Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-14T15:22:29.888Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 October 2018

David Vanderbilt
Affiliation:
Rutgers University, New Jersey
Get access
Type
Chapter
Information
Berry Phases in Electronic Structure Theory
Electric Polarization, Orbital Magnetization and Topological Insulators
, pp. 363 - 373
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandradinata, A., Dai, X., and Bernevig, B. A. 2014. Wilson-loop characterization of inversion-symmetric topological insulators. Phys. Rev. B, 89, 155114.Google Scholar
Armitage, N. P., Mele, E. J., and Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys., 90, 015001.CrossRefGoogle Scholar
Bansil, A., Lin, H., and Das, T. 2016. Colloquium: Topological band theory. Rev. Mod. Phys., 88, 021004.CrossRefGoogle Scholar
Baroni, S., De Gironcoli, S., Dal Corso, A., and Giannozzi, P. 2001. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 73, 515.CrossRefGoogle Scholar
Baroni, S., Giannozzi, P., and Testa, A. 1987. Green’s-function approach to linear response in solids. Phys. Rev. Lett., 58, 18611864.CrossRefGoogle ScholarPubMed
Baroni, S., and Resta, R. 1986. Ab initio calculation of the low-frequency Raman cross section in silicon. Phys. Rev. B, 33, 59695971.CrossRefGoogle ScholarPubMed
Beenakker, C. W. J. 1990. Edge channels for the fractional quantum Hall effect. Phys. Rev. Lett., 64, 216.Google Scholar
Berger, L. 1964. Influence of spin-orbit interaction on the transport processes in ferromagnetic nickel alloys, in the presence of a degeneracy of the 3D band. Physica, 30, 11411159.CrossRefGoogle Scholar
Berger, L. 1970. Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B, 2, 45594566.Google Scholar
Bernevig, B. A. 2013. Topological Insulators and Topological Superconductors. Princeton University Press.CrossRefGoogle Scholar
Bernevig, B. A., Hughes, T. L., and Zhang, S. C. 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 17571761.CrossRefGoogle ScholarPubMed
Berry, M. V. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392, 45.Google Scholar
Berry, M. V. 1985. Aspects of degeneracy. Pages 123140 of: Casati, Giulio (ed.), Chaotic Behavior in Quantum Systems: Theory and Applications. Springer.Google Scholar
Blount, E. I. 1962. Formalisms of band theory. Solid State Phys., 13, 305.Google Scholar
Bohm, A., Kendrick, B., and Loewe, Mark E. 1992. The Berry phase in molecular physics. Int. J. Quantum Chem., 41, 5375.CrossRefGoogle Scholar
Boys, S. F. 1960. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys., 32, 296.CrossRefGoogle Scholar
Boys, S. F. 1966. Localized orbitals and localized adjustment functions. Page 253 of: Löwdin, P.-O. (ed.), Quantum Theory of Atoms, Molecules, and the Solid State. Academic Press.Google Scholar
Bradlyn, B., Elcoro, L., Cano, J., Wang, Z., Vergniory, M. G., Felser, C., Aroyo, M. I., and Bernevig, B. A. 2017. Topological quantum chemistry. Nature, 547, 298305.Google Scholar
Brouder, C., Panati, G., Calandra, M., Mourougane, C., and Marzari, N. 2007. Exponential localization of Wannier functions in insulators. Phys. Rev. Lett., 98, 046402.Google Scholar
Bukov, M., D’Alessio, L., and Polkovnikov, A. 2015. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys., 64, 139226.Google Scholar
Cayssol, J., Dóra, B., Simon, F., and Moessner, R. 2013. Floquet topological insulators. Phys. Status Solidi-R, 7, 101–8.Google Scholar
Ceresoli, D., Gerstmann, U., Seitsonen, A. P., and Mauri, F. 2010. First-principles theory of orbital magnetization. Phys. Rev. B, 81, 060409.Google Scholar
Ceresoli, D., Thonhauser, T., Vanderbilt, D., and Resta, R. 2006. Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals. Phys. Rev. B, 74, 024408.CrossRefGoogle Scholar
Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.-L., et al. 2013. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167.Google Scholar
Chang, C.-Z., Zhao, W., Kim, D. Y., Zhang, H., Assaf, B. A., Heiman, D., Zhang, S.-C., Liu, C., Chan, M. H. W., and Moodera, J. S. 2015. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater., 14, 473477.Google Scholar
Chang, M.-C., and Niu, Q. 1996. Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B, 53, 70107023.Google Scholar
