Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T14:10:23.474Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 July 2017

William J. Nellis
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, T. J. (2005). Shock wave experiments. In Encyclopedia of Geomagnetism and Paleomagnetism. ed. Gubbins, D.. Dordrecht: Kluwer, pp. 912920.Google Scholar
Akahama, Y. and Kawamura, H. (2007). Diamond anvil Raman gauge in multimegabar pressure range. High Pressure Research, 27, 473482.CrossRefGoogle Scholar
Alexander, C. S., Asay, J. R. and Haill, T. A. (2010). Magnetically applied pressure-shear: A new method for direct measurement of strength at high pressure. Journal of Applied Physics, 108, 126101-1126101-3.CrossRefGoogle Scholar
Altshuler, L. V. (1965). Use of shock waves in high-pressure physics. Soviet Physics-Uspekhi, 8, 5291.CrossRefGoogle Scholar
Altshuler, L. V. (2001). Lost World of Khariton. Sarov: RCNC-VNIIEF.Google Scholar
Altshuler, L. V., Kormer, S. B., Brazhnik, M. I., Vladimirov, L. A., Speranskaya, M. P. and Funtikov, A. I. (1960). The isentropic compressibility of aluminum, copper, lead and iron at high pressures. Soviet Physics – JETP, 11, 766776.Google Scholar
Altshuler, L. V., Podurets, M. A., Simakov, G. V. and Trunin, R. F. (1973). High-density forms of fluorite and rutile. Soviet Physics Solid State, 15, 969971.Google Scholar
Altshuler, L. V., Trunin, R. F., Krupnikov, K. K. and Panov., N. V. (1996). Explosive laboratory devices for shock wave compression studies. Physics-Uspekhi, 39, 539544.CrossRefGoogle Scholar
Altshuler, L. V. et al. (1968). Soviet Journal of Experimental and Theoretical Physics, 54, 785789.Google Scholar
Anderson, M. S. and Swenson, C. A. (1974). Experimental compressions for normal hydrogen and normal deuterium to 25 kbar at 4.2 K. Physical Review B, 10, 51845191.CrossRefGoogle Scholar
Ao, T., Asay, J. R., Chantrenne, S., Baer, M. R. and Hall, C. A. (2008). A compact strip-line pulsed power generator for isentropic compression experiments. Review of Scientific Instruments, 79, 013903-1013903-16.CrossRefGoogle ScholarPubMed
Arnett, D. (1996). Supernovae and Nucleosynthesis (First edition). Princeton: Princeton University Press.CrossRefGoogle Scholar
Asay, J. R., Chhabildas, L. C., Lawrence, R. J. and Sweeney, M. A. (2017). Impactful Times: Memories of 60 Years of Shock Wave Research at Sandia National Laboratories. Cham, Switzerland: Springer International Publishing AG.CrossRefGoogle Scholar
Asay, J. R. and Shahinpoor, M. (Eds.). (1993). High Pressure Shock Compression of Solids. New York: Springer.CrossRefGoogle Scholar
Ashcroft, N. W. (1968). Metallic hydrogen: A high-temperature superconductor? Physical Review Letters, 21, 17481749.CrossRefGoogle Scholar
Ashcroft, N. W. (1991). Optical response near a band overlap: application to dense hydrogen. In Molecular Systems under High Pressure, eds. Pucci, R. and Piccitto, G.. New York: Elsevier, pp. 201222.Google Scholar
Babaev, E., Sudbo, A. and Ashcroft, N. W. (2004). A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 431, 666668.CrossRefGoogle ScholarPubMed
Bancroft, D., Peterson, E. L. and Minshall, S. (1956). Polymorphism of iron at high pressure. Journal of Applied Physics, 27, 291298.CrossRefGoogle Scholar
Banishev, A. A., Shaw, W. L., Bassett, W. P. and Dlott, D. D. (2016). High-speed laser-launched flyer plate impacts studied with ultrafast strobe photography and photon Doppler velocimetry. International Journal of Impact Engineering. DOI 10.1007/s40870-016-0058-2.Google Scholar
Barker, L. M. (1984). High pressure quasi-isentropic experiments. In Shock Waves in Condensed Matter-1983, eds. Asay, J. R., Graham, R. A. and Straub, G. K.. New York: North-Holland, pp. 217224.Google Scholar
Barker, L. M. and Hollenbach, R. E. (1974). Shock wave study of the α⇔ε phase transition in iron. Journal of Applied Physics, 45, 48724887.CrossRefGoogle Scholar
Barnes, J. F., Blewett, P. J., McQueen, R. G. and Meyer, K. A. (1974). Taylor instability in solids. Journal Applied Physics, 45, 727732.CrossRefGoogle Scholar
Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Pressure Research, 29, 163186.CrossRefGoogle Scholar
Bastea, M. and Bastea, S. (2002). Electrical conductivities of lithium at megabar pressures. Physical Review B, 65, 193104-1193104-4.CrossRefGoogle Scholar
Bastea, M., Mitchell, A. C. and Nellis, W. J. (2001). High-pressure insulator-metal transition in molecular fluid oxygen. Physical Review Letters, 86, 31083111.CrossRefGoogle ScholarPubMed
Bean, V. E., Akimoto, S., Bell, P. M., Block, S., Holzapfel, W. B., et al. (1982). Toward an international practical pressure scale: an AIRAPT task group report. In High Pressure in Research and Industry, vol. 1, eds. Backman, C. M., Johannisson, T. and Tegner, L.. Uppsala: Arkitektkopia, pp. 144151.Google Scholar
Bean, V. E., Akimoto, S., Bell, P. M., Block, S., Holzapfel, W. B., et al. (1986). Another step toward an international practical pressure scale: 2nd AIRAPT IPPS Task Group Report. Physica, 139/140B, 5254.Google Scholar
Belov, S. I., Boriskov, G. V., Bykov, A. I., Il’kaev, R. I., Luk’yanov, N. B., et al. (2002). Shock compression of solid deuterium. JETP Letters, 76, 433435.CrossRefGoogle Scholar
Benson, D. J. and Nellis, W. J. (1994). Dynamic compaction of copper powder: computation and experiment. Applied Physics Letters, 65, 418420.CrossRefGoogle Scholar
Bergmann, O. R. and Barrington, J. (1966). Effect of explosive shock waves on ceramic powders. Journal of the American Ceramic Society, 49, 502507.CrossRefGoogle Scholar
Bethe, H. A. and Teller, E. 1940. Deviations from Thermal Equilibrium in Shock Waves. Aberdeen Ballistics Research Laboratory, unpublished report. (Harvard University Library QC718.5.W3B56).Google Scholar
Bethe, H. A. 1942. On the Theory of Shock Waves for an Arbitrary Equation of State. U. S. Department of Commerce, Washington, DC, Technical Report PB-32189.Google Scholar
Boehler, R., Ross, M., Soderlind, P. and Boercker, D. (2001). High-pressure melting curves of argon, krypton, and xenon: deviation from corresponding states theory. Physical Review Letters, 86, 57315734.CrossRefGoogle ScholarPubMed
Bonev, S. A., Schwegler, E., Ogitsu, T. and Galli, G. (2004). A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature (London), 431, 669672.CrossRefGoogle ScholarPubMed
Boriskov, G. V., Bykov, A. I., Il’kaev, R. I., Selemir, V. D., Simakov, G. V., et al. (2005). Shock compression of liquid deuterium up to 109 GPa. Physical Review B, 71, 092104-1092104-4.CrossRefGoogle Scholar
Bowden, S. A., Parnell, J. and Burchell, M. J. (2009). Survival of organic compounds in ejecta from hypervelocity impacts on ice. International Journal of Astrobiology, 8, 1925.CrossRefGoogle Scholar
