Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T10:02:31.164Z Has data issue: false hasContentIssue false

6 - Meiosis and the Embryo

Published online by Cambridge University Press:  16 February 2017

Roy G. Farquharson
Affiliation:
Liverpool Women's Hospital
Mary D. Stephenson
Affiliation:
University of Illinois College of Medicine
Get access
Type
Chapter
Information
Early Pregnancy , pp. 54 - 63
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martinez-Arroyo, A. M., Medrano, J. V., Remohi, J. & Simon, C. Germ line development: lessons learned from pluripotent stem cells. Curr. Opin. Genet. Dev. 28, 6470 (2014).CrossRefGoogle ScholarPubMed
Hassold, T. et al. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutagen. 28, 167–75 (1996).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Jacobs, P. A. The chromosome complement of human gametes. Oxf. Rev. Reprod. Biol. 14, 4772 (1992).Google Scholar
Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–91 (2001).CrossRefGoogle Scholar
Marquez, C., Cohen, J. & Munne, S. Chromosome identification in human oocytes and polar bodies by spectral karyotyping. Cytogenet. Cell Genet. 81, 254–58 (1998).Google Scholar
Fridman, C. & Koiffmann, C. P. Origin of uniparental disomy 15 in patients with Prader-Willi or Angelman syndrome. Am. J. Med. Genet. 94, 249–53 (2000).3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Robinson, W. P. et al. Non-disjunction of chromosome 15: origin and recombination. Am. J. Hum. Genet. 53, 740–51 (1993).Google Scholar
Robinson, W. P. et al. Cytogenetic and age-dependent risk factors associated with uniparental disomy 15. Prenat. Diagn. 16, 837–44 (1996).3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Lauritsen, J. G. & Friedrich, U. Origin of the extra chromosome in trisomy 16. Clin. Genet. 10, 156–60 (1976).Google Scholar
Hassold, T., Merrill, M., Adkins, K., Freeman, S. & Sherman, S. Recombination and maternal age-dependent non-disjunction: molecular studies of trisomy 16. Am. J. Hum. Genet. 57, 867–74 (1995).Google Scholar
Hassold, T. J., Pettay, D., Freeman, S. B., Grantham, M. & Takaesu, N. Molecular studies of non-disjunction in trisomy 16. J. Med. Genet. 28, 159–62 (1991).CrossRefGoogle ScholarPubMed
Hassold, T., Sherman, S. & Hunt, P. A. The origin of trisomy in humans. Prog. Clin. Biol. Res. 393, 112 (1995).Google Scholar
Freeman, S. B. et al. The National Down Syndrome Project: design and implementation. Public Health Rep. Wash. DC 1974 122, 6272 (2007).Google ScholarPubMed
Lamb, N. E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14, 400–05 (1996).CrossRefGoogle ScholarPubMed
Ghosh, S., Bhaumik, P., Ghosh, P. & Dey, S. K. Chromosome 21 non-disjunction and Down syndrome birth in an Indian cohort: analysis of incidence and aetiology from family linkage data. Genet. Res. 92, 189–97 (2010).Google Scholar
Oliver, T. R. et al. New insights into human non-disjunction of chromosome 21 in oocytes. PLoS Genet. 4, e1000033 (2008).CrossRefGoogle Scholar
Gómez, D. et al. Origin of trisomy 21 in Down syndrome cases from a Spanish population registry. Ann. Génétique 43, 2328 (2000).CrossRefGoogle ScholarPubMed
Ghosh, S., Feingold, E. & Dey, S. K. Etiology of Down syndrome: Evidence for consistent association among altered meiotic recombination, non-disjunction, and maternal age across populations. Am. J. Med. Genet. A. 149A, 1415–20 (2009).CrossRefGoogle Scholar
Hall, H. E. et al. The origin of trisomy 22: evidence for acrocentric chromosome-specific patterns of non-disjunction. Am. J. Med. Genet. A. 143A, 2249–55 (2007).CrossRefGoogle Scholar
Uematsu, A. et al. Parental origin of normal X chromosomes in Turner syndrome patients with various karyotypes: implications for the mechanism leading to generation of a 45, X karyotype. Am. J. Med. Genet. 111, 134–39 (2002).CrossRefGoogle ScholarPubMed