Chang, M.-C., and Niu, Q. 2008. Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields. J. Phys. Condens. Matter, 20, 193202.Google Scholar
Chen, K.-T., and Lee, P. A. 2011. Topological insulator and the θ vacuum in a system without boundaries. Phys. Rev. B, 83, 125119.CrossRefGoogle Scholar
Coh, S., and Vanderbilt, D. 2013. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B, 88, 121106.Google Scholar
Coh, S., Vanderbilt, D., Malashevich, A., and Souza, I. 2011. Chern–Simons orbital magnetoelectric coupling in generic insulators. Phys. Rev. B, 83, 085108.Google Scholar
Coleman, S. 1979. The uses of instantons. Pages 805941 of: The Whys of Subnuclear Physics. Springer.Google Scholar
Deser, S., Jackiw, R., and Templeton, S. 1982. Topologically massive gauge theories. Ann. Phys., 140, 372411.Google Scholar
Dziawa, P., Kowalski, B. J., Dybko, K., Buczko, R., Szczerbakow, A., Szot, M., Lusakowska, E., Balasubramanian, T., Wojek, Bastian M., Berntsen, M. H., et al. 2012. Topological crystalline insulator states in Pb1−x Sn x Te. Nat. Mater., 11, 10231027.Google Scholar
Edmiston, C., and Ruedenberg, K. 1963. Localized atomic and molecular orbitals. Rev. Mod. Phys., 35, 457.Google Scholar
Eschrig, H. 2011. Topology and Geometry for Physics. Vol. 822. Springer Science & Business Media.Google Scholar
Essin, A. M., Moore, J. E., and Vanderbilt, D. 2009. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 102, 146805. See also Erratum: Phys. Rev. Lett., 103, 259902.Google Scholar
Essin, A. M., Turner, A. M., Moore, J. E., and Vanderbilt, D. 2010. Orbital magnetoelectric coupling in band insulators. Phys. Rev. B, 81, 205104.Google Scholar
Fang, C., Weng, H., Dai, X., and Fang, Z. 2016. Topological nodal line semimetals. Chinese Physics B, 25, 117106.CrossRefGoogle Scholar
Fang, Z., Nagaosa, N., Takahashi, K. S., Asamitsu, A., Mathieu, R., Ogasawara, T., Yamada, H., Kawasaki, M., Tokura, Y., and Terakura, K. 2003. The anomalous Hall effect and magnetic monopoles in momentum space. Science, 302, 9295.Google Scholar
Fiebig, M. 2005. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys., 38, R123R152.Google Scholar
Foster, J. M., and Boys, S. F. 1960a. A quantum variational calculation for HCHO. Rev. Mod. Phys., 32, 303.Google Scholar
Foster, J. M., and Boys, S. F. 1960b. Canonical configurational interaction procedure. Rev. Mod. Phys., 32, 300.Google Scholar
Frankel, T. 1997. The Geometry of Physics. Cambridge University Press.Google Scholar
Freed, D. S. and Moore, G. W. 2013. Twisted equivariant matter. Annales Henri Poincaré, 14, 19272023.Google Scholar
Fruchart, M. and Carpentier, D. 2013. An introduction to topological insulators. Comptes Rendus Physique, 14, 779815.Google Scholar
Fu, L., and Kane, C. L. 2007. Topological insulators with inversion symmetry. Phys. Rev. B, 76, 045302.Google Scholar
Fu, L., Kane, C. L., and Mele, E. J. 2007. Topological insulators in three dimensions. Phys. Rev. Lett., 98, 106803.Google Scholar
Fu, L. 2011. Topological crystalline insulators. Phys. Rev. Lett., 106, 106802.CrossRefGoogle ScholarPubMed
Fu, L., and Kane, C. L. 2006. Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B, 74, 195312.Google Scholar
Fuh, H.-R., and Guo, G.-Y. 2011. Intrinsic anomalous Hall effect in nickel: a GGA+U study. Phys. Rev. B, 84, 144427.Google Scholar
Fukui, T., and Hatsugai, Y. 2007. Quantum spin Hall effect in three dimensional materials: lattice computation of Z 2 topological invariants and its application to Bi and Sb. J. Phys. Soc. Japan, 76, 053702.Google Scholar
Gao, Y., Yang, S. A., and Niu, Q. 2014. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett., 112, 166601.Google Scholar
Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., and Fabian, J. 2009. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B, 80, 235431.Google Scholar
Goldman, N., Budich, J. C., and Zoller, P. 2016. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys., 12, 639645.Google Scholar
Gonze, X. 1997. First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm. Phys. Rev. B, 55, 10337.Google Scholar
Gonze, X., and Lee, C. 1997. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 55, 10355.Google Scholar
