine system importantly contribute to the health and disease associated with aging.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, R., Roger, L., Costa Del Amo, P., et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux. Cell Rep. 2016 Dec 13; 17(11): 2811–18.CrossRefGoogle Scholar
Albright, J. M., Dunn, R. C., Shults, J. A., et al. Advanced age alters monocyte and macrophage responses. Antioxid Redox Signal. 2016 Nov 20; 25(15): 805–15.CrossRefGoogle ScholarPubMed
Appay, V., Fastenackels, S., Katlama, C., et al. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS. 2011; 25: 1813–22.CrossRefGoogle ScholarPubMed
Arai, Y., Martin-Ruiz, C. M., Takayama, M., et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015 Jul 29; 2(10): 1549–58.CrossRefGoogle Scholar
Arulselvan, P., Fard, M. T., Tan, W. S., et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016: 5276130.CrossRefGoogle ScholarPubMed
van Baarle, D., Tsegaye, A., Miedema, F., Akbar, A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett. 2005; 97: 1929.CrossRefGoogle ScholarPubMed
Bandaranayake, T., Shaw, A. C. Host resistance and immune aging. Clin Geriatr Med. 2016 Aug; 32(3): 415–32.CrossRefGoogle ScholarPubMed
Bauer, M. E., Fuente Mde, L. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016 Sep; 158: 2737.CrossRefGoogle ScholarPubMed
Byun, H. O., Lee, Y. K., Kim, J. M., Yoon, G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 2015 Oct; 48(10): 549–58.CrossRefGoogle ScholarPubMed
Cannizzo, E. S., Clement, C. C., Sahu, R., Follo, C., Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J Proteomics. 2011 Oct 19; 74(11): 2313–23.CrossRefGoogle ScholarPubMed
Catakovic, K., Klieser, E., Neureiter, D., Geisberger, R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017 Jan 5; 15(1): 1.CrossRefGoogle ScholarPubMed
Chandrasekaran, A., Idelchik, M. D., Melendez, J. A. Redox control of senescence and age-related disease. Redox Biol. 2017 Apr; 11: 91102.CrossRefGoogle ScholarPubMed
Cohen, A. A., Milot, E., Li, Q., et al. Detection of a novel, integrative aging process suggests complex physiological integration. PLoS One. 2015 Mar 11; 10(3): e0116489.Google ScholarPubMed
Effros, R. B. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol. 2004 Apr; 39(4): 517–24.Google ScholarPubMed
Fortin, C. F., McDonald, P. P., Lesur, O., Fülöp, T., Jr. Aging and neutrophils: there is still much to do. Rejuvenation Res. 2008 Oct; 11(5): 873–82.CrossRefGoogle ScholarPubMed
Fougère, B., Boulanger, E., Nourhashémi, F., Guyonnet, S., Cesari, M. Chronic inflammation: accelerator of biological aging. J Gerontol A Biol Sci Med Sci. 2017 Sep 1; 72(9): 1218–25.CrossRefGoogle ScholarPubMed
Franceschi, C., Bonafè, M., Valensin, S., et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000 Jun; 908: 244–54.CrossRefGoogle ScholarPubMed
Franceschi, C., Garagnani, P. Suggestions from geroscience for the genetics of age-related diseases. PLoS Genet. 2016 Nov 10; 12(11): e1006399.CrossRefGoogle ScholarPubMed
Frasca, D., Diaz, A., Romero, M., Blomberg, B. B. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine. 2016 May 27; 34(25): 2834–40.CrossRefGoogle Scholar
Fried, L. P., Tangen, C. M., Walston, J., et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Sci Med Sci. 2001; 56: M14657.CrossRefGoogle ScholarPubMed
Fulop, T., Dupuis, G., Baehl, S., et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016 Feb; 17(1): 147–57.CrossRefGoogle ScholarPubMed
Fülöp, T., Dupuis, G., Witkowski, J. M., Larbi, A. The role of immunosenescence in the development of age-related diseases. Rev Invest Clin. 2016 Mar–Apr; 68(2): 8491.Google ScholarPubMed
Fulop, T., Larbi, A., Douziech, N., et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004 Aug; 3(4): 217–26.CrossRefGoogle ScholarPubMed
Fulop, T., Larbi, A., Witkowski, J. M., et al. Aging, frailty and age-related diseases. Biogerontology. 2010 Oct; 11(5): 547–63.CrossRefGoogle ScholarPubMed
