Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T17:15:02.175Z Has data issue: false hasContentIssue false

12 - Playing the System: The Impacts of Invasive Ants and Plants on Facultative Ant-Plant Interactions

from Part IV - Effect of Invasive Ants on Plants and Their Mutualists

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 249 - 266
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, J. D., Falcon, W., Molinari, J., Vega, C., Espino, I., & Cuevas, A. A. (2014). Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico. Biological Invasions, 16, 24352447.Google Scholar
Addison, P., & Samways, M. J. (2000). A survey of ants (Hymenoptera: Formicidae) that forage in vineyards in the Western Cape Province, South Africa. African Entomology, 8, 251260.Google Scholar
Allen, C., Forys, E., Rice, K., & Wojcik, D. (2001). Effects of fire ants (Hymenoptera: Formicidae) on hatching turtles and prevalence of fire ants on sea turtle nesting beaches in Florida. Florida Entomologist, 84, 250253.Google Scholar
Baker, H. G., Opler, P. A., & Baker, I. (1978). A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette, 139, 322332.Google Scholar
Barrios, B., Arellano, G., & Koptur, S. (2011). The effects of fire and fragmentation on occurrence and flowering of a rare perennial plant. Plant Ecology, 212, 10571067.Google Scholar
Becerra, J. X. I., & Venable, D. L. (1989). Extrafloral nectaries a defense against ant-homoptera mutualism. Oikos, 55, 276280.Google Scholar
Bentley, B. L. (1977a). Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 88, 407427.Google Scholar
Bentley, B. L. (1977b). The protective function of ants visiting the extrafloral nectaries of Bixa orellana (Bixaceae). Journal of Ecology, 65, 2738.CrossRefGoogle Scholar
Billick, I., & Price, M. V. (eds.). (2010). The Ecology of Place: Contributions of Place-Based Research to Ecological Understanding. Chicago: University of Chicago Press.Google Scholar
Bleil, R., Blüthgen, N., & Junker, R. R. (2011). Ant-plant mutualism in Hawaii? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pacific Science, 65, 291300.Google Scholar
Blossey, B., & Notzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887889.Google Scholar
Carrillo, J., Wang, Y., Ding, J., Klootwyk, K., & Siemann, E. (2012a). Decreased indirect defense in the invasive tree, Triadica sebifera. Plant Ecology, 213, 945954.Google Scholar
Carrillo, J., Wang, Y., Ding, J., & Siemann, E. (2012b). Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings. Basic and Applied Ecology, 13, 449457.Google Scholar
Dattilo, W., Rico-Gray, V., Rodrigues, D. J., & Izzo, T. J. (2013). Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecological Entomology, 38(4), 374380.Google Scholar
Davidson, D. W. (1998). Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology, 23, 484490.CrossRefGoogle Scholar
de la Fuente, M. A. S., & Marquis, R. J. (1999). The role of ant-tended extrafloral nectaries in the protection and benefit of a neotropical rainforest tree. Oecologia, 118, 192202.Google Scholar
Diaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91, 793801.Google Scholar
Dormann, C. F., Frund, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs, and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 724.Google Scholar
Eubanks, M. D. (2001). Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biological Control, 21, 3543.Google Scholar
Fleet, R. R., & Young, B. L. (2000). Facultative mutualism between imported fire ants (Solenopsis invicta) and a legume (Senna occidentalis). Southwestern Naturalist, 45, 289298.Google Scholar
Gonzalez-Teuber, M., & Heil, M. (2009). The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. Journal of Chemical Ecology, 35, 459468.Google Scholar
Gotelli, N. J., & Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecological Letters, 3, 257261.CrossRefGoogle Scholar
Green, P. T., O’Dowd, D. J., & Lake, P. S. (1999). Alien ant invasion and ecosystem collapse on Christmas Island, Indian Ocean. Aliens, 9, 24.Google Scholar
Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21, 15121513.CrossRefGoogle Scholar
Guimarães, P. R., Rico-Gray, V., dos Reis, S. F., & Thompson, J. N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society of London, Series B, Biological Sciences, 273, 20412047.Google ScholarPubMed
Guimarães, P. R., Rico-Gray, V., Oliveira, P. S., Izzo, T. J., dos Reis, S. F., & Thompson, J. N. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17(20), 17971803.CrossRefGoogle ScholarPubMed
Haddad, N. M., Bowne, D. R., Cunningham, A., Danielson, B. J., Levey, D. J., Sargent, S., & Spira, T. (2003). Corridor use by diverse taxa. Ecology, 84, 609615.Google Scholar
Heil, M. (2011). Nectar: generation, regulation and ecological functions. Trends in Plant Science, 16, 191200.CrossRefGoogle ScholarPubMed