Gonze, X., and Zwanziger, J. W. 2011. Density-operator theory of orbital magnetic susceptibility in periodic insulators. Phys. Rev. B, 84, 064445.Google Scholar
Gosálbez-Martínez, D., Souza, I., and Vanderbilt, D. 2015. Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B, 92, 085138.CrossRefGoogle Scholar
Gradhand, M., Fedorov, D. V., Pientka, Falko, Zahn, P., Mertig, I., and Györffy, B. L. 2012. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons. J. Phys. Condens. Matter, 24, 213202.Google Scholar
Gresch, D., Autès, G., Yazyev, O. V., Troyer, M., Vanderbilt, D., Bernevig, B. A., and Soluyanov, A. A. 2017. Z2Pack: numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B, 95, 075146.Google Scholar
Haldane, F. D. M. 1983. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett., 50, 11531156.Google Scholar
Haldane, F. D. M. 1988. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”? Phys. Rev. Lett., 61, 2015–18.Google Scholar
Haldane, F. D. M. 2004. Berry curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett., 93, 206602.Google Scholar
Haldane, F. D. M. 2014. Attachment of surface “Fermi arcs” to the bulk Fermi surface: “Fermi-level plumbing” in topological metals. ArXiv e-prints.Google Scholar
Hall, E. H. 1879. On a new action of the magnet on electric currents. Am. J. Math, 2, 287–92.Google Scholar
Hall, E. H. 1881. On the possibility of transverse currents in ferromagnets. Philos. Mag., 12, 157–60.Google Scholar
Hamamoto, K., Ezawa, M., and Nagaosa, N. 2015. Quantized topological Hall effect in skyrmion crystal. Phys. Rev. B, 92, 115417.CrossRefGoogle Scholar
Hanke, J.-P., Freimuth, F., Nandy, A. K., Zhang, H., Blügel, S., and Mokrousov, Y. 2016. Role of Berry phase theory for describing orbital magnetism: from magnetic heterostructures to topological orbital ferromagnets. Phys. Rev. B, 94, 121114.Google Scholar
Harrison, W. A. 1989. Electronic Structure and the Properties of Solids. Dover.Google Scholar
Hasan, M. Z., and Kane, C. L. 2010. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045.CrossRefGoogle Scholar
Hasan, Z., Xu, S.-Y., Belopolski, I., and Huang, S.-M. 2017. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matt. Phys., 8, 289309.Google Scholar
Hirst, L. L. 1997. The microscopic magnetization: Concept and application. Rev. Mod. Phys., 69, 607–28.CrossRefGoogle Scholar
Hohenberg, P., and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev., 136, B864.Google Scholar
Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., and Hasan, M. Z. 2008. A topological Dirac insulator in a quantum spin Hall phase. Nature, 452, 970–U5.Google Scholar
Hsieh, T. H., Lin, H., Liu, J., Duan, W., Bansil, A., and Fu, L. 2012. Topological crystalline insulators in the SnTe material class. Nat. Commun., 3, 982.CrossRefGoogle ScholarPubMed
Huang, S.-M., Xu, S.-Y., Belopolski, I., Lee, C.-C., Chang, G., Wang, B., Alidoust, N., Bian, G., Neupane, M., Zhang, C., et al. 2015. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun., 6.Google Scholar
Íñiguez, J. 2008. First-principles approach to lattice-mediated magnetoelectric effects. Phys. Rev. Lett., 101, 117201.CrossRefGoogle ScholarPubMed
Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D. 2011. Photonic Crystals: Molding the Flow of Light. Princeton University Press.Google Scholar
Jones, R. O. 2015. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys., 87, 897923.Google Scholar
Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., and Esslinger, T. 2014. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 515, 237–40.Google Scholar
Jungwirth, T. 2002. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett., 88, 207208.Google Scholar
Kane, C. L. 2008. Condensed matter: an insulator with a twist. Nature Phys., 4, 348–9.Google Scholar
Kane, C. L., and Mele, E. J. 2005a. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801.CrossRefGoogle ScholarPubMed
Kane, C. L., and Mele, E. J. 2005b. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802.Google Scholar
Karplus, R., and Luttinger, J. M. 1954. Hall effect in ferromagnets. Phys. Rev., 95, 11541160.Google Scholar
King-Smith, R. D., and Vanderbilt, D. 1993. Theory of polarization of crystalline solids. Phys. Rev. B, 47, 1651–4.Google Scholar