Bradley, D. K., Eggert, J. H., Hicks, D. G., Celliers, P. M., Moon, S. J., et al. (2004). Shock compressing diamond to a conducting fluid. Physical Review Letters, 93, 195506-1195506-4.CrossRefGoogle ScholarPubMed
Bridgman, P. W. (1909). The measurement of high hydrostatic pressure, I. A simple pressure gauge. Proceedings of the American Academy of Arts and Sciences, 44, 201217.CrossRefGoogle Scholar
Bridgman, P. W. (1935). Theoretically interesting aspects of high pressure phenomena. Reviews of Modern Physics, 7, 133.CrossRefGoogle Scholar
Bridgman, P. W. (1956). High pressure polymorphism of iron. Journal of Applied Physics, 27, 659.CrossRefGoogle Scholar
Bridgman, P. W. (1959). Compression and the α−β phases transition of plutonium. Journal of Applied Physics, 30, 214217.CrossRefGoogle Scholar
Bridgman, P. W. (1963). In Solids Under Pressure, ed. Paul, W. and Warschauer, D. M., NY: McGraw-Hill, pp. 113.Google Scholar
Bridgman, P. W. (1964). Collected Experimental Papers (seven volumes). Cambridge: Harvard University Press.Google Scholar
Bushman, A. V., Kanel, G. I., Fortov, V. E. and Ni, A. L. (1992). Intense Dynamic Loading of Condensed Matter. Bristol: Taylor and Francis.Google Scholar
Calder, A. C., Fryxell, B., Plewa, T., Rosner, R. et al. (2002). On validating an astrophysical simulation code. Astrophysical Journal Supplement Series, 143, 201229.CrossRefGoogle Scholar
Cavazonni, C., Chiarotti, G. L., Scandolo, S., Tosatti, E., et al. (1999). Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283, 4446.CrossRefGoogle Scholar
Celliers, P. M., Collins, G. W., Da Silva, L. B., Gold, D. M., Cauble, R., et al. (2000). Shock-induced transformation of liquid deuterium into a metallic fluid. Physical Review Letters, 84, 55645567.CrossRefGoogle ScholarPubMed
Challis, J. (1848). On the velocity of sound. Philosophical Magazine, 32, 494499.Google Scholar
Charters, A. C., Denardo, B. P. and Rossow, V. J. (1957). Development of a piston-compressor type light-gas gun for the launching of free-flight models at high velocity. National Advisory Committee for Aeronautics Technical Note 4143.Google Scholar
Chau, R., Mitchell, A. C., Minich, R. and Nellis, W. J. (2001). Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). Journal of Chemical Physics, 114, 13611365.CrossRefGoogle Scholar
Chau, R., Mitchell, A. C., Minich, R. W. and Nellis, W. J. (2003a). Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids. Physical Review Letters, 90, 245501-1245501-4.CrossRefGoogle ScholarPubMed
Chau, R., Bastea, M., Mitchell, A. C., Minich, R. W. and Nellis, W. J. (2003b). Planetary interior in the laboratory. Lawrence Livermore National Laboratory Report. UCRL-ID-151657.CrossRefGoogle Scholar
Chau, R., Hamel, S. and Nellis, W. J. (2011). Chemical processes in the deep interior of Uranus. Nature Communications, 2, 203. DOI: 10.1038/ncomms1198.CrossRefGoogle ScholarPubMed
Chen, Q. F., Zheng, J., Gu, Y. J., Chen, Y. L., Cai, L. C. and Shen, Z. J. (2014). Thermophysical properties of multi-shock compressed dense argon. Journal of Chemical Physics, 140, 074202-1074202-6.CrossRefGoogle ScholarPubMed
Chen, Q. F., Zheng, J., Gu, Y. J. and Li, Z. G. (2015). Equation of state of dense neon and krypton plasmas in the partial ionization regime. Physics of Plasmas, 22, 122706-1122706-8.CrossRefGoogle Scholar
Chen, T. T., Chen, J. T., Leslie, J. D. and Smith, H. J. T. (1969). Phonon spectrum of superconducting amorphous bismuth and gallium by electron tunneling. Physical Review Letters, 22, 526530.CrossRefGoogle Scholar
Cheret, R. (1992). The life and work of Pierre-Henri Hugoniot. Shock Waves, 2, 14.CrossRefGoogle Scholar
Cheret, R. (1993). Detonation of Condensed Explosives. New York: Springer.CrossRefGoogle Scholar
Chijioke, A. D., Nellis, W. J., and Silvera, I. F. (2005a). High-pressure equations of state of Al, Cu, Ta, and W. Journal of Applied Physics, 98, 073526-1073526-8.CrossRefGoogle Scholar
Chijioke, A. D., Nellis, W. J., Soldatov, A. and Silvera, I. F. (2005b). The ruby pressure standard to 150 GPa. Journal of Applied Physics, 98, 114905-1-114905-9.CrossRefGoogle Scholar
Coe, R. S., Prevot, M. and Camps, P. (1995). New evidence for extraordinarily rapid change of the geomagnetic field reversal. Nature, 374, 687692.CrossRefGoogle Scholar
Collins, L., Kress, J., Kwon, I., Windl, W., Lenosky, T., et al. (1998). Quantum molecular dynamics simulations of dense matter. Journal of Computer-Aided Materials Design, 5, 173191.CrossRefGoogle Scholar
Courant, R. and Friedrichs, K. O. (1948). Supersonic Flow and Shock Waves. New York: Springer-Verlag, pp. 13.Google Scholar
Cronin, J. W. (2004). Fermi, E., The future of nuclear physics. In Fermi Remembered. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Dalladay-Simpson, P., Howie, R. T. and Gregoryanz, E. (2016). Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature, 529, 6367.CrossRefGoogle ScholarPubMed
Davis, J.-P., Brown, J. L., Knudson, M. D. and Lemke, R. W. (2014). Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum. Journal of Applied Physics, 116, 204903-1204903-17.CrossRefGoogle Scholar
Davison, L. and Graham, R. A. (1979). Shock compression of solids. Physics Reports, 55, 255379.CrossRefGoogle Scholar
Decker, D. L., Bassett, W. A., Merrill, L., Hall, H. T. and Barnett, J. D. (1972). High-pressure calibration: A critical review. Journal of Physical and Chemical Reference Data, 1, 179.CrossRefGoogle Scholar
Deemyad, S. and Silvera, I. F. (2008). Melting line of hydrogen at high pressures. Physical Review Letters, 100, 155701-1155701-4.CrossRefGoogle ScholarPubMed
Dias, R. and Silvera, I. F. (2017). Observation of the Wigner-Huntington transition to solid metallic hydrogen. Science, 355, 715718.CrossRefGoogle ScholarPubMed
Dick, R. D. and Kerley, G. I. (1980). Shock compression data for liquids. II. Condensed hydrogen and deuterium. Journal of Chemical Physics, 73, 52645271.CrossRefGoogle Scholar
Dlott, D. D. (2011). New developments in the physical chemistry of shock compression. Annual Review of Physical Chemistry, 62, 575597.CrossRefGoogle ScholarPubMed
Dorfman, S. M., Jiang, F., Mao, Z., Kubo, A., Meng, Y., et al. (2010). Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures. Physical Review B, 81, 174121-1174121-13.CrossRefGoogle Scholar
Dorogokupets, P. I., Sokolova, T. S., Daniliov, B. S., Litasov, K. D. (2012). Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions. Geodynamics & Tectonophysics, 3, 129166. DOI:10.5800/GT-2012–3-2-0067.CrossRefGoogle Scholar
Drickhamer, H. G. and Balchan, A. S. (1961). High pressure electrical resistance cell, and calibration points above 100 kilobars. Review of Scientific Instruments, 32, 308313.Google Scholar
Dubrovinskaia, N., Dubrovinsky, L., Kantor, I., Crichton, W. A., Dmitriev, V., et al. (2005). Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying. Physical Review Letters, 95, 245502-1245502-4.CrossRefGoogle ScholarPubMed