Fulop, T., Larbi, A., Witkowski, J. M., et al. Immunosenescence and cancer. Crit Rev Oncog. 2013; 18(6): 489513.CrossRefGoogle ScholarPubMed
Fulop, T., McElhaney, J., Pawelec, G., et al. Frailty, inflammation and immunosenescence. Interdiscip Top Gerontol Geriatr. 2015; 41: 2640.CrossRefGoogle ScholarPubMed
Fulop, T., Witkowski, J. M., Pawelec, G., Cohen, A., Larbi, A. On the immunological theory of aging. Interdiscip Top Gerontol. 2014; 39: 163–76.CrossRefGoogle ScholarPubMed
Gabrielli, S., Ortolani, C., Del Zotto, G., et al. The memories of NK cells: innate–adaptive immune intrinsic crosstalk. J Immunol Res. 2016; 2016: 1376595.CrossRefGoogle ScholarPubMed
Henson, S. M., Macaulay, R., Riddell, N. E., Nunn, C. J., Akbar, A. N. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol. 2015; 45: 1441–51.CrossRefGoogle ScholarPubMed
Herranz, N., Gallage, S., Mellone, M., et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015 Sep; 17(9): 1205–17.Google ScholarPubMed
Holcar, M., Goropevšek, A., Ihan, A., Avčin, T. Age-related differences in percentages of regulatory and effector T lymphocytes and their subsets in healthy individuals and characteristic STAT1/STAT5 signalling response in helper T lymphocytes. J Immunol Res. 2015; 2015: 352934.CrossRefGoogle ScholarPubMed
Jha, S., Brickey, W. J., Ting, J. P. Inflammasomes in myeloid cells: warriors within. Microbiol Spectr. 2017 Jan; 5(1). doi: 10.1128/microbiolspec.MCHD-0049-2016.CrossRefGoogle Scholar
Kaufmann, S. H., Dorhoi, A. Molecular determinants in phagocyte–bacteria interactions. Immunity. 2016 Mar 15; 44(3): 476–91.CrossRefGoogle ScholarPubMed
Kleinnijenhuis, J., Quintin, J., Preijers, F., et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012; 109: 1753742.CrossRefGoogle ScholarPubMed
Lal, H., Cunningham, A. L., Godeaux, O., et al. ZOE-50 Study Group. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015 May 28; 372(22): 2087–96.CrossRefGoogle ScholarPubMed
Larbi, A., Fulop, T. From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A. 2014 Jan; 85(1): 2535.CrossRefGoogle Scholar
Lasry, A., Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015 Apr; 36(4): 217–28.CrossRefGoogle Scholar
Le Saux, S1, Weyand, C. M., Goronzy, J. J. Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Ann N Y Acad Sci. 2012 Jan; 1247: 6982.CrossRefGoogle ScholarPubMed
Leandro, M. J. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013; 15 (Suppl 1): S3.CrossRefGoogle ScholarPubMed
Lipsky, M. S, King, M., Biological theories of aging. Disease-a-Month. 61 (2015) 460–66.CrossRefGoogle ScholarPubMed
Magrone, T., Jirillo, E. Disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr Metab Immune Disord Drug Targets. 2014; 14(4): 272–82.CrossRefGoogle ScholarPubMed
Marandu, T. F., Oduro, J. D., Borkner, L., et al. Immune Protection against virus challenge in aging mice is not affected by latent herpesviral infections. J Virol. 2015 Nov; 89(22): 1171517.CrossRefGoogle Scholar
Montgomery, R. R., Shaw, A. C. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol. 2015 Dec; 98(6): 937–43.CrossRefGoogle ScholarPubMed
Müller, L., Fülöp, T., Pawelec, G. Immunosenescence in vertebrates and invertebrates. Immun Ageing. 2013 Apr 2; 10(1): 12.CrossRefGoogle ScholarPubMed
Pawelec, G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing. 2012 Jul 25; 9(1): 15.CrossRefGoogle ScholarPubMed
Pawelec, G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014 Jun; 54: 15.CrossRefGoogle ScholarPubMed
Pawelec, G., Akbar, A., Caruso, C., et al. Human immunosenescence: is it infectious? Immunol Rev. 2005; 205: 257–68.CrossRefGoogle ScholarPubMed
Pawelec, G., Derhovanessian, E., Larbi, A., Strindhall, J., Wikby, A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009 Jan; 19(1): 4756.CrossRefGoogle ScholarPubMed