Kitaev, A., and Preskill, J. 2006. Topological entanglement entropy. Phys. Rev. Lett., 96, 110404.Google Scholar
Kivelson, S. 1982. Wannier functions in one-dimensional disordered systems: application to fractionally charged solitons. Phys. Rev. B, 26, 4269.Google Scholar
Knez, I., Du, R.-R., and Sullivan, G. 2011. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett., 107, 136603.Google Scholar
Kohmoto, M., Halperin, B. I., and Wu, Y.-S. 1993. Quantized Hall effect in 3D periodic systems. Physica B, 184, 3033.Google Scholar
Kohn, W. 1996. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett., 76, 31683171.CrossRefGoogle ScholarPubMed
Kohn, W., and Luttinger, J. M. 1957. Quantum theory of electrical transport phenomena. Phys. Rev., 108, 590611.Google Scholar
Kohn, W., and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133.Google Scholar
Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X. L., and Zhang, S. C. 2007. Quantum spin hall insulator state in HgTe quantum wells. Science, 318, 766–70.Google Scholar
Lindner, N. H., Refael, G., and Galitski, V. 2011. Floquet topological insulator in semiconductor quantum wells. Nat. Phys., 7, 490–5.Google Scholar
Littlewood, P. B. 1980. On the calculation of the macroscopic polarisation induced by an optic phonon. J. Phys. C, 13, 4893.Google Scholar
Liu, J., Park, S. Y., Garrity, K. F., and Vanderbilt, D. 2016. Flux states and topological phases from spontaneous time-reversal symmetry breaking in CrSi(Ge)Te3 -based systems. Phys. Rev. Lett., 117, 257201.Google Scholar
Liu, J., and Vanderbilt, D. 2015. Gauge-discontinuity contributions to Chern–Simons orbital magnetoelectric coupling. Phys. Rev. B, 92, 245138.Google Scholar
Lopez, M. G., Vanderbilt, D., Thonhauser, T., and Souza, I. 2012. Wannier-based calculation of the orbital magnetization in crystals. Phys. Rev. B, 85, 014435.Google Scholar
Lu, L., Joannopoulos, J. D., and Soljačić, M. 2014. Topological photonics. Nat. Photonics, 8, 821829.CrossRefGoogle Scholar
Luttinger, J. M. 1958. Theory of the Hall effect in ferromagnetic substances. Phys. Rev., 112, 739.Google Scholar
Lv, B. Q., Weng, H. M., Fu, B. B., Wang, X. P., Miao, H., Ma, J., Richard, P., Huang, X. C., Zhao, L. X., Chen, G.F., et al. 2015. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5, 031013.Google Scholar
Malashevich, A., Coh, S., Souza, I., and Vanderbilt, D. 2012. Full magnetoelectric response of Cr 2 O3 from first principles. Phys. Rev. B, 86, 094430.Google Scholar
Malashevich, A., Souza, I., Coh, S., and Vanderbilt, D. 2010. Theory of orbital magnetoelectric response. New J. Phys., 12, 053032.Google Scholar
Martin, R. M. 2004. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press.CrossRefGoogle Scholar
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., and Vanderbilt, D. 2012. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys., 84, 1419–75.Google Scholar
Marzari, N., and Vanderbilt, D. 1997. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 56, 12847–65.Google Scholar
Mogi, M., Kawamura, M., Tsukazaki, A., Yoshimi, R., Takahashi, K. S., Kawasaki, M., and Tokura, Y. 2017. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv., 3, eaao1669.Google Scholar
Mogi, M., Kawamura, M., Yoshimi, R., Tsukazaki, A., Kozuka, Y., Shirakawa, N., Takahashi, K. S., Kawasaki, M., and Tokura, Y. 2017. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater, 16, 516.Google Scholar
Mong, R. S. K., Essin, A. M., and Moore, J. E. 2010. Antiferromagnetic topological insulators. Phys. Rev. B, 81, 245209.Google Scholar
Moore, J. E. 2010. The birth of topological insulators. Nature, 464, 194–8.Google Scholar
Moore, J. E., and Balents, L. 2007. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B, 75, 121306.CrossRefGoogle Scholar
Morimoto, T., Furusaki, A., and Nagaosa, N. 2015. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B, 92, 085113.Google Scholar
Mostofi, A. A., Yates, J. R., Lee, Y.-S., Souza, I., Vanderbilt, D., and Marzari, N. 2008. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 178, 685–99.Google Scholar
Mostofi, A. A., Yates, J. R., Pizzi, G. Lee, Y.-S., Souza, I., Vanderbilt, D., and Marzari, N. 2014. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 185, 23092310.Google Scholar