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. and Abakumov, A. M. (2012). Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nature Communications, 3, 1163-11163-7.CrossRefGoogle ScholarPubMed
Duvall, G. E. and Graham, R. A. (1977). Phase transitions under shock-wave loading. Reviews of Modern Physics, 49, 523579.CrossRefGoogle Scholar
Dynes, R. C., Rowell, J. M. and Schmidt, P. H. (1981). In Ternary Superconductors ed. Shenoy, G. K., Dunlap, B. D. and Fradin, F. Y.. Amsterdam: North Holland, pp. 169173.Google Scholar
Dzyabura, V., Zaghoo, M. and Silvera, I. F. (2013). Evidence of a liquid-liquid phase transition in hot dense hydrogen. Proceedings of National Academy of Sciences (U.S.A), 110, 80408044.CrossRefGoogle ScholarPubMed
Eakins, D. E. and Thadhani, N. N. (2009). Shock compression of reactive powder mixtures. International Materials Review, 54, 181213.CrossRefGoogle Scholar
Earnshaw, S. (1860). On the mathematical theory of sound. Philosophical Transactions of the Royal Society of London, 150, 133148.Google Scholar
Edwards, P. P., Johnston, R. L., Rao, C. N. R., Tunstall, D. P. and Hensel, F. (1998). The metal-insulator transition: a perspective. Philosophical Transactions of the Royal Society of London A, 356, 522.CrossRefGoogle Scholar
Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R. S., Celliers, P. M., et al. (2008). Hugoniot data for helium in the ionization regime, Physical Review Letters, 100, 124503-1124503-4.CrossRefGoogle ScholarPubMed
Eggert, J. H., Hicks, D. G., Celliers, P. M., Bradley, D. K., McWilliams, R. S., et al. (2009). Melting temperature of diamond at ultrahigh pressure. Nature Physics, 6, 4043.CrossRefGoogle Scholar
Eremets, M. I. (1996). High Pressure Experimental Methods. Oxford: Oxford University Press.CrossRefGoogle Scholar
Erskine, D. J. and Nellis, W. J. (1991). Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature, 349, 317319.CrossRefGoogle Scholar
Erskine, D. J. and Nellis, W. J. (1992). Shock-induced martensitic transformation of highly oriented graphite to diamond. Journal of Applied Physics, 71, 48824886.CrossRefGoogle Scholar
Erskine, D. (1994). High pressure Hugoniot of sapphire. In High Pressure Science and Technology – 1993, eds. Schmidt, S. C., Shaner, J. W., Samara, G. A. and Ross, M.. New York: American Institute of Physics Conference Proceedings 309, pp. 141143.Google Scholar
Feynman, R. P. (1963). Six Easy Pieces. New York: Basic Books,.Google Scholar
Forbes, J. W. (2012). Shock Wave Compression of Condensed Matter: A Primer (Shock Wave and High Pressure Phenomena). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Fortov, V. E., Ternovoi, V. A., Zhernokletov, M. V., Mochalov, M. A., Mikhailov, A. L., et al. (2003). Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. Journal of Experimental and Theoretical Physics, 97, 259278.CrossRefGoogle Scholar
Fortov, V. E., Altshuler, L. V., Trunin, R. F. and Funtikov, A. I., eds. (2004). High-Pressure Shock Compression of Solids VII, Shock Waves and Extreme States of Matter. New York: Springer-Verlag.Google Scholar
Fortov, V. E. (2016). Extreme States of matter: High energy density physics (Second edition). New York: Springer.CrossRefGoogle Scholar
Furakawa, Y., Sekine, T., Oba, M., Kakegawa, T. and Nakazawa, H. (2009). Biomolecule formation by oceanic impacts on early Earth. Nature Geoscience, 2, 6266.CrossRefGoogle Scholar
Furnish, M. D., Chhabildas, J. C. and Reinhart, W. G. (1999). Time-resolved particle velocity measurements at impact velocities of 10 km/s. International Journal of Impact Engineering, 23, 261270.CrossRefGoogle Scholar
Gatilov, L. A., Glukhodedov, V. D., Grigorev, F. V., Kormer, S.B., Kuleshova, L. V. and Mochalov, M. A. (1985). Electrical conductivity of shock compressed condensed argon at pressures from 20 to 70 GPa. Journal of Applied Mechanics and Technical Physics, 26, 8891.CrossRefGoogle Scholar
Goncharov, A. F., Goldman, N., Fried, L. E., Crowhurst, J. C., Kuo, I. W., Mundy, C. J. and Zaug, J. M.. (2005). Dynamic ionization of water under extreme conditions. Physical Review Letters, 94, 125508-1125508-4.CrossRefGoogle ScholarPubMed
Gorman, M. G., Briggs, R., McBride, E. E., Higginbotham, A., Arnold, B., et al. (2015). Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Physical Review Letters, 115, 095701-1095701-5.CrossRefGoogle ScholarPubMed
Grady, D. E. (1998). Shock-wave compression of brittle solids. Mechanics of Materials, 29, 181203.CrossRefGoogle Scholar
Graham, R. A. (1993). Solids Under High Pressure Shock Compression. New York: Springer.CrossRefGoogle Scholar
Graham, R. A. (1994). Bridgman’s concern. In High Pressure Science and Technology – 1993, eds. Schmidt, S. C., Shaner, J. W., Samara, G. A. and Ross, M.. New York: American Institute of Physics Conference Proceedings 309, pp. 312.Google Scholar
Granzow, K. D. (1983). Spherical harmonic representation of the magnetic field in the presence of a current density. Geophysical Journal of the Royal Astronomical Society, 74, 489505.Google Scholar
Gratz, A. J., Nellis, W. J. and Hinsey, N. A. (1993a). Observations of high-velocity, weakly shocked ejecta from experimental impacts. Nature, 363, 522524.CrossRefGoogle Scholar
Gratz, A. J., DeLoach, L. D., Clough, T. M. and Nellis, W. J. (1993b). Shock amorphization of cristobalite. Science, 259, 663666.CrossRefGoogle Scholar
Grigoryev, F. B., Kormer, S. B., Mikhailova, O. L., Mochalov, M. A. and Urlin, V. D. (1985). Temperatures of shock compressed liquid nitrogen and argon. Journal of Experimental and Theoretical Physics, 88, 12711280.Google Scholar
Gross, D. J. and Wilczek, F. (1973). Ultraviolet behavior of non-abelian gauge theories. Physical Review Letters, 30, 13431346.CrossRefGoogle Scholar
Hall, C. A., Asay, J. R., Knudson, M. D., Stygar, W. A., Spielman, R. B. and Pointon, T. D. (2001). Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Review of Scientific Instruments, 72, 35873595.CrossRefGoogle Scholar
Hamann, S. D. and Linton, M. (1966). Electrical conductivity of water in shock compression. Transactions of the Faraday Society, 62, 22342241.CrossRefGoogle Scholar
Hamilton, D. C., Nellis, W. J., Mitchell, A. C., Ree, F. H. and van Thiel, M. (1988a). Electrical conductivity and equation of state of shock compressed liquid oxygen. Journal of Chemical Physics, 88, 50425050.CrossRefGoogle Scholar
Hamilton, D. C., Mitchell, A. C., Ree, F. H. and Nellis, W. J. (1988b). Equation of state of 1-butene shocked to 54 GPa (540 kbars). Journal of Chemical Physics, 88, 77067708.CrossRefGoogle Scholar
Hare, D. E., Holmes, N. C. and Webb, D. J. (2002). Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: Images and spectra. Physical Review B, 66, 014108-1014108-11.CrossRefGoogle Scholar
