Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T01:19:09.977Z Has data issue: false hasContentIssue false

14 - Spatial Navigation

Published online by Cambridge University Press:  22 March 2018

Seán Commins
Affiliation:
Maynooth University, Ireland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D.R., Wong, A.T., and Schacter, D.L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377.CrossRefGoogle ScholarPubMed
Ainge, J.A., Tamosiunaite, M., Woergoetter, F., and Dudchenko, P.A. (2007). Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. Journal of Neuroscience, 27(36), 97699779.CrossRefGoogle ScholarPubMed
Biro, D. (2010). Bird navigation: a clear view of magnetoreception. Current Biology, 20(14), R595596.CrossRefGoogle ScholarPubMed
Commins, S., Aggleton, J.P., and O’Mara, S.M. (2002). Physiological evidence for a possible projection from dorsal subiculum to hippocampal area CA1. Experimental Brain Research, 146(2), 155–60.CrossRefGoogle ScholarPubMed
de Lavilléon, G., Lacroix, M.M., Rondi-Reig, L., and Benchenane, K. (2015). Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nature Neuroscience, 18(4), 493495.CrossRefGoogle ScholarPubMed
Diviney, M., Fey, D., and Commins, S. (2013). Hippocampal contribution to vector model hypothesis during cue-dependent navigation. Learning & Memory, 20(7), 367378.CrossRefGoogle ScholarPubMed
Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., and Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184188.CrossRefGoogle ScholarPubMed
Floresco, S.B. (2015). The nucleus accumbens: an interface between cognition, emotion, and action. Annual Review of Psychology, 66, 2552.CrossRefGoogle ScholarPubMed
Giocomo, L.M., Stensola, T., Bonnevie, T., Van Cauter, T., Moser, M.B., and Moser, E.I. (2014). Topography of head direction cells in medial entorhinal cortex. Current Biology, 24(3), 252262.CrossRefGoogle ScholarPubMed
Grieves, R.M., and Jeffery, K.J. (2017). The representation of space in the brain. Behavioral Processes 135, 113131.CrossRefGoogle ScholarPubMed
Hafting, T., Fyhn, M., Molden, S., Moser, M.B., and Moser, E.I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801806.CrossRefGoogle ScholarPubMed
Hok, V., Lenck-Santini, P.P., Roux, S., Save, E., Muller, R.U., and Poucet, B. (2007). Goal-related activity in hippocampal place cells. Journal of Neuroscience, 27(3):472482.CrossRefGoogle ScholarPubMed
Jacobs, J., Kahana, M.J., Ekstrom, A.D., Mollison, M.V., and Fried, I. (2010). A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences USA, 107(14), 64876492.CrossRefGoogle ScholarPubMed
Jankowski, M.M., Passecker, J., Islam, M.N., Vann, S., Erichsen, J.T., Aggleton, J.P., and O’Mara, S.M. (2015). Evidence for spatially-responsive neurons in the rostral thalamus. Frontiers in Behavioral Neuroscience, 9, 256.CrossRefGoogle ScholarPubMed
Kramer, G. (1952). Experiments on bird orientation. Ibis, 94, 265285.CrossRefGoogle Scholar
Krebs, J.R., Sherry, D.F., Healy, S.D., Perry, V.H., and Vaccarino, A.L. (1989). Hippocampal specialization of food-storing birds. Proceedings of the National Academy of Sciences USA, 86(4), 1388–92.CrossRefGoogle ScholarPubMed
Kropff, E., Carmichael, J.E., Moser, M.B., and Moser, E.I. (2015). Speed cells in the medial entorhinal cortex. Nature, 523(7561), 419424.CrossRefGoogle ScholarPubMed
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., and Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience, 29, 97719777.CrossRefGoogle ScholarPubMed
Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S., and Frith, C.D. (2000). Navigation-related structural change in the hippocampi of taxi drivers Proceedings of the National Academy of Sciences USA, 97(8), 4398–403.CrossRefGoogle ScholarPubMed
Meade, J., Biro, D., and Guilford, T. (2005). Homing pigeons develop local route stereotypy. Proceedings of Biological Science, 272(1558), 1723.Google ScholarPubMed
Morris, R.G., Garrud, P., Rawlins, J.N., and O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–3.CrossRefGoogle ScholarPubMed
Mullally, S.L., Vargha-Khadem, F., and Maguire, E.A. (2014). Scene construction in developmental amnesia: an fMRI study. Neuropsychologia, 52, 110.CrossRefGoogle ScholarPubMed
O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.Google ScholarPubMed
Ranck, J.B. Jr. (1984). Head direction cells in the deep layer of dorsal presubiculum in freely moving rats. Society for Neurosciences Abstracts, 10, 599.Google Scholar
Rolls, E.T., and O’Mara, S.M. (1995). View-responsive neurons in the primate hippocampal complex. Hippocampus, 5(5), 409424.CrossRefGoogle ScholarPubMed
Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., and Moser, E.I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774), 758762.CrossRefGoogle ScholarPubMed
Schröder, J., and Pantel, J. (2016). Neuroimaging of hippocampal atrophy in early recognition of Alzheimer’s disease—a critical appraisal after two decades of research. Psychiatry Research, 247, 7178.CrossRefGoogle ScholarPubMed
Sherry, D.F., and Hoshooley, J.S. (2010). Seasonal hippocampal plasticity in food-storing birds. Philosophical Transactions of the Royal Society of London, Series B, 365(1542), 933–43.CrossRefGoogle ScholarPubMed
Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014), Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15, 655669.CrossRefGoogle ScholarPubMed
Taube, J.S. (2007). The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181207.CrossRefGoogle ScholarPubMed
Von Frisch, K. (1953). The dancing bees: An account of the life and senses of the honey bee. Harvest Books, New York.Google Scholar
Wiltschko, W., and Wiltschko, R. (1996). Magnetic orientation in birds. The Journal of Experimental Biology, 199, 2938.CrossRefGoogle ScholarPubMed
Yartsev, M.M., and Ulanovsky, N. (2013). Representation of three-dimensional space in the hippocampus of flying bats. Science. 340(6130), 367–72.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×