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology, 60, 213232.Google Scholar
Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W., & Linsenmair, K. E. (2001). Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 98, 10831088.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Horvitz, C. C., & Schemske, D. W. (1984). Effects of ants and an ant-tended herbivore on seed production of a neotropical herb. Ecology, 65, 13691378.Google Scholar
Inouye, D. W., & Taylor, O. R. (1979). A temperate region plant-ant-seed predator system: consequences of extrafloral nectar secretion by Helianthella quinquenervis. Ecology, 60, 18.Google Scholar
Ivens, A. B. F., Beeren, C. V., Blüthgen, N., & Kronauer, D. J. C. (2016). Studying the complex communities of ants and their symbionts using ecological network analysis. Annual Review of Entomology, 61, 353371.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1966). Coevolution between ants and acacias in Central America. Evolution, 20, 249275.Google Scholar
Jezorek, H., Stiling, P., & Carpenter, J. (2011). Ant predation on an invasive herbivore: can an extrafloral nectar-producing plant provide associational resistance to Opuntia individuals? Biological Invasions, 13, 22612273.CrossRefGoogle Scholar
Jones, I. M., Koptur, S., Gallegos, H. R., Tardanico, J. P, Trainer, P. A., & Peña, J. (2016). Changing light conditions in pine rockland habitats affect the intensity and outcome of ant-plant interactions. Biotropica, 49, 8391.Google Scholar
Junker, R. R., Daehler, C. C., Doetterl, S., Keller, A., & Blüthgen, N. (2011). Hawaiian ant-flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecological Monographs, 81, 295311.Google Scholar
Kaakeh, W., & Dutcher, J. D. (1992). Foraging preference of red imported fire ants (Hymenoptera: Formicidae) among three species of summer cover crops and their extracts. Journal of Economic Entomology, 85, 389394.CrossRefGoogle Scholar
Kautz, S., Lumbsch, H. T., Ward, P. S., & Heil, M. (2009). How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution, 6, 839853.Google Scholar
Keeler, K. H. (1985). Extrafloral nectaries on plants in communities without ants: Hawaii. Oikos, 44, 407414.Google Scholar
Koi, S., & Daniel, J. (2015). New and revised life history of the Florida hairstreak Eumaeus atala (Lepidoptera: Lycaenidae) with notes on its current conservation status. Florida Entomologist, 98(4), 11341147.Google Scholar
Koptur, S. (1979). Facultative mutualism between weedy vetches bearing extrafloral nectaries and weedy ants in California. American Journal of Botany, 66, 10161020.Google Scholar
Koptur, S. (1984). Experimental evidence for defense of Inga (Mimosoideae) saplings by ants. Ecology, 65, 17871793.Google Scholar
Koptur, S. (1992). Plants with extrafloral nectaries and ants in Everglades habitats. The Florida Entomologist, 75(1), 3850.Google Scholar
Koptur, S., Jones, I. M., & Peña, J. E. (2015). The influence of host plant extrafloral nectaries on multitrophic interactions: An experimental investigation. PLOSone, 10(9), e0138157.Google Scholar
Koptur, S., & Lawton, J.H. (1988). Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology, 69, 278293.Google Scholar
Krushelnycky, P. D., Loope, L. L., & Reimer, N. J. (2005). The ecology, policy, and management of ants in Hawaii. Proceedings of the Hawaiian Entomological Society, 37, 125.Google Scholar
Lach, L. (2003). Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden, 90, 91108.Google Scholar
Lach, L. (2007). A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology, 88, 19942004.Google Scholar
Lach, L., & Hoffmann, B. D. (2011). Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos, 120, 916.Google Scholar
Lach, L., Tillberg, C. V., & Suarez, A. V. (2010). Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions, 12, 31233133.CrossRefGoogle Scholar
Lewinsohn, T. M., & Inacio Prado, P. (2006). Structure in plant/animal interaction assemblages. Oikos, 113(1), 174184.Google Scholar
Lubin, Y. D. (1984). Changes in the native fauna of the Galapagos Islands following invasions by the little red fire ant, Wasmannia auropunctata. Biological Journal of the Linnean Society, 21, 229242.Google Scholar
Marazzi, B., Conti, E., Sanderson, M. J., McMahon, M. M., & Bronstein, J. L. (2013). Diversity and evolution of a trait mediating ant-plant interactions: Insights from extrafloral nectaries in Senna (Leguminosae). Annals of Botany, 111, 12631275.Google Scholar
Maschinski, J., & Wright, S. (2006). Using ecological theory to plan restorations of the endangered Beach jacquemontia (Convolvulaceae) in fragmented habitats. Journal for Nature Conservation, 14, 180189.Google Scholar
