Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T22:23:32.681Z Has data issue: false hasContentIssue false

8 - Dynamics of Volcanic Eruptions

Published online by Cambridge University Press:  18 April 2020

Agust Gudmundsson
Affiliation:
Royal Holloway, University of London
Get access

Summary

When a magma-filled fracture reaches the surface, a volcanic eruption occurs. In Chapters 5 and 7 we have discussed the conditions under which this may happen. Here, the focus is on the likely course of events once an eruption has started. Among the main questions facing scientists and civil authorities during a beginning eruption are: (1) What is the likely size or magnitude of the eruption? (2) What is its likely duration? (3) Is it going to be primarily effusive or explosive or both? All these questions ultimately relate to the hazards and associated risks posed by the particular volcano. For a more reliable assessment of the hazards associated with volcanoes, the frequencies and sizes of their eruptions need to be known and related to a general understanding of the dynamics of eruptions.

Type
Chapter
Information
Volcanotectonics
Understanding the Structure, Deformation and Dynamics of Volcanoes
, pp. 379 - 423
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Suggested Reading

Amelung, F., Jonsson, S., Zebker, H., Segall, P., 2000. Widespread uplift and ‘trapdoor’ faulting on Galapagos volcanoes observed with radar interferometry. Nature, 407, 993996.Google Scholar
Anderson, E.M., 1936. The dynamics of formation of cone sheets, ring dykes and cauldron subsidences. Proceedings of the Royal Society of Edinburgh, 56, 128163.Google Scholar
Bonadonna, C., Costa, A., 2013. Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bulletin of Volcanology, 75, doi:10.1007/s00445-013-0742-1.CrossRefGoogle Scholar
Bull, J. M., Minshull, T. A., Mitchell, N. C., et al., 2003. Fault and magmatic interaction within Iceland’s western rift over the last 9 kyr. Geophysical Journal International, 154, F1F8.CrossRefGoogle Scholar
Cashman, K. V., Sparks, R. S. J., 2013. How volcanoes work: a 25 year perspective. Geological Society of America Bulletin, 125, 664690.CrossRefGoogle Scholar
Clarke, A. B., Voight, B., Neri, A., Macedonio, G., 2002. Transient dynamics of vulcanian explosions and column collapse. Nature, 415, 897901.CrossRefGoogle ScholarPubMed
Clauset, A., Chalizi, R. C., Newman, M. E. J., 2009. Power-law distributions in empirical data. Society for Industrial and Applied Mathematics, 51, 661703.Google Scholar
Cummings, M. L., Evans, J. G., Ferns, M. L., Lees, K. R., 2000. Stratigraphic and structural evolution of the middle Miocene synvolcanic Oregon-Idaho graben. Bulletin of the Geological Society of America, 112, 668682.Google Scholar
Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), 2013. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fedotov, S. A., Chirkov, A. M., Gusev, N. A., Kovalev, G. N., Slezin, Yu. B., 1980. The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975–1976. Bulletin of Volcanology, 43, 4760.Google Scholar
Gonnermann, H. M., Manga, M., 2013. Dynamics of magma ascent in the volcanic conduit. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge: Cambridge University Press, pp. 5584.Google Scholar
Gottsmann, J., Camacho, A. G., Marti, J., et al., 2008. Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Physics of the Earth and Planetary Interiors, 168, 212230.Google Scholar
Gudmundsson, A. 1987. Tectonics of the Thingvellir fissure swarm, SW Iceland. Journal of Structural Geology, 9, 6169.Google Scholar
Gudmundsson, A., 2014. Energy release in great earthquakes and eruptions. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00010.CrossRefGoogle Scholar
Gudmundsson, A., 2015. Collapse-driven large eruptions. Journal of Volcanology and Geothermal Research, 304, 110.CrossRefGoogle Scholar
Gudmundsson, A., 2016. The mechanics of large volcanic eruptions. Earth-Science Reviews, 163, 7293.Google Scholar
Gudmundsson, A., Mohajeri, N., 2013. Relations between the scaling exponents, entropies, and energies of fracture networks. Geological Society of France Bulletin, 184, 377387.Google Scholar
Gudmundsson, A., Oskarsson, N., Gronvold, K., et al., 1992. The 1991 eruption of Hekla, Iceland.Bulletin of Volcanology, 54, 238246.Google Scholar
Harris, A. J. L., 2013. Lava flows. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge: Cambridge University Press, pp. 85106.CrossRefGoogle Scholar
Hildreth, W., Fierstein, J., 2012. The Novarupta–Katmai eruption of 1912: largest eruption of the twentieth century – centennial perspectives. US Geological Survey Professional Paper, 1791. Denver, CO: US Geological Survey, pp. 1278.Google Scholar
James, M. R., Lane, S. J., Houghton, B. F., 2013. Unsteady explosive activity: strombolian eruptions. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge: Cambridge University Press, pp. 107128.Google Scholar
Kilburn, C. J., 2000. Lava flows and flow fields. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, NY: Academic Press, pp. 291305.Google Scholar
Lamb, H., 1932. Hydrodynamics, 6th edn. Cambridge: Cambridge University Press.Google Scholar
