Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-06T17:17:15.808Z Has data issue: false hasContentIssue false

3 - Hemochorial Development

Published online by Cambridge University Press:  16 February 2017

Roy G. Farquharson
Affiliation:
Liverpool Women's Hospital
Mary D. Stephenson
Affiliation:
University of Illinois College of Medicine
Get access
Type
Chapter
Information
Early Pregnancy , pp. 18 - 26
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anani, S, Bhat, S, Honma-Yamanaka, N, Krawchuk, D, Yamanaka, Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development. 2014;141(14):2813–24.CrossRefGoogle ScholarPubMed
Latos, PA, Hemberger, M. Review: the transcriptional and signalling networks of mouse trophoblast stem cells. Placenta. 2014;35:S8185.CrossRefGoogle ScholarPubMed
Bai, Q, Assou, S, Haouzi, D, Ramirez, JM, Monzo, C, Becker, F, et al. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev. 2012;8(1):150–62.CrossRefGoogle ScholarPubMed
Dunlap, KA, Palmarini, M, Varela, M, Burghardt, RC, Hayashi, K, Farmer, JL, et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci U S A. 2006;103(39):14390–95.CrossRefGoogle ScholarPubMed
Chuong, EB, Rumi, MA, Soares, MJ, Baker, JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45(3):325–29.CrossRefGoogle ScholarPubMed
Lynch, VJ, Nnamani, MC, Kapusta, A, Brayer, K, Plaza, SL, Mazur, EC, et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 2015;10:111.CrossRefGoogle ScholarPubMed
Dupressoir, A, Lavialle, C, Heidmann, T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33(9):663–71.CrossRefGoogle ScholarPubMed
Hertig, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98:435–94.CrossRefGoogle ScholarPubMed
Gellersen, B, Reimann, K, Samalecos, A, Aupers, S, Bamberger, AM. Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod. 2010;25(4):862–73.CrossRefGoogle ScholarPubMed
Jackson, MR, Mayhew, TM, Boyd, PA. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta. 1992;13:357–70.CrossRefGoogle ScholarPubMed
Spencer, TE. Biological roles of uterine glands in pregnancy. Semin Reprod Med. 2014;32(5):346–57.Google ScholarPubMed
Burton, GJ, Jauniaux, E, Charnock-Jones, DS. Human early placental development: potential roles of the endometrial glands. Placenta. 2007;28(Suppl A):S64–9.Google Scholar
Burton, GJ, Watson, AL, Hempstock, J, Skepper, JN, Jauniaux, E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–59.CrossRefGoogle ScholarPubMed
Burton, GJ, Jauniaux, E, Charnock-Jones, DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010;54:303–12.CrossRefGoogle ScholarPubMed
Haouzi, D, Dechaud, H, Assou, S, De Vos, J, Hamamah, S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online. 2012;24(1):2334.CrossRefGoogle ScholarPubMed
Hausermann, HM, Donnelly, KM, Bell, SC, Verhage, HG, Fazleabas, AT. Regulation of the glycosylated beta-lactoglobulin homolg, glycodelin [placental protein 14:(PP14)] in the baboon (Papio anubis) uterus. J Clin Endocrinol Metab. 1998;83:1226–33.Google Scholar
Hempstock, J, Cindrova-Davies, T, Jauniaux, E, Burton, GJ. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reprod Biol Endocrinol. 2004;2:58.CrossRefGoogle ScholarPubMed
Maruo, T, Matsuo, H, Murata, K, Mochizuki, M. Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab. 1992;75:1362–7.Google ScholarPubMed
Jones, CJ, Aplin, JD, Burton, GJ. First trimester histiotrophe shows altered sialylation compared with secretory phase glycoconjugates in human endometrium. Placenta. 2010;31(7):576–80.CrossRefGoogle ScholarPubMed
Jauniaux, E, Watson, AL, Hempstock, J, Bao, Y-P, Skepper, JN, Burton, GJ. Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22.CrossRefGoogle Scholar
Bigarella, CL, Liang, R, Ghaffari, S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206–18.CrossRefGoogle ScholarPubMed
Hemberger, M, Udayashankar, R, Tesar, P, Moore, H, Burton, GJ. ELF5-enforced transcriptonal networks define an epigentically regulated trophoblast stem cell compartment in the human placenta. Mol Hum Genet. 2010;19:2456–67.CrossRefGoogle Scholar
Cindrova-Davies, T, van Patot, MT, Gardner, L, Jauniaux, E, Burton, GJ, Charnock-Jones, DS. Energy status and HIF signalling in chorionic villi show no evidence of hypoxic stress during human early placental development. Mol Hum Reprod. 2015;21(3):296308.CrossRefGoogle ScholarPubMed