Murakami, S. 2007. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys., 9, 356.Google Scholar
Murakami, S., and Kuga, S. 2008. Universal phase diagrams for the quantum spin Hall systems. Phys. Rev. B, 78, 165313.Google Scholar
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., and Ong, N. P. 2010. Anomalous Hall effect. Rev. Mod. Phys., 82, 15391592.Google Scholar
Nakahara, M. 2003. Geometry, Topology and Physics. CRC Press.Google Scholar
Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A., and Rabe, K. M. 2005. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B, 71, 014113.Google Scholar
Nielsen, H. B., and Ninomiya, M. 1983. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B, 130, 389–96.Google Scholar
Nikolaev, S. A., and Solovyev, I. V. 2014. Orbital magnetization of insulating perovskite transition-metal oxides with a net ferromagnetic moment in the ground state. Phys. Rev. B, 89, 064428.Google Scholar
Niu, Q. 1986. Quantum adiabatic particle transport. Phys. Rev. B, 34, 5093.Google Scholar
Niu, Q. 1991. Theory of the quantized adiabatic particle transport. Mod. Phys. Lett. B, 5, 923.Google Scholar
Niu, Q., and Thouless, D. J. 1984. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A: Math. Gen., 17, 2453.Google Scholar
Nomura, K., and Nagaosa, N. 2011. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett., 106, 166802.Google Scholar
Nourafkan, R., and Kotliar, G. 2013. Electric polarization in correlated insulators. Phys. Rev. B, 88, 155121.Google Scholar
Olsen, T., Taherinejad, M., Vanderbilt, D., and Souza, I. 2017. Surface theorem for the Chern–Simons axion coupling. Phys. Rev. B, 95, 075137.Google Scholar
Onoda, M., and Nagaosa, N. 2002. Topological nature of anomalous Hall effect in ferromagnets. J. Phys. Soc. Jpn., 71, 1922.Google Scholar
Ortiz, G., and Martin, R. M. 1994. Macroscopic polarization as a geometric quantum phase: many-body formulation. Phys. Rev. B, 49, 14202.Google Scholar
Pancharatnam, S. 1956. Generalized theory of interference, and its applications. Part I. Coherent pencils. In Proceedings of the Indian Academy of Sciences, Section A.Vol. 44. Indian Academy of Sciences, pp. 247–62.Google Scholar
Parr, R. G., and Weitao, Y. 1989. Density-Functional Theory of Atoms and Molecules. Vol. 16. Oxford University Press.Google Scholar
Pick, R. M., Cohen, M. H., and Martin, R. M. 1970. Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B, 1, 910920.Google Scholar
Po, H. C., Vishwanath, A., and Watanabe, H. 2017. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun., 8.Google Scholar
Prodan, E. 2009. Robustness of the spin-Chern number. Phys. Rev. B, 80, 125327.Google Scholar
Prodan, E., and Kohn, W. 2005. Nearsightedness of electronic matter. Proc. Nat. Acad. Sci. USA, 102, 11635–8.Google Scholar
Qi, X. L., Hughes, T. L., and Zhang, S. C. 2008. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78, 195424.Google Scholar
Qi, X.-L., Wu, Y.-S., and Zhang, S.-C. 2006. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74, 085308.Google Scholar
Qi, X.-L., and Zhang, S.-C. 2011. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057–110.Google Scholar
Resta, R. 1992. Theory of the electric polarization in crystals. Ferroelectrics, 136, 51.Google Scholar
Resta, R. 1998. Quantum-mechanical position operator in extended systems. Phys. Rev. Lett., 80, 1800–3.Google Scholar
Resta, R. 2002. Why are insulators insulating and metals conducting? J. Phys. Condens. Matter, 14, R625.Google Scholar
Resta, R. 2010. Towards a bulk theory of flexoelectricity. Phys. Rev. Lett., 105, 127601.Google Scholar
Resta, R., and Sorella, S. 1999. Electron localization in the insulating state. Phys. Rev. Lett., 82, 370–3.Google Scholar
Resta, R., and Vanderbilt, D. 2007. Theory of polarization: a modern approach. In Ahn, C. and Rabe, K. M., eds., Physics of Ferroelectrics: A Modern Perspective.Springer-Verlag, pp. 3168.Google Scholar
Rice, M. J., and Mele, E. J. 1982. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett., 49, 1455.CrossRefGoogle Scholar
Rivera, J. P. 1994. On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics, 161, 165–80.Google Scholar
Rivera, J.-P. 2009. A short review of the magnetoelectric effect and related experimental techniques on single phase multiferroics. Eur. Phys. J. B, 71, 299.Google Scholar