Hawke, R. S., Burgess, T. J., Duerre, D. E., Huebel, J. G., Keeler, R. N., et al. (1978). Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Physical Review Letters, 41, 994997.CrossRefGoogle Scholar
Helled, R., Anderson, J. D., Podolak, M. and Schubert, G. (2011). Interior models of Uranus and Neptune. Astrophysical Journal, 726, 15-115-7.CrossRefGoogle Scholar
Hemley, R. J., Chiarotti, G. L., Bernasconi, M. and Ulivi, L. (2002). High Pressure Phenomena: Proceedings of the International School of Physics “Enrico Fermi.” Amsterdam: IOS Press.Google Scholar
Hensel, F. and Edwards, P. P. (1996). The changing phase of expanded metals. Physics World, 4, 4346.CrossRefGoogle Scholar
Hensel, F., Marceca, E. and Pilgrim, W. C. (1998). The metal-non-metal transition in compressed metal vapours. Journal of Physics: Condensed Matter, 10, 1139511404.Google Scholar
Herman, F. and Skillman, S. (1963). Atomic Structure Calculations. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Hicks, D. G., Celliers, P. M., Collins, G. W., Eggert, J. H. and Moon, S. J. (2003). Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. Physical Review Letters, 91, 035502-1035502-4.CrossRefGoogle ScholarPubMed
Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Moon, S. J., et al. (2009). Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa. Physical Review B, 79, 014112-1014112-18.CrossRefGoogle Scholar
Hide, R. (1969). Interaction between the Earth’s liquid core and solid mantle. Nature, 222, 10551056.CrossRefGoogle Scholar
Hide, R., Clayton, R. W., Hager, B. H., Spieth, M. A. and Voorhdes, C. V. (2013). Topographic core-mantle coupling and fluctuations in the Earth’s rotation. In Relating Geophysical Structures and Processes: The Jeffreys Volume, Geophysical Monograph 76, Vol. 16, eds. Aki, K. and Dmowska, R., IUGG, pp. 107–120.CrossRefGoogle Scholar
Holme, R. (1997). Three dimensional kinematic dynamos with equatorial symmetry: Application to the magnetic fields of Uranus and Neptune. Physics of the Earth and Planetary Interiors, 102, 105122.CrossRefGoogle Scholar
Holmes, N. C., Nellis, W. J., Graham, W. B. and Walrafen, G. E. (1985). Spontaneous Raman scattering from shocked water. Physical Review Letters, 55, 24332436.CrossRefGoogle ScholarPubMed
Holmes, N. C., Moriarty, J. A., Gathers, G. R. and Nellis, W. J. (1989). The equation of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66, 29622967.CrossRefGoogle Scholar
Holmes, N. C., Ross, M. and Nellis, W. J. (1995). Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. Physical Review B, 52, 1583515845.CrossRefGoogle ScholarPubMed
Holmes, N. C., Nellis, W. J. and Ross, M. (1998). Sound velocities in shocked liquid deuterium. In Shock Compression of Condensed Matter – 97, eds. Schmidt, S. C., Dandekar, D. P., and Forbes, J. W.. Woodbury, NY: American Institute of Physics Conference Proceedings 429, pp. 6164.Google Scholar
Holst, B., French, M. and Redmer, R. (2011). Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Physical Review B, 83, 235120-1235120-8.CrossRefGoogle Scholar
Holzapfel, W. B. (2005). Progress in the realization of a practical pressure scale for the range 1–300 GPa. High Pressures Research, 25, 8796.CrossRefGoogle Scholar
Holzapfel, W. B. (2010). Equations of state for Cu, Ag, and Au and problems with shock wave reduced isotherms. High Pressures Research, 30, 372394.CrossRefGoogle Scholar
Hoover, W. G. (1979). Structure of a shock-wave front in a liquid. Physical Review Letters, 42, 15311534.CrossRefGoogle Scholar
Horie, Y. and Sawaoka, A. B. (1993). Shock Compression Chemistry of Materials. Tokyo: KTK Scientific Publishers.Google Scholar
Hu, S. X., Goncharov, V. N., Boehly, T. R., McCrory, R. L., Skupsky, S., et al. (2015). Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs. Physics of Plasmas, 22, 056304-1056304-14.CrossRefGoogle Scholar
Huang, J. W., Liu, Q. C., Zeng, X. L., Zhou, X. M. and Luo, S. N. (2015). Refractive indices of Gd3Ga5O12 single crystals under shock compression to 100–290 GPa. Journal of Applied Physics, 118, 205902-1205902-4.CrossRefGoogle Scholar
Hubbard, W. B. (1981). Interiors of the Giant Planets. Science, 214, 145149.CrossRefGoogle ScholarPubMed
Hubbard, W. B. (1984). Planetary Interiors. New York: Van Nostrand-Rheinhold, New York.Google Scholar
Hubbard, W. B., Nellis, W. J., Mitchell, A. C., Holmes, N. C., et al. (1991). Interior structure of Neptune: Comparison with Uranus. Science, 253, 648651.CrossRefGoogle ScholarPubMed
Hubbard, W. B., Podolak, M. and Stevenson, D. J. (1995). The interior of Neptune. In Neptune and Triton, eds. Cruikshank, D. P.. Tuscon: University of Arizona Press, pp. 109138.Google Scholar
Hugoniot, H. (1887). Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits-I. Journal of Ecole Polytechnique, 157, 398.Google Scholar
Hugoniot, H. (1889). Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits-II. Journal Ecole Polytechnique, 158, 1126.Google Scholar
Hurricane, O. A., Callahan, D. A., Casey, D. T., Celliers, P. M., et al. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343348.CrossRefGoogle Scholar
Inoue, K., Kanzaki, H. and Suga, S. (1979). Fundamental absorption spectra of solid hydrogen. Solid State Communications, 30, 627629.CrossRefGoogle Scholar
Ioffe, A. F. and Regal, A. R. (1960). Non-crystalline, amorphous, and liquid electronic semiconductors. Progress in Semiconductors, 4, 237291.Google Scholar
Irwin, P. G. J. (2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. New York: Springer-Verlag.Google Scholar
Isbell, W. M. (2005). Shock Waves: Measuring Dynamic Response of Materials. London: Imperial College Press.CrossRefGoogle Scholar
Jacobs, J. A. (1975). The Earth’s Core. London: Academic Press.Google Scholar
Jaffe, J. E. and Ashcroft, N. W. (1981). Superconductivity in liquid metallic hydrogen. Physical Review B, 23, 61766179.CrossRefGoogle Scholar
Jamieson, J. C. and Lawson, A. W. (1962). X-ray diffraction studies in the 100 kilobar pressure range. Journal of Applied Physics, 33, 776780.CrossRefGoogle Scholar
Jayaraman, A. (1983). Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics, 55, 65108.CrossRefGoogle Scholar
Jayaraman, A. (1984). The diamond-anvil high-pressure cell. Scientific American, April, 54–63.CrossRefGoogle Scholar
Jones, A. H., Isbell, W. M. and Maiden, C. J. (1966). Measurement of the very-high-pressure properties of materials using a light-gas gun. Journal of Applied Physics, 37, 34933499.CrossRefGoogle Scholar
Kalantar, D. H., Belak, J. F., Collins, G. W., Colvin, J. D., Davies, M. H., et al. (2005). Direct observation of the α−ε transition in shock-compressed iron via nanosecond X-ray diffraction. Physical Review Letters, 95, 075502-1075502-4.CrossRefGoogle ScholarPubMed
Kanel, G. I., Razorenov, S. V. and Fortov, V. E. (2004). Shock-Wave Phenomena and the Properties of Condensed Matter. New York: Springer.CrossRefGoogle Scholar
