Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T20:20:44.410Z Has data issue: false hasContentIssue false

Chapter 23 - Preventing Relapse Post-Transplant: When and How to Best Intervene?

from Section 8 - Prevention, Detection, and Treatment of Relapse after Hematopoietic Cell Transplants

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 201 - 211
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

William, BM, de Lima, M. Advances in conditioning regimens for older adults undergoing allogeneic stem cell transplantation to treat hematologic malignancies. Drugs & Aging. 2013;30(6):373–81.CrossRefGoogle ScholarPubMed
Hourigan, CS, McCarthy, P, de Lima, M. Back to the future! The evolving role of maintenance therapy after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(2):154–63.CrossRefGoogle Scholar
de Lima, M, Porter, DL, Battiwalla, M, Bishop, MR, Giralt, SA, Hardy, NM, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse After Hematopoietic Stem Cell Transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(1):413.CrossRefGoogle ScholarPubMed
Gisselbrecht, C, Schmitz, N, Mounier, N, Singh Gill, D, Linch, DC, Trneny, M, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(36):4462–9.CrossRefGoogle Scholar
Goldman, JM, Gale, RP. What does MRD in leukemia really mean? Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2014;28(5):1131.CrossRefGoogle ScholarPubMed
Hourigan, CS. Next Generation MRD. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(9):1259–60.CrossRefGoogle ScholarPubMed
Puig, N, Sarasquete, ME, Balanzategui, A, Martinez, J, Paiva, B, Garcia, H, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391–7.CrossRefGoogle ScholarPubMed
Bruggemann, M, Raff, T, Kneba, M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120(23):4470–81.CrossRefGoogle ScholarPubMed
Richardson, SE, Khan, I, Rawstron, A, Sudak, J, Edwards, N, Verfuerth, S, et al. Risk-stratified adoptive cellular therapy following allogeneic hematopoietic stem cell transplantation for advanced chronic lymphocytic leukaemia. British Journal of Haematology. 2013;160(5):640–8.CrossRefGoogle ScholarPubMed
Pott, C, Bruggemann, M, Ritgen, M, van der Velden, VH, van Dongen, JJ, Kneba, M. MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Methods in Molecular Biology (Clifton, NJ). 2013;971:175200.CrossRefGoogle ScholarPubMed
Gimenez, E, Chauvet, M, Rabin, L, Puteaud, I, Duley, S, Hamaidia, S, et al. Cloned IGH VDJ targets as tools for personalized minimal residual disease monitoring in mature lymphoid malignancies; a feasibility study in mantle cell lymphoma by the Groupe Ouest Est d’Etude des Leucemies et Autres Maladies du Sang. British Journal of Haematology. 2012;158(2):186–97.CrossRefGoogle ScholarPubMed
Radich, JP. Monitoring response to tyrosine kinase inhibitor therapy, mutational analysis, and new treatment options in chronic myelogenous leukemia. Journal of the National Comprehensive Cancer Network. 2013;11(5 Suppl):663–6.CrossRefGoogle ScholarPubMed
O’Donnell, MR, Tallman, MS, Abboud, CN, Altman, JK, Appelbaum, FR, Arber, DA, et al. Acute myeloid leukemia, version 2.2013. Journal of the National Comprehensive Cancer Network. 2013;11(9):1047–55.CrossRefGoogle ScholarPubMed
Hourigan, CS, Karp, JE. Minimal residual disease in acute myeloid leukaemia. Nature Reviews Clinical Oncology. 2013;10(8):460–71.CrossRefGoogle ScholarPubMed
Qin, YZ, Zhu, HH, Liu, YR, Wang, YZ, Shi, HX, Lai, YY, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leukemia & Lymphoma. 2013;54(7):1442–9.CrossRefGoogle ScholarPubMed
Grimwade, D, Freeman, SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “Prime Time”? Blood. 2014;124(23):3345–55.CrossRefGoogle ScholarPubMed
Logan, AC, Vashi, N, Faham, M, Carlton, V, Kong, K, Buno, I, et al. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(9):1307–13.CrossRefGoogle Scholar
Brenner, MK, Rill, DR, Moen, RC, Krance, RA, Mirro, J Jr., Anderson, WF, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet. 1993;341(8837):85–6.CrossRefGoogle ScholarPubMed
Stewart, AK, Vescio, R, Schiller, G, Ballester, O, Noga, S, Rugo, H, et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(17):3771–9.CrossRefGoogle ScholarPubMed