Roy, R. 2009. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B, 79, 195322.Google Scholar
Roy, R., and Harper, F. 2017. Floquet topological phases with symmetry in all dimensions. Phys. Rev. B, 95, 195128.Google Scholar
Rüegg, A., and Fiete, G. A. 2011. Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B, 84, 201103.Google Scholar
Sakurai, J. J. 1994. Modern Quantum Mechanics. 2nd ed. Addison-Wesley.Google Scholar
Sato, M., and Ando, Y. 2017. Topological superconductors: a review. Rep. Prog. Phys., 80, 076501.CrossRefGoogle ScholarPubMed
Senthil, T. 2015. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matt. Phys., 6, 299324.Google Scholar
Shi, J., Vignale, G., Xiao, D., and Niu, Q. 2007. Quantum theory of orbital magnetization and its generalization to interacting systems. Phys. Rev. Lett., 99, 197202.Google Scholar
Smit, J. 1955. The spontaneous Hall effect in ferromagnetics I. Physica, 21, 877–87.Google Scholar
Smit, J. 1958. The spontaneous Hall effect in ferromagnetics II. Physica, 24, 3951.Google Scholar
Sodemann, I., and Fu, L. 2015. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett., 115, 216806.Google Scholar
Soluyanov, A. A., Gresch, D., Wang, Z., Wu, Q., Troyer, M., Dai, X., and Bernevig, B. A. 2015. Type-II Weyl semimetals. Nature, 527, 495–8.Google Scholar
Soluyanov, A. A., and Vanderbilt, D. 2011a. Computing topological invariants without inversion symmetry. Phys. Rev. B, 83, 235401.Google Scholar
Soluyanov, A. A., and Vanderbilt, D. 2011b. Wannier representation of Z 2 topological insulators. Phys. Rev. B, 83, 035108.Google Scholar
Son, D. T., and Spivak, B. Z. 2013. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 88, 104412.Google Scholar
Son, D. T., and Yamamoto, N. 2012. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Phys. Rev. Lett., 109, 181602.Google Scholar
Souza, I., Íñiguez, J., and Vanderbilt, D. 2002. First-principles approach to insulators in finite electric fields. Phys. Rev. Lett., 89, 117602.Google Scholar
Souza, I., Íñiguez, J., and Vanderbilt, D. 2004. Dynamics of Berry-phase polarization in time-dependent electric fields. Phys. Rev. B, 69, 085106.Google Scholar
Souza, I., and Vanderbilt, D. 2008. Dichroic f-sum rule and the orbital magnetization of crystals. Phys. Rev. B, 77, 054438.Google Scholar
Souza, I., Wilkens, T., and Martin, R. M. 2000. Polarization and localization in insulators: generating function approach. Phys. Rev. B, 62, 1666–83.Google Scholar
Steinberg, J. A., Young, S. M., Zaheer, S., Kane, C. L., Mele, E. J., and Rappe, A. M. 2014. Bulk Dirac points in distorted spinels. Phys. Rev. Lett., 112, 036403.Google Scholar
Stengel, M., and Spaldin, N. A. 2006. Accurate polarization within a unified Wannier function formalism. Phys. Rev. B, 73, 075121.Google Scholar
Stengel, M., Spaldin, N. A., and Vanderbilt, D. 2009. Enhancement of ferroelectricity at metal/oxide interfaces. Nat. Mater., 8, 392–7.Google Scholar
Středa, P. 1982. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C, 15, L1299–303.Google Scholar
Su, W. P., Schrieffer, J. R., and Heeger, A. J. 1979. Solitons in polyacetylene. Phys. Rev. Lett., 42, 1698.Google Scholar
Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. and Yan, B. 2015. Prediction of Weyl semimetal in orthorhombic MoTe2 . Phys. Rev. B, 92, 161107.Google Scholar
Sundaram, G., and Niu, Q. 1999. Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B, 59, 14915–25.Google Scholar
Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N., and Tokura, Y. 2001. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science, 291, 2573–6.Google Scholar
Taherinejad, M., Garrity, K. F., and Vanderbilt, D. 2014. Wannier center sheets in topological insulators. Phys. Rev. B, 89, 115102.CrossRefGoogle Scholar
Taherinejad, M., and Vanderbilt, D. 2015. Adiabatic pumping of Chern–Simons axion coupling. Phys. Rev. Lett., 114, 096401.Google Scholar
Tanaka, Y., Ren, Z., Sato, T., Nakayama, K., Souma, S., Takahashi, T., Segawa, K., and Ando, Y. 2012. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys., 8, 800–3.Google Scholar
Thonhauser, T. 2011. Theory of orbital magnetization in solids. Int. J. Mod. Phys. B, 25, 14291458.Google Scholar