Kanel, G. I., Nellis, W. J., Savinykh, A. S., Razorenov, S. V. and Rajendran, A. M. (2009). Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. Journal of Applied Physics, 106, 043524-1043524-10.CrossRefGoogle Scholar
Kaxiras, E., Broughton, J. and Hemley, R. J. (1991). Onset of metallization and related transitions in solid hydrogen. Physical Review Letters, 67, 11381141.CrossRefGoogle ScholarPubMed
Kerley, G. I. (1983). A model for the calculation of thermodynamic properties of a fluid. In Molecular-Based Study of Fluids, eds. Haile, J. M. and Mansoori, G. A.. Washington DC: American Chemical Society, pp. 107138.CrossRefGoogle Scholar
Klimenko, V. Y. and Dremin, A. N. (1979). In Detonatsiya, Chernogolovka, eds. Breusov, O. N. et al. Moscow: Soviet Academy of Sciences, p. 79.Google Scholar
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Anderson, W. W. (2001). Equation of state measurements in liquid deuterium to 70 GPa. Physical Review Letters, 87, 255501-1255501-4.CrossRefGoogle ScholarPubMed
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A. and Asay, J. R. (2003a). Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Physical Review Letters, 90, 035505-1035505-4.CrossRefGoogle ScholarPubMed
Knudson, M. D., Lemke, R. W., Hayes, D. B., Hall, C. A., Deeney, C. and Asay, J. R. (2003b). Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. Journal of Applied Physics, 94, 44204431.CrossRefGoogle Scholar
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Deeney, C. (2004). Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Physical Review B, 69, 144209-1144209-20.CrossRefGoogle Scholar
Knudson, M. D., Asay, J. R. and Deeney, C. (2005). Adiabatic release measurements in aluminum from 240- to 500-GPa states on the principal Hugoniot. Journal of Applied Physics, 97, 073514-1073514-14.CrossRefGoogle Scholar
Knudson, M. D. and Desjarlais, M. P. (2009). Shock compression of Quartz to 1.6 TPa: Redefining a pressure standard. Physical Review Letters, 103, 255501-1255501-4.CrossRefGoogle ScholarPubMed
Knudson, M. D. and Desjarlais, M. P. (2013). Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a standard in the multimegabar regime. Physical Review B, 88, 184107-1184107-18.CrossRefGoogle Scholar
Knudson, M. D., Desjarlais, M. P., Becker, A., Lemke, R. W., Cochrane, K. R., et al. (2015). Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 348, 14551459.CrossRefGoogle ScholarPubMed
Kondo, K. and Ahrens, T. J. (1983) Heterogeneous shock-induced thermal radiation in minerals. Physics and Chemistry of Minerals, 9, 173181.CrossRefGoogle Scholar
Kormer, S. B. (1968). Optical study of the characteristics of shock-compressed condensed dielectrics. Soviet Physics-Uspekhi, 11, 229254.CrossRefGoogle Scholar
Kraus, R. G., Senft, L. E. and Stewart, S. T. (2011). Impact onto H2O ice: Scaling laws for melting, vaporization and final crater size. Icarus, 214, 724738.CrossRefGoogle Scholar
Kraus, R. G., Stewart, S. T., Swift, D. C., Bolme, C. A., Smith, R. F., et al. (2012). Shock vaporization of silica and the thermodynamics of planetary impact events. Journal of Geophysical Research, 117, E09009-1E09009-22.CrossRefGoogle Scholar
Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B. and Mattsson, T. R. (2015). Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geoscience, 8, 269272.CrossRefGoogle Scholar
Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., et al. (2016). Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications, 7, DOI: 10.1038/ncomms10970.CrossRefGoogle ScholarPubMed
Krehl, P. O. K. (2015). The classical Rankine-Hugoniot jump conditions, an important cornerstone of modern shock wave physics: Ideal assumptions vs. reality. European Physical Journal H, 40, 159204.CrossRefGoogle Scholar
Kuhlbrodt, S., Redmer, R., Reinholz, H., Ropke, G., Holst, B., et al. (2005). Electrical conductivity of Noble gases at high pressures. Contributions to Plasma Physics, 45, 6169.CrossRefGoogle Scholar
Kunc, K., Loa, I. and Syassen, K. (2003). Equation of state and phonon frequency calculations of diamond at high pressures. Physical Review B, 68, 094107-1094107-9.CrossRefGoogle Scholar
Landau, L. D. and Zeldovich, Y. B. (1943). On the relation between the liquid and the gaseous states of metals. Acta Physico-Chimica USSR, 18, 174.Google Scholar
Laudernet, Y., Clerouin, J. and Mazevet, S. (2004). Ab initio simulations of the electrical and optical properties of shock-compressed SiO2. Physical Review B, 70, 165108-1165108-5.CrossRefGoogle Scholar
Lee, K. K. M., Benedetti, L. R., Jeanloz, R., Celliers, P., Eggert, J. H., et al. (2006) Laser-driven shock experiments on precompressed water: Implications for “icy” giant planets. Journal of Chemical Physics, 125, 014701-1014701-7.Google ScholarPubMed
Lemke, R. W., Knudson, M. D. and Davis, J-P. (2011). Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. International Journal of Impact Engineering, 38, 480485.CrossRefGoogle Scholar
Lin, F., Morales, M. A., Delaney, K. T., Peirleoni, C., Martin, R. M. and Ceperley, D. M. (2009). Electrical conductivity of high-pressure liquid hydrogen by Quantum Monte Carlo methods. Physical Review Letters, 103, 256401-1256401-4.CrossRefGoogle ScholarPubMed
Lindl, J., Landen, O., Edwards, J., Moses, E. and Team, NIC. (2014). Review of the National Ignition Campaign 2009–2012. Physics of Plasmas, 21, 020501-1020501-72.CrossRefGoogle Scholar
Liu, T.-P. (1986). Shock waves for compressible Navier-Stokes equations are stable. Communications on Pure and Applied Mathematics, 39, 565594.CrossRefGoogle Scholar
Liu, H., Tse, J. S. and Nellis, W. J. (2015). The electrical conductivity of Al2O3 under shock compression. Scientific Reports, 5, 12823-112823-9.Google ScholarPubMed
Liu, Q., Zhou, X., Zeng, X. and Luo, S. N. (2015). Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression. Journal of Applied Physics, 117, 045901-1045901-6.Google Scholar
Lorenzen, W., Holst, B. and Redmer, R. (2010). First-order liquid-liquid phase transition in dense hydrogen. Physical Review B, 82, 195107-1195107-6.CrossRefGoogle Scholar
Loubeyre, P., LeToullec, R., Hausermann, D., Hanfland, M., Hemley, R. J., et al. (1996). X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature (London), 383, 702704.CrossRefGoogle Scholar
Lucas, M., Winey, J. M. and Gupta, Y. M. (2015). Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability. Journal of Applied Physics, 118, 245903-1245903-9.CrossRefGoogle Scholar
Luo, S.-N., Akins, J. A. and Ahrens, T. J. (2004). Shock-compressed MgSiO3 glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting. Journal of Geophysical Research, 109, B05205-1B05205-14.CrossRefGoogle Scholar
Lyzenga, G. A. and Ahrens, T. J. (1982). One-dimensional isentropic compression. In Shock Waves in Condensed Matter – 1981, eds. Nellis, W. J., Seaman, L. and Graham, R. A.. New York: American Institute of Physics Conference Proceedings 78, pp. 231235.Google Scholar