Schouten, HC, Qian, W, Kvaloy, S, Porcellini, A, Hagberg, H, Johnsen, HE, et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: results from the randomized European CUP trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(21):3918–27.CrossRefGoogle ScholarPubMed
Furman, RR, Grossbard, ML, Johnson, JL, Pecora, AL, Cassileth, PA, Jung, SH, et al. A phase III study of anti-B4-blocked ricin as adjuvant therapy post-autologous bone marrow transplant: CALGB 9254. Leukemia & Lymphoma. 2011; 52(4):587–96.CrossRefGoogle ScholarPubMed
Pettengell, R, Schmitz, N, Gisselbrecht, C, Smith, G, Patton, WN, Metzner, B, et al. Rituximab purging and/or maintenance in patients undergoing autologous transplantation for relapsed follicular lymphoma: a prospective randomized trial from the lymphoma working party of the European group for blood and marrow transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(13):1624–30.CrossRefGoogle ScholarPubMed
Wetzler, M, Watson, D, Stock, W, Koval, G, Mulkey, FA, Hoke, EE, et al. Autologous transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia achieves outcomes similar to allogeneic transplantation: results of CALGB Study 10001 (Alliance). Haematologica. 2014;99(1):111–5.CrossRefGoogle ScholarPubMed
Younes, A, Bartlett, NL, Leonard, JP, Kennedy, DA, Lynch, CM, Sievers, EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. The New England Journal of Medicine. 2010;363(19):1812–21.CrossRefGoogle ScholarPubMed
Rytting, M, Triche, L, Thomas, D, O’Brien, S, Kantarjian, H. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatric Blood and Cancer. 2014;61(2):369–72.CrossRefGoogle ScholarPubMed
O’Hear, C, Inaba, H, Pounds, S, Shi, L, Dahl, G, Bowman, WP, et al. Gemtuzumab ozogamicin can reduce minimal residual disease in patients with childhood acute myeloid leukemia. Cancer. 2013;119(22):4036–43.Google ScholarPubMed
de Lima, M, Giralt, S, Thall, PF, de Padua, Silva L, Jones, RB, Komanduri, K, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31.CrossRefGoogle ScholarPubMed
Choi, J, Ritchey, J, Prior, JL, Holt, M, Shannon, WD, Deych, E, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood. 2010;116(1):129–39.CrossRefGoogle ScholarPubMed
Sanchez-Abarca, LI, Gutierrez-Cosio, S, Santamaria, C, Caballero-Velazquez, T, Blanco, B, Herrero-Sanchez, C, et al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood. 2010;115(1):107–21.CrossRefGoogle ScholarPubMed
Goodyear, OC, Dennis, M, Jilani, NY, Loke, J, Siddique, S, Ryan, G, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361–9.CrossRefGoogle ScholarPubMed
Garcia-Manero, G, Gore, SD, Cogle, C, Ward, R, Shi, T, Macbeth, KJ, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(18):2521–7.CrossRefGoogle ScholarPubMed
Burchert, A, Nicolaus, K, Huenecke, S, Duenzinger, U, Wolf, A, Bader, P, et al. Post-transplant maintenance with the deacetylase inhibitor panobinostat in patients with high-risk AML or MDS: results of the phase I part of the panobest trial. Blood. 2013;122(21):3315.Google Scholar
Dhedin, N, Huynh, A, Maury, S, Tabrizi, R, Beldjord, K, Asnafi, V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125(16):2486–96; quiz 586.CrossRefGoogle ScholarPubMed
Walter, RB, Buckley, SA, Pagel, JM, Wood, BL, Storer, BE, Sandmaier, BM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.Google ScholarPubMed
Schroeder, T, Czibere, A, Platzbecker, U, Bug, G, Uharek, L, Luft, T, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1229–35.Google ScholarPubMed
Thompson, JA, Fisher, RI, Leblanc, M, Forman, SJ, Press, OW, Unger, JM, et al. Total body irradiation, etoposide, cyclophosphamide, and autologous peripheral blood stem-cell transplantation followed by randomization to therapy with interleukin-2 versus observation for patients with non-Hodgkin lymphoma: results of a phase 3 randomized trial by the Southwest Oncology Group (SWOG 9438). Blood. 2008;111(8):4048–54.CrossRefGoogle Scholar