Jacobs, P. et al. Turner syndrome: a cytogenetic and molecular study. Ann. Hum. Genet. 61, 471–83 (1997).CrossRefGoogle ScholarPubMed
MacDonald, M. et al. The origin of 47, XXY and 47, XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum. Mol. Genet. 3, 1365–71 (1994).CrossRefGoogle Scholar
Harvey, J., Jacobs, P. A., Hassold, T. & Pettay, D. The parental origin of 47, XXY males. Birth Defects Orig. Artic. Ser. 26, 289–96 (1990).Google ScholarPubMed
Hassold, T., Arnovitz, K., Jacobs, P. A., May, K. & Robinson, D. The parental origin of the missing or additional chromosome in 45, X and 47, XXX females. Birth Defects Orig. Artic. Ser. 26, 297304 (1990).Google Scholar
Kondoh, T., Tonoki, H., Matsumoto, T., Tsukahara, M. & Niikawa, N. Origin of the extra chromosome in trisomy 18. A study on five patients using a restriction fragment length polymorphism. Hum. Genet. 79, 377–78 (1988).Google Scholar
Kupke, K. G. & Muller, U. Parental origin of the extra chromosome in trisomy 18. Am. J. Hum. Genet. 45, 599605 (1989).Google ScholarPubMed
Fisher, J. M., Harvey, J. F., Morton, N. E. & Jacobs, P. A. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on non-disjunction. Am. J. Hum. Genet. 56, 669–75 (1995).Google Scholar
Fisher, J. M., Harvey, J. F., Lindenbaum, R. H., Boyd, P. A. & Jacobs, P. A. Molecular studies of trisomy 18. Am. J. Hum. Genet. 52, 1139–44 (1993).Google ScholarPubMed
Nothen, M. M. et al. Retrospective study of the parental origin of the extra chromosome in trisomy 18 (Edwards syndrome). Hum. Genet. 92, 347–49 (1993).CrossRefGoogle ScholarPubMed
Ya-gang, X. et al. Parental origin of the supernumerary chromosome in trisomy 18. Clin. Genet. 44, 669675 (1993).CrossRefGoogle ScholarPubMed
Ramesh, K. H. & Verma, R. S. Parental origin of the extra chromosome 18 in Edwards syndrome. Ann. Genet. 39, 110–12 (1996).Google Scholar
Eggermann, T. et al. Trisomy of human chromosome 18: molecular studies on parental origin and cell stage of non-disjunction. Hum. Genet. 97, 218–23 (1996).CrossRefGoogle Scholar
Bugge, M. et al. Non-disjunction of chromosome 18. Hum. Mol. Genet. 7, 661–69 (1998).CrossRefGoogle ScholarPubMed
Ishikiriyama, S. & Niikawa, N. Origin of extra chromosome in Patau syndrome. Hum. Genet. 68, 266–68 (1984).Google Scholar
Bugge, M. et al. Non-disjunction of chromosome 13. Hum. Mol. Genet. 16, 2004–10 (2007).Google Scholar
Hall, H. E. et al. The origin of trisomy 13. Am. J. Med. Genet. A. 143A, 2242–48 (2007).Google Scholar
Brook, J. D., Gosden, R. G. & Chandley, A. C. Maternal ageing and aneuploid embryos – evidence from the mouse that biological and not chronological age is the important influence. Hum. Genet. 66, 4145 (1984).CrossRefGoogle Scholar
Erickson, G. F., Wang, C., Casper, R., Mattson, G. & Hofeditz, C. Studies on the mechanism of LH receptor control by FSH. Mol. Cell. Endocrinol. 27, 1730 (1982).Google Scholar
Schwartz, N. B. The role of FSH and LH and of their antibodies on follicle growth and on ovulation. Biol. Reprod. 10, 236–72 (1974).Google Scholar
Richards, J. S. et al. Ovarian follicular development in the rat: hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone. Endocrinology 99, 1562–70 (1976).CrossRefGoogle ScholarPubMed
Ying, S. Y., Fang, V. S. & Greep, R. O. Changes in concentration of serum LH and FSH associated with estrogen-advanced ovulation in 4-day cyclic rats. Proc. Soc. Exp. Biol. Med. 139, 738–40 (1972).CrossRefGoogle ScholarPubMed
Legan, S. J. & Karsch, F. J. A daily signal for the LH surge in the rat. Endocrinology 96, 5762 (1975).CrossRefGoogle ScholarPubMed
Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related non-disjunction. Nat. Genet. 37, 1351–55 (2005).CrossRefGoogle Scholar
Hunt, P. A. et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. CB 13, 546–53 (2003).CrossRefGoogle ScholarPubMed