Thonhauser, T., Ceresoli, D., Vanderbilt, D., and Resta, R. 2005. Orbital magnetization in periodic insulators. Phys. Rev. Lett, 95, 137205.Google Scholar
Thouless, D. J. 1983. Quantization of particle transport. Phys. Rev. B, 27, 6083.Google Scholar
Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. 1982. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405.Google Scholar
Tsirkin, S. S., Souza, I., and Vanderbilt, D. 2017. Composite Weyl nodes stabilized by screw symmetry with and without time-reversal invariance. Phys. Rev. B, 96, 045102.Google Scholar
Tsui, D., Stormer, H., and Gossard, A. 1982. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559–62.Google Scholar
Turner, A. M., Zhang, Y., Mong, R. S. K., and Vishwanath, A. 2012. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B, 85, 165120.Google Scholar
Umari, P., and Pasquarello, A. 2002. Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett., 89, 157602.Google Scholar
Vanderbilt, D. 1997. Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics. Phys. Rev. Lett., 79, 3966–9.Google Scholar
Vanderbilt, D. 2000. Berry-phase theory of proper piezoelectric response. J. Phys. Chem. Solids, 61, 147–51.Google Scholar
Vanderbilt, D., and King-Smith, R. D. 1993. Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B, 48, 4442–55.Google Scholar
Vanderbilt, D., and Resta, R. 2006. Quantum electrostatics of insulators: polarization, Wannier functions, and electric fields. In Louie, S. G., and Cohen, M. L., eds., Conceptual Foundations of Materials Properties: A Standard Model for Calculation of Ground- and Excited-State Properties. Contemporary Concepts of Condensed Matter Science. Vol. 1. Elsevier, pp. 139–63.Google Scholar
Volovik, G. E. 2003. The Universe in a Helium Droplet. Oxford University Press.Google Scholar
Wan, X., Turner, A. M., Vishwanath, A., and Savrasov, S. Y. 2011. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83, 205101.Google Scholar
Wang, J., Lian, B., Qi, X.-L., and Zhang, S.-C. 2015. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B, 92, 081107.Google Scholar
Wang, X. J., Vanderbilt, D., Yates, J. R., and Souza, I. 2007. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B, 76, 195109.Google Scholar
Wang, X. J., Yates, J. R., Souza, I., and Vanderbilt, D. 2006. Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B, 74, 195118.Google Scholar
Wang, Z., Weng, H., Wu, Q., Dai, X., and Fang, Z. 2013. Three-dimensional Dirac semimetal and quantum transport in Cd3 As2 . Phys. Rev. B, 88, 125427.Google Scholar
Wang, Z., Sun, Y., Chen, X.-Q., Franchini, C., Xu, G., Weng, H., Dai, X., and Fang, Z. 2012. Dirac semimetal and topological phase transitions in A3 Bi (A = Na, K, Rb). Phys. Rev. B, 85, 195320.Google Scholar
Wen, X. 2007. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons. Oxford University Press.Google Scholar
Wen, X.-G. 2017. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys., 89, 041004.Google Scholar
Weng, H., Fang, C., Fang, Z., Bernevig, B. A., and Dai, X. 2015. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X, 5.Google Scholar
Weng, H., Yu, R., Hu, X., Dai, X., and Fang, Z. 2015. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys., 64, 227–82.Google Scholar
Weyl, H. 1929. Gravitation and the electron. Proc. Nat. Acad. Sci. USA, 15, 323–34.Google Scholar
Wilczek, F. 1987. Two applications of axion electrodynamics. Phys. Rev. Let., 58, 1799.Google Scholar
Wilczek, F. 2012. Quantum time crystals. Phys. Rev. Lett., 109, 160401.Google Scholar
Wilczek, F., and Shapere, A. 1989. Geometric Phases in Physics. Vol. 5. World Scientific.Google Scholar
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev. D, 10, 2445–59.Google Scholar
Witten, E. 1979. Dyons of charge eθ/2π . Phys. Lett. B, 86, 283–7.Google Scholar
Wojdeł, J. C., and Íñiguez, J. 2009. Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations. Phys. Rev. Lett., 103, 267205.Google Scholar
Wu, L., Salehi, M., Koirala, N., Moon, J., Oh, S., and Armitage, N. P. 2016. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science, 354, 1124–7.Google Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., and Hasan, M. Z. 2009. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys., 5, 398402.Google Scholar