Mathew, G., & Anto, M. (2007). In situ conservation of butterflies through establishment of butterfly gardens: A case study at Peechi, Kerala, India. Current Science, 93(3), 337347.Google Scholar
McLain, D. K. (1983). Ants, extrafloral nectaries, and herbivory on the passion vine Passiflora incarnata. American Midland Naturalist, 110, 433439.CrossRefGoogle Scholar
Minno, M., & Minno, M. (1999). Florida Butterfly Gardening: A Complete Guide to Attracting, Identifying, and Enjoying Butterflies. Gainesville, FL: University Press of Florida.Google Scholar
Ness, J. H. (2003). Contrasting exotic Solenopsis invicta and native Forelius pruinosus ants as mutualists with Catalpa bignonioides, a native plant. Ecological Entomology, 28, 247251.Google Scholar
Ness, J. H., & Bronstein, I. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.CrossRefGoogle Scholar
Ness, J. H., Morris, W. F., & Bronstein, J. L. (2006). Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology, 87, 912921.CrossRefGoogle ScholarPubMed
Oliveira, P. S., Rico-Gray, V., Diaz-Castelazo, C., & Castillo-Guevara, C. (1999). Interactions between ants, extrafloral nectaries, and insect herbivores in Neotropical sand dunes: herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Functional Ecology, 13, 623631.Google Scholar
Rios, R. S., Marquis, R. J., & Flunker, J. C. (2008). Population variation in plant traits associated with ant attraction and herbivory in Chamaecrista fasciculata (Fabaceae). Oecologia, 156(3), 577588.Google Scholar
Rosumek, F. B., Silveira, F. A. O., Neves, F. d. S., Barbosa, N. P. d. U., Diniz, L., Oki, Y., Pezzini, F., Fernandes, G. W., & Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537549.CrossRefGoogle ScholarPubMed
Savage, A. M., Rudgers, J. A., & Whitney, K. D. (2009). Elevated dominance of extrafloral nectary-bearing plants is associated with increased abundances of an invasive ant and reduced native ant richness. Diversity and Distributions, 15, 751761.Google Scholar
Savage, A. M., & Whitney, K.D. (2011). Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere, 2, 106.Google Scholar
Sendoya, S. F., Blüthgen, N., Tamashiro, J. Y., Fernandez, F., & Oliveira, P. S. (2016). Foliage-dwelling ants in a neotropical savanna: effects of plant and insect exudates on ant communities. Arthropod-Plant Interactions, 10, 183195.Google Scholar
Soberon Mainero, J., & Martinez del Rio, C. (1985). Cheating and taking advantage in mutualistic associations. In The Biology of Mutualism, ed. Boucher, D. A.. New York: Oxford University Press, pp. 192216.Google Scholar
Torres-Hernandez, L., Rico-Gray, V., Castillo-Guevara, C., & Vergara, J. A. (2000). Effect of nectar-foraging ants and wasps on the reproductive fitness of Turnera ulmifolia (Turneraceae) in a coastal sand dune in Mexico. Acta Zoologica Mexicana, 81, 1321.Google Scholar
Wagner, D., & Kay, A. (2002). Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research, 4, 293305.Google Scholar
Warren, A. D., & Calhoun, J. V. (2011). Notes on the historical occurrence of Aphrissa neleis in Southern Florida, USA (Lepidoptera: Pieridae: Coliadinae). News of the Lepidopterists’ Society, 53(1), 37.Google Scholar
Weber, M. G., & Keeler, K. H. (2013). The phylogenetic distribution of extrafloral nectaries in plants. Annals of Botany, 111(6), 12511261.Google Scholar
Wetterer, J. K. (2010). Worldwide spread of the graceful twig ant, Pseudomyrmex gracilis (Hymenoptera: Formicidae). Florida Entomologist, 93, 535540.CrossRefGoogle Scholar
Whitcomb, W. H., Denmark, H. A., Buren, W. F., & Carroll, J. F. (1972). Habits and present distribution in Florida of the exotic ant, Pseudomyrmex mexicanus (Hymenoptera: Formicidae). Florida Entomologist, 55, 3133.Google Scholar
Wild Ones® Natural Landscapers Ltd. (2004). Wild Ones: Native Plants, Natural Landscapes – Landscaping with Native Plants, 4th edition. Downloaded from US Environmental Protection Agency website (https://archive.epa.gov/greenacres/web/pdf/wo_2004b.pdf).Google Scholar
Wilder, S. M., Holway, D. A., Suarez, A. V., LeBrun, E. G., & Eubanks, M. D. (2011). Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proceedings of the National Academy of Sciences of the USA, 108, 2063920644.Google Scholar
Xu, F. F., & Chen, J. (2009). Comparison of the differences in response to the change of the extrafloral nectar-ant–herbivore interaction system between a native and an introduced Passiflora species. Acta Botanica Yunnanica, 31, 543550.Google Scholar
Zettler, J. A., Taylor, M. D., Allen, C. R., & Spira, T. P. (2004). Consequences of forest clear-cuts for native and non-indigenous ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 97, 513518.Google Scholar
Zimmerman, E. C. (1970). Adaptive radiation in Hawaii with special reference to insects. Biotropica, 2, 3238.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×