Jauniaux, E, Hempstock, J, Teng, C, Battaglia, F, Burton, GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy; maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90:1171–75.CrossRefGoogle Scholar
Van Uitert, EM, Exalto, N, Burton, GJ, Willemsen, SP, Koning, AH, Eilers, PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753–61.CrossRefGoogle ScholarPubMed
Whitley, GS, Cartwright, JE. Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta. 2010;31(6):465–74.CrossRefGoogle ScholarPubMed
Hustin, J, Schaaps, JP. Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol. 1987;157:162–8.CrossRefGoogle ScholarPubMed
Burton, GJ, Woods, AW, Jauniaux, E, Kingdom, JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82.Google Scholar
Collins, SL, Birks, JS, Stevenson, GN, Papageorghiou, AT, Noble, JA, Impey, L. Measurement of spiral artery jets: general principles and differences observed in small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol. 2012;40(2):171–78.CrossRefGoogle ScholarPubMed
Reynolds, SRM. Formation of fetal cotyledons in the hemochorial placenta. A theoretical consideration of the functional implications of such an arrangement. Am J Obstet Gynecol. 1966;94:425–39.CrossRefGoogle ScholarPubMed
Brosens, I, Pijnenborg, R, Vercruysse, L, Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193201.CrossRefGoogle Scholar
Toal, M, Chan, C, Fallah, S, Alkazaleh, F, Chaddha, V, Windrim, RC, et al. Usefulness of a placental profile in high-risk pregnancies. Am J Obstet Gynecol. 2007;196(4):363,e1–7.CrossRefGoogle ScholarPubMed
Jauniaux, E, Hempstock, J, Greenwold, N, Burton, GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003;162:115–25.CrossRefGoogle ScholarPubMed
Hempstock, J, Jauniaux, E, Greenwold, N, Burton, GJ. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol. 2003;34:1265–75.CrossRefGoogle ScholarPubMed
Barker, DJ, Osmond, C, Thornburg, KL, Kajantie, E, Eriksson, JG. The shape of the placental surface at birth and colorectal cancer in later life. Am J Hum Biol. 2013;25(4):566–68.CrossRefGoogle ScholarPubMed
Salafia, CM, Yampolsky, M, Shlakhter, A, Mandel, DH, Schwartz, N. Variety in placental shape: when does it originate? Placenta. 2012;33(3):164–70.CrossRefGoogle ScholarPubMed
Schwartz, N, Quant, HS, Sammel, MD, Parry, S. Macrosomia has its roots in early placental development. Placenta. 2014;35(9):684–90.CrossRefGoogle ScholarPubMed
Gruenwald, P. Expansion of placental site and maternal blood supply of primate placentas. Anat Rec. 1972;173(2):189203.CrossRefGoogle ScholarPubMed
Carter, AM, Enders, AC, Pijnenborg, R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140070.CrossRefGoogle ScholarPubMed
Bulmer, JN, Williams, PJ, Lash, GE. Immune cells in the placental bed. Int J Dev Biol. 2010;54(2–3):281–94.CrossRefGoogle ScholarPubMed
Parham, P, Moffett, A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 2013;13(2):133–44.CrossRefGoogle ScholarPubMed
Hiby, SE, Apps, R, Sharkey, AM, Farrell, LE, Gardner, L, Mulder, A, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120(11):4102–10.CrossRefGoogle ScholarPubMed
Madeja, Z, Yadi, H, Apps, R, Boulenouar, S, Roper, SJ, Gardner, L, et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc Natl Acad Sci U S A. 2011;108(10):4012–17.CrossRefGoogle ScholarPubMed
Browne, VA, Julian, CG, Toledo-Jaldin, L, Cioffi-Ragan, D, Vargas, E, Moore, LG. Uterine artery blood flow, fetal hypoxia and fetal growth. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663).CrossRefGoogle ScholarPubMed
Moffett, A, Hiby, SE, Sharkey, AM. The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140068.Google Scholar
Jauniaux, E, Jurkovic, D. Placenta accreta: pathogenesis of a 20th-century iatrogenic uterine disease. Placenta. 2012;33(4):244–51.CrossRefGoogle Scholar
Wildman, DE, Chen, C, Erez, O, Grossman, LI, Goodman, M, Romero, R. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A. 2006;103(9):3203–08.CrossRefGoogle ScholarPubMed
Elliot, MG, Crespi, BJ. Genetic recapitulation of human preeclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140069.CrossRefGoogle ScholarPubMed
Thornburg, KL, Burry, KJ, Adams, AK, Kirk, EP, Faber, JJ. Permeability of placenta to inulin. Am J Obstet Gynecol. 1988;158(5):1165–69.CrossRefGoogle ScholarPubMed
Jauniaux, E, Cindrova-Davies, T, Johns, J, Dunster, C, Hempstock, J, Kelly, FJ, et al. Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J Clin Endocrinol Metab. 2004;89:1452–59.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×