Lyzenga, G. A., Ahrens, T. J., Nellis, W. J. and Mitchell, A. C. (1982). The temperature of shock-compressed water. Journal of Chemical Physics, 76, 62826286.CrossRefGoogle Scholar
Mao, H.-K., Bell, P. M., Shaner, J. W. and Steinberg, D. J. (1978). Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49, 32763283.CrossRefGoogle Scholar
Mao, H. K. and Hemley, R. J. (1994). Ultrahigh-pressure transitions in solid hydrogen. Reviews of Modern Physics, 66, 671692.CrossRefGoogle Scholar
Mao, Z., Dorfman, S. M., Shieh, S. R., Lin, J. F., Prakapenka, V. B., et al. (2011). Equation of state of a high-pressure phase of Gd3Ga5O12. Physical Review B, 83, 054114-1054114-6.CrossRefGoogle Scholar
Marsh, S. P., ed. (1980). LASL Shock Hugoniot Data. Berkeley: University of California Press.Google Scholar
Mashimo, T., Chau, R., Zhang, Y., Kobayoshi, T., Sekine, T., et al. (2006). Transition to a virtually incompressible oxide phase at shock pressures of 120 GPa (1.2 Mbar): Gd3Ga5O12. Physical Review Letters, 96, 105504-1105504-4.CrossRefGoogle ScholarPubMed
Mattesson, T. R., Root, S., Mattsson, A. E., Shulenburger, L., Magyar, R. J. and Flicker, D. G. (2014). Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia’s Z machine. Physical Review B, 90, 184105-1184105-10.Google Scholar
McMahan, A. K. (1976). Bulletin of the American Physical Society, 21, 1303.Google Scholar
McMahon, J. M. and Ceperley, D. M. (2011). Ground-state structures of atomic metallic hydrogen. Physical Review Letters, 106, 165302-1165302-4.CrossRefGoogle ScholarPubMed
McMinis, J., Clay, R. C. III, Donghwa, L., and Morales, M. A. (2015). Molecular to atomic phase transition in hydrogen under pressure. Physical Review Letters, 114, 105305-1105305-4.CrossRefGoogle Scholar
McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. and Carter, W. J. (1970). The equation of state of solids from shock wave studies. In High-Velocity Impact Phenomena, ed. Kinslow, R.. New York: Academic, pp. 293417, 515–568.CrossRefGoogle Scholar
McQueen, R. G., Hopson, J. W. and Fritz, J. N. (1982). Optical technique for determining rarefaction wave velocities at very high pressures. Review of Scientific Instruments, 53, 245250.CrossRefGoogle Scholar
McWilliams, R. S., Dalton, D. A., Mahmood, M. F. and Goncharov, A. F. (2016). Optical properties of fluid hydrogen at the transition to the conducting state. Physical Review Letters, 116, 255501-1255501-6.CrossRefGoogle Scholar
Medvedev, A. B. (2010). Crater formation possibly associated with an ascending thermal plume. New Concepts in Global Tectonics Newsletter, 56, 8698.Google Scholar
Melosh, H. J. (1989). Impact Cratering. New York: Oxford University Press.Google Scholar
Mendelssohn, K. (1966). The Quest for Absolute Zero. New York: World University Library.Google Scholar
Mermin, N. D. and Ashcroft, N. W. (2006). Hans Bethe’s contributions to solid-state physics. International Journal of Modern Physics B, 20, 22272236.CrossRefGoogle Scholar
Meyers, M. A. (1994). Dynamic Behavior of Materials. New York: Wiley.CrossRefGoogle Scholar
Mikaelian, K. O. (1985). Richtmyer-Meshkov instabilities in stratified fluids. Physical Review A, 31, 410419.CrossRefGoogle ScholarPubMed
Militzer, B. and Ceperley, D. M. (2000). Path integral Monte Carlo calculation of the deuterium Hugoniot. Physical Review Letters, 85, 18901893.CrossRefGoogle ScholarPubMed
Mintsev, V. B. and Fortov, V. E. (2015). Transport properties of warm dense matter behind intense shock waves. Laser and Particle Beams, 33, 4150.CrossRefGoogle Scholar
Mitchell, A. C. and Nellis, W. J. (1981a). Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun. Review of Scientific Instruments, 52, 347359.CrossRefGoogle Scholar
Mitchell, A. C. and Nellis, W. J. (1981b). Shock compression of aluminum, copper, and tantalum. Journal of Applied Physics, 52, 33633374.CrossRefGoogle Scholar
Mitchell, A. C. and Nellis, W. J. (1982). Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. Journal of Chemical Physics, 76, 62736281.CrossRefGoogle Scholar
Mitchell, A. C., Nellis, W. J., Moriarty, J. A., Heinle, R. A., Tipton, R. E. and Repp, G. W. (1991). Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar). Journal of Applied Physics, 69, 29812986.CrossRefGoogle Scholar
Mochalov, M. A., Glukhodedov, V. D., Kirshanov, S. I. and Lebedeva, T. S. (2000). Electric conductivity of liquid argon, krypton and xenon under shock compression up to pressure of 90 GPa. In Shock Compression of Condensed Matter – 1999, eds. Furnish, M. D., Chhabildas, L. C. and Hixson, R. S.. New York: American Institute of Physics, pp. 983986.Google Scholar
Morales, M. A., Pierleoni, C., Schwegler, E. and Ceperley, D. M. (2010). Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proceedings of the National Academy of Sciences, 107, 1279912803.CrossRefGoogle ScholarPubMed
Mott, N. F. (1934). The resistance of liquid metals. Proceedings of the Royal Society of London. Series A, 146:857, 465472.Google Scholar
Mott, N. F. (1936). The Theory of the Properties of Metals and Alloys. New York: Dover.Google Scholar
Mott, N. F. (1972). Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philosophical Magazine, 26, 10151026.CrossRefGoogle Scholar
Motz, H. (1979). The Physics of Laser Fusion. Academic: London.Google Scholar
Nellis, W. J. (1999). Metastable solid metallic hydrogen. Philosophical Magazine B, 79, 655661.CrossRefGoogle Scholar
Nellis, W. J. (2000). Making metallic hydrogen. Scientific American, 282, 8490.CrossRefGoogle ScholarPubMed
Nellis, W. J. (2002a). In High Pressure Phenomena. ed. Hemley, R. J., Chiarotti, G. L., Bernasconi, M. and Ulivi, L.. Amsterdam: IOS Press.Google Scholar
Nellis, W. J. (2002b). Shock compression of deuterium near 100 GPa pressures. Physical Review Letters, 89, 165502-1165502-4.CrossRefGoogle ScholarPubMed
Nellis, W. J. (2003). Shock-compression of a free-electron gas. Journal of Applied Physics, 94, 272275.CrossRefGoogle Scholar
Nellis, W. J. (2005). High pressure effects in supercritical rare-gas fluids. In Electronic Excitations in Liquefied Rare Gases, eds. Schmidt, W. F. and Illenberger, E.. Stevenson Ranch, CA: American Scientific Publishers, pp. 2950.Google Scholar
Nellis, W. J. (2006a). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Reports on Progress in Physics, 69, 14791580.CrossRefGoogle Scholar
Nellis, W. J. (2006b). Sensitivity and accuracy of Hugoniot measurements at ultrahigh pressures. In Shock Compression of Condensed Matter – 2005, eds. Furnish, M. D., Elert, M., Russell, T. P. and White, C. T.. Melville, NY: American Institute of Physics, pp. 115118.Google Scholar
Nellis, W. J. (2007a). Discovery of metallic fluid hydrogen at 140 GPa and ten-fold compressed liquid density. Review of High Pressure Science and Technology (Japan), 17, 328333.CrossRefGoogle Scholar