Pawelec, G., McElhaney, J. E., Aiello, A. E. Derhovanessian E: the impact of CMV infection on survival in older humans. Curr Opin Immunol. 2012; 24: 507–11.CrossRefGoogle ScholarPubMed
Pera, A., Campos, C., López, N., et al. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015 Sep; 82(1): 50–5.CrossRefGoogle ScholarPubMed
Pinti, M., Appay, V., Campisi, J., et al. Aging of the immune system: focus on inflammation and vaccination. Eur J Immunol. 2016 Oct; 46(10): 2286–301.CrossRefGoogle ScholarPubMed
Ponnappan, S., Ponnappan, U. Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal. 2011 Apr 15; 14(8): 1551–85.CrossRefGoogle ScholarPubMed
Qi, Q., Zhang, D. W., Weyand, C. M., Goronzy, J. J. Mechanisms shaping the naïve T cell repertoire in the elderly – thymic involution or peripheral homeostatic proliferation? Exp Gerontol. 2014; 54: 71–4.CrossRefGoogle ScholarPubMed
Qian, F., Wang, X., Zhang, L., et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011; 203: 1415–24.CrossRefGoogle ScholarPubMed
Robert, L., Fulop, T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014; 39: 198211.CrossRefGoogle ScholarPubMed
Rockwood, K., Andrew, M., Mitnitski, A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol Ser A Biol Sci Med Sci. 2007; 62: 738–43.CrossRefGoogle ScholarPubMed
Rivera, A., Siracusa, M. C., Yap, G. S., Gause, W. C. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol. 2016 Apr; 17(4): 356–63.CrossRefGoogle ScholarPubMed
Salvioli, S., Monti, D., Lanzarini, C., et al. Immune system, cell senescence, aging and longevity – inflamm-aging reappraised. Curr Pharm Des. 2013; 19(9): 1675–9.Google ScholarPubMed
Satoh, T., Akira, S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016 Dec; 4(6). doi: 10.1128/microbiolspec.MCHD-0040-2016.CrossRefGoogle ScholarPubMed
Seidler, S., Zimmermann, H. W., Bartneck, M., Trautwein, C., Tacke, F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010 Jun 21; 11: 30.CrossRefGoogle ScholarPubMed
Smallwood, H. S., López-Ferrer, D., Squier, T. C. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways. Biochemistry. 2011 Nov 15; 50(45): 9911–22.CrossRefGoogle ScholarPubMed
Söderberg-Nauclér, C., Fornara, O., Rahbar, A. Cytomegalovirus driven immunosenescence – an immune phenotype with or without clinical impact? Mech Ageing Dev. 2016 Sep; 158: 313.CrossRefGoogle ScholarPubMed
Solana, R., Tarazona, R., Aiello, A. E., et al. CMV and immunosenescence: from basics to clinics. Immun Ageing 2012; 9: 23.CrossRefGoogle ScholarPubMed
Solana, R., Tarazona, R., Gayoso, I., et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012 Oct; 24(5): 331–41.CrossRefGoogle ScholarPubMed
Sonntag, W. E., Ungvari, Z. GeroScience: understanding the interaction of processes of aging and chronic diseases. Age (Dordr). 2016 Dec; 38(5–6): 377–8.CrossRefGoogle ScholarPubMed
Tu, W., Rao, S. Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016 Dec 27; 7: 2111.CrossRefGoogle ScholarPubMed
Weinberger, B. Immunosenescence: the importance of considering age in health and disease. Clin Exp Immunol. 2017 Jan; 187(1): 13.CrossRefGoogle ScholarPubMed
Weltevrede, M., Eilers, R., de Melker, H. E., van Baarle, D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol. 2016 May; 77: 8795.CrossRefGoogle ScholarPubMed
Weyand, C. M., Goronzy, J. J. Aging of the immune system: mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016 Dec; 13 (Suppl 5): S422–8.CrossRefGoogle ScholarPubMed
Wherry, E. J., Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015 Aug; 15(8): 486–99.CrossRefGoogle ScholarPubMed
Wilson, D., Jackson, T., Sapey, E., Lord, J. M. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017; 36: 110.CrossRefGoogle ScholarPubMed
Xia, S., Zhang, X., Zheng, S., et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016; 2016: 8426874.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×