Roberts, R. et al. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol. Reprod. 72, 107–18 (2005).CrossRefGoogle ScholarPubMed
Van Montfrans, J. M., van Hooff, M. H. A., Martens, F. & Lambalk, C. B. Basal FSH, estradiol and inhibin B concentrations in women with a previous Down's syndrome affected pregnancy. Hum. Reprod. Oxf. Engl. 17, 4447 (2002).CrossRefGoogle ScholarPubMed
Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673745 (2001).Google Scholar
Uhlmann, F. The mechanism of sister chromatid cohesion. Exp. Cell Res. 296, 8085 (2004).CrossRefGoogle ScholarPubMed
Van Heemst, D. & Heyting, C. Sister chromatid cohesion and recombination in meiosis. Chromosoma 109, 1026 (2000).CrossRefGoogle ScholarPubMed
Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Premeiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409, 359–63 (2001).Google Scholar
Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–17 (2004).Google Scholar
Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 4652 (2006).Google Scholar
Subramanian, V. V. & Bickel, S. E. Aging predisposes oocytes to meiotic non-disjunction when the cohesin subunit SMC1 is reduced. PLoS Genet. 4 (11), e1000263 (2008).CrossRefGoogle Scholar
Liu, L. & Keefe, D. L. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod. Biomed. Online 16, 103–12 (2008).CrossRefGoogle ScholarPubMed
Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. CB 20, 1522–28 (2010).Google Scholar
Lister, L. M. et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. CB 20, 1511–21 (2010).CrossRefGoogle ScholarPubMed
Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–49 (2004).Google Scholar
Ross, L. O., Maxfield, R. & Dawson, D. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc. Natl. Acad. Sci. U. S. A. 93, 4979–83 (1996).CrossRefGoogle Scholar
Oliver, T. R. et al. Altered patterns of multiple recombinant events are associated with non-disjunction of chromosome 21. Hum. Genet. 131, 1039–46 (2012).CrossRefGoogle Scholar
Lamb, N. E. et al. Characterization of susceptible chiasma configurations that increase the risk for maternal non-disjunction of chromosome 21. Hum. Mol. Genet. 6, 1391–99 (1997).Google Scholar
Bugge, M. et al. Non-disjunction of chromosome 13. Hum. Mol. Genet. 16, 2004–10 (2007).CrossRefGoogle ScholarPubMed
Bugge, M. et al. Non-disjunction of chromosome 18. Hum. Mol. Genet. 7, 661–69 (1998).CrossRefGoogle ScholarPubMed
Lamb, N. E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14, 400–05 (1996).CrossRefGoogle ScholarPubMed
Myers, S., Freeman, C., Auton, A., Donnelly, P. & McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 40, 1124–29 (2008).CrossRefGoogle ScholarPubMed
Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–40 (2010).CrossRefGoogle Scholar
Berg, I. L. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat. Genet. 42, 859–63 (2010).CrossRefGoogle ScholarPubMed
Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438, 374–78 (2005).Google Scholar
Wu, H. et al. Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Rep. 5, 1320 (2013).CrossRefGoogle ScholarPubMed
Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–40 (2010).Google Scholar
Arnheim, N., Calabrese, P. & Tiemann-Boege, I. Mammalian meiotic recombination hot spots. Annu. Rev. Genet. 41, 369–99 (2007).CrossRefGoogle ScholarPubMed
Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nat. Rev. Genet. 11, 221–33 (2010).CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Neil, D. L. & Neumann, R. Repeat instability at human minisatellites arising from meiotic recombination. EMBO J. 17, 4147–57 (1998).CrossRefGoogle ScholarPubMed
Berg, I. L. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat. Genet. 42, 859–63 (2010).CrossRefGoogle ScholarPubMed
Oliver, T. R. et al. New insights into human non-disjunction of chromosome 21 in oocytes. PLoS Genet. 4, e1000033 (2008).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×