Bolanos-Meade, J, Garrett-Mayer, E, Luznik, L, Anders, V, Webb, J, Fuchs, EJ, et al. Induction of autologous graft-versus-host disease: results of a randomized prospective clinical trial in patients with poor risk lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;13(10):1185–91.Google ScholarPubMed
Simonsson, B, Totterman, T, Hokland, P, Lauria, F, Carella, AM, Fernandez, MN, et al. Roquinimex (Linomide) vs placebo in AML after autologous bone marrow transplantation. Bone Marrow Transplant. 2000;25(11):1121–7.CrossRefGoogle ScholarPubMed
Attal, M, Harousseau, JL, Leyvraz, S, Doyen, C, Hulin, C, Benboubker, L, et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood. 2006;108(10):3289–94.CrossRefGoogle ScholarPubMed
Barlogie, B, Pineda-Roman, M, van Rhee, F, Haessler, J, Anaissie, E, Hollmig, K, et al. Thalidomide arm of Total Therapy 2 improves complete remission duration and survival in myeloma patients with metaphase cytogenetic abnormalities. Blood. 2008;112(8):3115–21.CrossRefGoogle ScholarPubMed
Lokhorst, HM, van der Holt, B, Zweegman, S, Vellenga, E, Croockewit, S, van Oers, MH, et al. A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. Blood. 2010;115(6):1113–20.CrossRefGoogle ScholarPubMed
Morgan, GJ, Davies, FE, Gregory, WM, Bell, SE, Szubert, AJ, Cook, G, et al. Long-term follow-up of MRC Myeloma IX trial: Survival outcomes with bisphosphonate and thalidomide treatment. Clin Cancer Res. 2013;19(21):6030–8.CrossRefGoogle ScholarPubMed
Spencer, A, Prince, HM, Roberts, AW, Prosser, IW, Bradstock, KF, Coyle, L, et al. Consolidation therapy with low-dose thalidomide and prednisolone prolongs the survival of multiple myeloma patients undergoing a single autologous stem-cell transplantation procedure. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(11):1788–93.CrossRefGoogle ScholarPubMed
Krishnan, A, Pasquini, MC, Logan, B, Stadtmauer, EA, Vesole, DH, Alyea, E 3rd, et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. The Lancet Oncology. 2011;12(13):1195–203.CrossRefGoogle ScholarPubMed
Maiolino, A, Hungria, VT, Garnica, M, Oliveira-Duarte, G, Oliveira, LC, Mercante, DR, et al. Thalidomide plus dexamethasone as a maintenance therapy after autologous hematopoietic stem cell transplantation improves progression-free survival in multiple myeloma. Am J Hematol. 2012;87(10):948–52.CrossRefGoogle ScholarPubMed
Stewart, AK, Trudel, S, Bahlis, NJ, White, D, Sabry, W, Belch, A, et al. A randomized phase 3 trial of thalidomide and prednisone as maintenance therapy after ASCT in patients with MM with a quality-of-life assessment: the National Cancer Institute of Canada Clinicals Trials Group Myeloma 10 Trial. Blood. 2013;121(9):1517–23.CrossRefGoogle ScholarPubMed
McCarthy, PL, Owzar, K, Hofmeister, CC, Hurd, DD, Hassoun, H, Richardson, PG, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. The New England Journal of Medicine. 2012;366(19):1770–81.CrossRefGoogle ScholarPubMed
Attal, M, Lauwers-Cances, V, Marit, G, Caillot, D, Moreau, P, Facon, T, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. The New England Journal of Medicine. 2012;366(19):1782–91.CrossRefGoogle ScholarPubMed
Boccadoro, M, Cavallo, F., Gay, F. Melphalan/prednisone/lenalidomide (MPR) versus high-dose melphalan and autologous transplantation MEL200) plus lenalidomide maintenance or no maintenance in newly diagnosed multiple myeloma (MM) patients. Journal of Clinical Oncology. 2013;(Suppl): Abstract 8509.CrossRefGoogle Scholar
Sonneveld, P, Schmidt-Wolf, IG, van der Holt, B, El Jarari, L, Bertsch, U, Salwender, H, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(24):2946–55.CrossRefGoogle ScholarPubMed
Cavo, M, Pantani, L, Petrucci, MT, Patriarca, F, Zamagni, E, Donnarumma, D, et al. Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood. 2012;120(1):919.CrossRefGoogle ScholarPubMed
Mellqvist, UH, Gimsing, P, Hjertner, O, Lenhoff, S, Laane, E, Remes, K, et al. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood. 2013;121(23):4647–54.CrossRefGoogle Scholar
Palumbo, A, Cavallo, F, Gay, F, Di Raimondo, F, Ben Yehuda, D, Petrucci, MT, et al. Autologous transplantation and maintenance therapy in multiple myeloma. The New England Journal of Medicine. 2014;371(10):895905.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×