Nellis, W. J. (2007b). Adiabat-reduced isotherms at 100 GPa pressures. High Pressure Research, 27, 393407.CrossRefGoogle Scholar
Nellis, W. J. (2010). P. W. Bridgman’s contributions to the foundations of shock compression of condensed matter. Journal of Physics: Conference Series, 215, 012144-1012144-4.Google Scholar
Nellis, W. J. (2012). Possible magnetic fields of super Earths generated by convecting, conducting oxides. American Institute of Physics Conference Proceedings, 1426, 863866.Google Scholar
Nellis, W. J. (2013). Wigner and Huntington: The long quest for metallic hydrogen. High Pressure Research, 33, 369376.CrossRefGoogle Scholar
Nellis, W. J. (2015a). Dynamic high pressure: Why it makes metallic fluid hydrogen. Journal of Physics and Chemistry of Solids, 84, 4956.CrossRefGoogle Scholar
Nellis, W. J. (2015b). The unusual magnetic fields of Uranus and Neptune. Modern Physics Letters B, 29, 1430018-11430018-29.CrossRefGoogle Scholar
Nellis, W. J. (2017). Magnetic fields of Uranus and Neptune: Metallic fluid hydrogen. In Shock Compression of Condensed Matter (the Proceedings of the 19th Biennial APS Conference on Shock Compression of Condensed Matter), eds. Germann, T. G., Chau, R. and Sewell, T. D..CrossRefGoogle Scholar
Nellis, W. J. and Mitchell, A. C. (1980). Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar). Journal of Chemical Physics, 73, 61376145.CrossRefGoogle Scholar
Nellis, W. J., Mitchell, A. C., Ross, M. and van Thiel, M. (1980). Shock compression of liquid methane and the principle of corresponding states. In High Pressure Science and Technology Vol. 2, eds. Vodar, B. and Marteau, Ph.. Oxford: Pergamon, pp. 10431047.Google Scholar
Nellis, W. J., Ree, F. H., van Thiel, M. and Mitchell, A. C. (1981). Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar). Journal of Chemical Physics, 75, 30553063.CrossRefGoogle Scholar
Nellis, W. J., Mitchell, A. C., van Thiel, M., Devine, G. J., Trainor, R. J. and Brown, N. (1983). Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar). Journal of Chemical Physics, 79, 14801486.CrossRefGoogle Scholar
Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J., Governo, G. K., Ross, M. and Young, D. A. (1984a). Shock compression of liquid helium to 56 GPa (560 kbar). Physical Review Letters, 53, 12481251.CrossRefGoogle Scholar
Nellis, W. J., Holmes, N. C., Mitchell, A. C. and van Thiel, M. (1984b). Phase transition in fluid nitrogen at high densities and temperatures. Physical Review Letters, 53, 16611664.CrossRefGoogle Scholar
Nellis, W. J., Ree, F. H., Trainor, R. J., Mitchell, A. C. and Boslough, M. B. (1984c). Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar). Journal of Chemical Physics, 80, 27892799.CrossRefGoogle Scholar
Nellis, W. J., Hamilton, D. C., Holmes, N. C., Radousky, H. B., Ree, F. H., Mitchell, A. C. and Nicol, M. (1988a). The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science, 240,779781.CrossRefGoogle ScholarPubMed
Nellis, W. J., Maple, M. B. and Geballe, T. H. (1988b). Synthesis of metastable superconductors by high dynamic pressure. In SPIE Vol. 878 Multifunctional Materials, ed. Gunshor, R. L.. Bellingham: Society of Photo-Optical Instrumentation Engineers, pp. 29.CrossRefGoogle Scholar
Nellis, W. J., Radousky, H. B., Hamilton, D. C., Mitchell, A.C., Holmes, N. C., Christianson, K. B. and van Thiel, M. (1991a). Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition. Journal of Chemical Physics, 94, 22442257.CrossRefGoogle Scholar
Nellis, W. J., Mitchell, A. C., Ree, F. H., Ross, M., Holmes, N. C., Trainor, R. J. and Erskine, D. J. (1991b). Equation of state of shock-compressed liquids: Carbon dioxide and air. Journal of Chemical Physics, 95, 52685272.CrossRefGoogle Scholar
Nellis, W. J., Mitchell, A. C., McCandless, P. C., Erskine, D. J. and Weir, S. T. (1992). Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Physical Review Letters, 68, 2937-1941.CrossRefGoogle ScholarPubMed
Nellis, W. J., Ross, M. and Holmes, N. C. (1995). Temperature measurements of shock-compressed liquid hydrogen: Implications for the interior of Jupiter. Science, 269, 12491252.CrossRefGoogle ScholarPubMed
Nellis, W. J., Weir, S. T. and Mitchell, A. C. (1996). Metallization and electrical conductivity of hydrogen in Jupiter. Science, 273, 936938.CrossRefGoogle ScholarPubMed
Nellis, W. J., Holmes, N. C., Mitchell, A. C., Hamilton, D. C. and Nicol, M. (1997). Equation of state and electrical conductivity of “synthetic Uranus,” a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). Journal of Chemical Physics, 107, 90969100.CrossRefGoogle Scholar
Nellis, W. J., Louis, A. A. and Ashcroft, N. W. (1998). Metallization of fluid hydrogen. Philosophical Transactions of the Royal Society, 356, 119138.CrossRefGoogle Scholar
Nellis, W. J., Weir, S. T. and Mitchell, A. C. (1999). Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Physical Review B, 59, 34343449.CrossRefGoogle Scholar
Nellis, W. J., Hamilton, D. C. and Mitchell, A. C. (2001). Electrical conductivities of methane, benzene and polybutene shock-compressed to 60 GPa (600 kbar). Journal of Chemical Physics, 115, 10151019.CrossRefGoogle Scholar
Nellis, W. J., Mitchell, A. C. and Young, D. A. (2003). Equation-of-state measurements for aluminum, copper and tantalum. Journal of Applied Physics, 93, 304310.CrossRefGoogle Scholar
Norman, G., Saitov, I., Stegailov, V. and Zhilyaev, P. (2013). Atomistic modeling and simulation of warm dense matter. Conductivity and Reflectivity. Contributions to Plasma Physics, 53, 300310.CrossRefGoogle Scholar
Norman, G., Saitov, I. and Stegailov, V. (2015). Plasma-plasma and liquid-liquid first-order phase transitions. Contributions to Plasma Physics, 55, 215221.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A and Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139142.CrossRefGoogle Scholar
Ohta, K., Ichimaru, K., Einaga, M., Kawaguchi, S., Shimizu, K., Matsuoka, T., Hirao, N. and Ohishi, Y. (2015). Phase boundary of hot dense fluid hydrogen. Scientific Reports, 5, 16560-116560-7.CrossRefGoogle ScholarPubMed
Ozaki, N., Nellis, W. J., Mashimo, T., Ramzan, M., Ahuja, R., Kaewmaraya, T., Kimura, T., Knudson, M., Miyanishi, K., Sakawa, Y., Sano, T. and Kodama, R. (2016). Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Scientific Reports, 6, 26000-126000-9.CrossRefGoogle ScholarPubMed
Pfaffenzeller, O. and Hohl, D. (1997). Structure and electrical conductivity in fluid high-density hydrogen. Journal of Physics: Condensed Matter, 9, 1102311034.Google Scholar
Piermarini, G. and Block, S. (1958). The diamond anvil pressure cell. Available at www.nvlpubs.nist.gov/nistpubs/sp958-lide/100-103.pdfGoogle Scholar
Podolak, M., Hubbard, W. B. and Stevenson, D. J. (1991). In Uranus, eds. Bergstrahl, J. T., Miner, E. D. and Matthews, M. S.. Tuscon: University of Arizona Press, pp. 2961.CrossRefGoogle Scholar