Lipman, P. W. 1997. Subsidence of ash-flow calderas: relation to caldera size and magma chamber geometry. Bulletin of Volcanology, 59, 198218.Google Scholar
Lipman, P. W., Dungan, M. A., Bachmann, O., 1997. Comagmatic granophyric granite in the Fish Canyon Tuff, Colorado: implications for magma-chamber processes during a large ash-flow eruption. Geology, 25, 915918.2.3.CO;2>CrossRefGoogle Scholar
Machado, F., 1974. The search for magmatic reservoirs. In Civetta, L., Gasparini, P., Luongo, G., Rapolla, A. (eds.), Physical Volcanology. Amsterdam: Elsevier, pp. 255273.Google Scholar
Mason, B. G., Pyle, D. M., Oppenheimer, C., 2004. The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology, 66, 735748, doi:10.1007/s00445-004-0355-9.Google Scholar
Milne-Thompson, L. M., 1996. Theoretical Hydrodynamics, 5th edn. New York, NY: Dover.Google Scholar
Mohajeri, N., Gudmundsson, A., 2012. Entropies and scaling exponents of street and fracture networks. Entropy, 14, 800833.CrossRefGoogle Scholar
Murase, T., McBirney, A. R., 1973. Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84, 35633592.2.0.CO;2>CrossRefGoogle Scholar
Nakada, S., Uto, K., Sakuma, S., Eichelberger, J. C., Shimizu, H., 2005. Scientific results of conduit drilling in the Unzen Scientific Drilling Project (USDP). Scientific Drilling, 1, 1822, doi:10.2204/iodp.sd.1.03.2005.Google Scholar
Neal, C. A., Brantley, S. R., Antolik, J. L., et al., 2019. The 2018 rift eruption and summit collapse of Kilauea Volcano. Science, 363, 367374.CrossRefGoogle ScholarPubMed
Neri, M., Acocella, V., Behncke, B., et al., 2011. Structural analysis of the eruptive fissures at Mount Etna (Italy). Annals of Geophysics, 54, 464479.Google Scholar
Newhall, C. G., Dzurisin, D., 1988. Historical unrest of large calderas of the world. US Geological Survey Bulletin, 1855, Reston, VA.Google Scholar
Newhall, C., Hendley, J. W., Stauffer, P. H., 1997. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines. US Geological Survey Fact Sheet-113–97.CrossRefGoogle Scholar
Parfitt, L., Wilson, L., 2008. Fundamentals of Physical Volcanology. New York, NY: Wiley.Google Scholar
Pisarenko, V., Rodkin, M., 2010. Heavy-Tailed Distributions in Disaster Analysis. Berlin: Springer Verlag.Google Scholar
Poland, M. P., Takahashi, T. J., Landowski, C. M. (eds.), 2014. Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper, 1801. Denver, CO: US Geological Survey.Google Scholar
Roche, O., Phillips, J. C., Kelfoun, K., 2013. Pyroclastic density currents. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge: Cambridge University Press, pp. 203229.Google Scholar
Rosi, M., Papale, P., Lupi, L., Stoppato, M., 2003. Volcanoes. Buffalo (USA): Firefly Books.Google Scholar
Rossi, M. J., 1996. Morphology and mechanism of eruption of postglacial lava shields in Iceland. Bulletin of Volcanology, 57, 530540.Google Scholar
Self, S., Rampino, M. R., Newton, M. S., Wolff, J. A., 1984. Volcanological study of the great Tambora eruption of 1815. Geology, 12, 659663.Google Scholar
Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H., Stix, J. (eds.), 2000. Encylopedia of Volcanoes. New York, NY: Academic Press.Google Scholar
Simkin, T., Fiske, R. S. (eds.), 1980. Krakatau, 1983: The Volcanic Eruption and Its Effects. Washington DC.: Smithsonian Books.Google Scholar
Simkin, T., Siebert, L., 2000. Earth’s volcanoes and eruptions: an overview. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, NY: Academic Press, pp. 249261.Google Scholar
Sinton, J., Gronvold, K., Saemundsson, K., 2005. Postglacial eruptive history of the western Volcanic Zone, Iceland. Geochemistry, Geophysics, Geosystems, 6, doi:10.1029/2005GC001021.Google Scholar
Sonnette, L., Angelier, J., Villemin, T., Bergerat, F., 2010. Faulting and fissuring in active oceanic rift: Surface expression, distribution and tectonic–volcanic interaction in the Thingvellir Fissure Swarm, Iceland. Journal of Structural Geology, 32, 407422.Google Scholar
Sparks, R. S. J., Bursik, M. I., Carey, S. N., et al., 1997. Volcanic Plumes. New York, NY: Wiley.Google Scholar
Stasiuk, M. V., Jaupart, C., Sparks, R. S. J., 1993. On the variation of flow rate in non-explosive lava eruptions. Earth and Planetary Science Letters, 114, 505516.Google Scholar
Thordarson, T., Larsen, G., 2007. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43, 118152.Google Scholar
Thordarson, T., Self, S., 1993. The Laki (Skaftar Fires) and Grimsvotn eruptions in 1783–1785. Bulletin of Volcanology, 55, 233263.Google Scholar
Tryggvason, E., 1982. Recent ground deformation in continental and oceanic rift zones. American Geophysical Union Geodynamic Series, 8, 1729.CrossRefGoogle Scholar
Wadge, G., 1981. The variation of magma discharge during basaltic eruptions. Journal of Volcanology and Geothermal Research, 11, 139168.CrossRefGoogle Scholar
White, F. M., 2005. Viscous Fluid Flow, 3rd edn. New York, NY: McGraw-Hill.Google Scholar
Woods, A. W., Huppert, H. E., 2003. On magma chamber evolution during slow effusive eruptions. Journal of Geophysical Research, 108, 2403, doi:10.1029/2002JB002019.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×