Xiao, D., Chang, M.-C., and Niu, Q. 2010. Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 19592007.Google Scholar
Xiao, D., Jiang, J., Shin, J.-H., Wang, W., Wang, F., Zhao, Y.-F., Liu, C., Wu, W., Chan, M. H. W., Samarth, N., and Chang, C.-Z. 2018. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett., 120, 056801.Google Scholar
Xiao, D., Shi, J. R., Clougherty, D. P., and Niu, Q. 2009. Polarization and adiabatic pumping in inhomogeneous crystals. Phys. Rev. Lett., 102, 087602.Google Scholar
Xiao, D., Shi, J., and Niu, Q. 2005. Berry phase correction to electron density of states in solids. Phys. Rev. Lett., 95, 137204.Google Scholar
Xu, G., Lian, B., and Zhang, S.-C. 2015. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2 LiMn3 F12 . Phys. Rev. Lett, 115, 186802.Google Scholar
Xu, S.-Y., Belopolski, I., Alidoust, N., Neupane, M., Bian, G., Zhang, C., Sankar, R., Chang, G., Yuan, Z., Lee, C.-C., et al. 2015b. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 349, 613–7.Google Scholar
Xu, S.-Y., Liu, C., Alidoust, N., Neupane, M., Qian, D., Belopolski, I., Denlinger, J. D., Wang, Y. J., Lin, H., Wray, L. A., et al. 2012. Observation of a topological crystalline insulator phase and topological phase transition in Pb 1−x Sn x Te. Nat. Commun., 3, 1192.Google Scholar
Yan, B., and Felser, C. 2017. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matt. Phys., 8, 337–54.Google Scholar
Yang, K.-Y., Lu, Y.-M., and Ran, Y. 2011. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B, 84, 075129.Google Scholar
Yao, W., Xiao, D., and Niu, Q. 2008. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 77, 235406.Google Scholar
Yao, Y. G., Kleinman, L., MacDonald, A. H., Sinova, J., Jungwirth, T., Wang, D. S., Wang, E. G., and Niu, Q. 2004. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett., 92, 037204.Google Scholar
Yaschenko, E., Fu, L., Resca, L., and Resta, R. 1998. Macroscopic polarization as a discrete Berry phase of the Hartree–Fock wave function: the single-point limit. Phys. Rev. B, 58, 1222–9.Google Scholar
Yates, J. R., Wang, X. J., Vanderbilt, D., and Souza, I. 2007. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B, 75, 195121.Google Scholar
Ye, L., Tian, Y., Jin, X., and Xiao, D. 2012. Temperature dependence of the intrinsic anomalous Hall effect in nickel. Phys. Rev. B, 85, 220403.Google Scholar
Young, S. M., Zaheer, S., Teo, J. C. Y, Kane, C. L., Mele, E. J., and Rappe, A. M. 2012. Dirac semimetal in three dimensions. Phys. Rev. Lett., 108, 140405.CrossRefGoogle ScholarPubMed
Yu, R., Qi, X. L., Bernevig, A., Fang, Z., and Dai, X. 2011. Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B, 84, 075119.Google Scholar
Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X., and Fang, Z. 2010. Quantized anomalous Hall effect in magnetic topological insulators. Science, 329, 61–4.Google Scholar
Zak, J. 1989. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62, 2747.Google Scholar
Zhang, H., Haule, K., and Vanderbilt, D. 2017. Metal-insulator transition and topological properties of pyrochlore iridates. Phys. Rev. Lett., 118, 026404.Google Scholar
Zhong, S., Moore, J. E., and Souza, I. 2016. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett., 116, 077201.Google Scholar
Zhou, J., Liang, Q.-F., Weng, H., Chen, Y. B., Yao, S.-H., Chen, Y.-F., Dong, J. and Guo, G.-Y. 2016. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K0.5 RhO2 . Phys. Rev. Lett., 116, 256601.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Vanderbilt, Rutgers University, New Jersey
  • Book: Berry Phases in Electronic Structure Theory
  • Online publication: 26 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316662205.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Vanderbilt, Rutgers University, New Jersey
  • Book: Berry Phases in Electronic Structure Theory
  • Online publication: 26 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316662205.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Vanderbilt, Rutgers University, New Jersey
  • Book: Berry Phases in Electronic Structure Theory
  • Online publication: 26 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781316662205.013
Available formats
×