Politzer, H. D. (1973). Reliable perturbative results for strong interactions. Physical Review Letters, 30, 13461349.CrossRefGoogle Scholar
Price, M. C., Solscheid, C., Burchell, M. J., Josse, L., Adamek, N. and Cole, M. J. (2013). Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km/s. Icarus, 222, 263272.CrossRefGoogle Scholar
Radousky, H. B., Nellis, W. J., Ross, M., Hamilton, D. C., and Mitchell, A. C. (1986). Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Physical Review Letters, 57, 24192422.CrossRefGoogle ScholarPubMed
Radousky, H. B., Mitchell, A. C. and Nellis, W. J. (1990). Shock temperature measurements of planetary ices: NH3, CH4, and “synthetic Uranus”. Journal of Chemical Physics, 93, 82358239.CrossRefGoogle Scholar
Ragan, C. E. III (1984). Shock wave experiments at threefold compression. Physical Review A, 29, 13911402.CrossRefGoogle Scholar
Rankine, W. J. M. (1870). On the thermodynamic theory of waves of finite longitudinal disturbance. Philosophical Transactions of the Royal Society of London, 160, 277288.Google Scholar
Ree, F. H. (1979). Systematics of high-pressure and high-temperature behavior of hydrocarbons. Journal of Chemical Physics, 70, 974983.CrossRefGoogle Scholar
Rice, M. H., McQueen, R. G. and Walsh, J. M. (1958). Compression of solids by strong shock waves. Solid State Physics, 6, 163.CrossRefGoogle Scholar
Richardson, C. F. and Ashcroft, N. W. (1997). High temperature superconductivity in metallic hydrogen: Electron-electron enhancements. Physical Review Letters, 78, 18121.CrossRefGoogle Scholar
Riemann, B. (1860). Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-physikalische Klasse, 8, 43.Google Scholar
Root, S., Magyar, R. J., Carpenter, J. H., Hanson, D. L. and Mattsson, T. R. (2010). Shock compression of a fifth period element: liquid xenon to 840 GPa. Physical Review Letters, 105, 085501-1085501-4.CrossRefGoogle ScholarPubMed
Ross, M. (1996). Insulator-metal transition of fluid molecular hydrogen. Physical Review B, 54, R9589R9591.CrossRefGoogle ScholarPubMed
Ross, M. (1998). Linear-mixing model for shock-compressed liquid deuterium. Physical Review B, 58, 669677.CrossRefGoogle Scholar
Ross, M., Nellis, W. and Mitchell, . (1979). Shock-wave compression of liquid argon to 910 kbar. Chemical Physics Letters, 68, 532535.CrossRefGoogle Scholar
Ross, M. and Ree, F. H. (1980). Repulsive forces of simple molecules and mixtures at high density and temperature. Journal of Chemical Physics, 73, 61466152.CrossRefGoogle Scholar
Ross, M., Ree, F. H. and Young, D. A. (1983). The equation of state of molecular hydrogen at very high density. Journal of Chemical Physics, 79, 14871494.CrossRefGoogle Scholar
Rossler, U. (1976). Formation and trapping of electron excitations in neon cryocrystals. In Rare Gas Solids, Vol. I. eds. Klein, M. L. and Venables, J. A.. New York: Academic, p. 545.Google Scholar
Rozsnyai, B. F., Albritton, J. R., Young, D. A., Sonnad, V. N. and Liberman, D. A. (2001). Theory and experiment for ultrahigh pressure shock Hugoniots. Physics Letters A, 291, 226231.CrossRefGoogle Scholar
Ruoff, A. L. (1967). Linear shock-velocity-particle-velocity relationship. Journal of Applied Physics, 38, 49764980.CrossRefGoogle Scholar
Ruoff, A. L., Xia, H., Luo, H. and Vohra, Y. K. (1990). Miniaturization techniques for obtaining static pressures comparable to the pressures at the center of the earth: X-ray diffraction at 416 GPa. Review of Scientific Instruments, 61, 38303833.CrossRefGoogle Scholar
Ruzmaikin, A. A. and Starchenko, S. V. (1991). On the origin of Uranus and Neptune magnetic fields. Icarus, 93, 8287.CrossRefGoogle Scholar
Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J. C., Nomade, S., et al. (2014). Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal. Geophysical Journal International, 199, 11101124.CrossRefGoogle Scholar
Saitov, I. (2016). Density functional theory for dielectric properties of warm dense matter. Molecular Physics, 114, 446452.Google Scholar
Schmidt, W. F. and Illenberger, E., eds. (2005). Electronic Excitations in Liquefied Rare Gases. Stevenson Ranch, CA: American Scientific Publishers.Google Scholar
Schott, G. L., Shaw, M. S. and Johnson, J. D. (1985). Shocked states from initially liquid oxygen-nitrogen systems. Journal of Chemical Physics, 82, 42644375.CrossRefGoogle Scholar
Schwager, B., Chudinovskikh, L. Gavriliuk, A. and Boehler, R. (2004). Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. Journal of Physics: Condensed Matter, 16, S1177S1179.Google Scholar
Schwarzschild, B. (2003). Inertial confinement fusion driven by pulsed power yields thermonuclear neutrons. Physics Today, 56(7), 1921.Google Scholar
Sekine, T. (2000). Shock wave diagnostics of sp2 and van der Waals bonding of carbon. In Manghnani, M. H., Nellis, W. J. and Nicol, M. F., editors, Science and Technology of High Pressure, Proceedings of AIRAPT-17. Hyderabad: Universities Press, pp. 229232.Google Scholar
Sekine, T. and Kobayashi, T. (1999). Shock-induced process during compression of graphite perpendicular to the c-axis. Bulletin of the American Physical Society, Conference on Shock Compression of Condensed Matter, abstract #L4.06.Google Scholar
Smith, R. F., Eggert, J. H., Jeanloz, R., Duffy, T. S., Braun, D. G., et al. (2014). Ramp compression of diamond to 5 terapascals. Nature, 511, 330333.CrossRefGoogle ScholarPubMed
Stanley, S. and Bloxham, J. (2004). Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature, 428, 151153.CrossRefGoogle ScholarPubMed
Stanley, S. and Bloxham, J. (2006). Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus, 184, 556572.CrossRefGoogle Scholar
Starchenko, S. V. (1993). Non-axisymmetric magnetic structure generation in planets sun and galaxies. Proceedings of the International Astronomical Union. DOI: 10.1007/978-94-011–0772-3_48CrossRefGoogle Scholar
Stevenson, D. J. (1982). Interiors of the Giant Planets. Annual Review of Earth and Planetary Science, 10, 257295.CrossRefGoogle Scholar
Stevenson, D. J. (1983). Planetary magnetic fields. Reports on Progress in Physics, 46, 555620.CrossRefGoogle Scholar
Stevenson, D. J. (1998). States of matter in massive planets. Journal of Physics: Condensed Matter, 10, 1122711234.Google Scholar
Stevenson, D. J. (2010). Planetary magnetic fields: Achievements and prospects. Space Science Reviews, 152, 651664.CrossRefGoogle Scholar
Stewart, J. W. (1956). Compression of solidified gases to 20,000 kg/cm2 at low temperature. Journal of Physics and Chemistry of Solids, 1, 146158.CrossRefGoogle Scholar
Stewart, S. T., Seifter, A. and Obst, A. (2008). Shocked H2O ice: Thermal emission measurements and the criteria for phase changes during impact events. Geophysical Research Letters, 35, L23203-1L23203-4.CrossRefGoogle Scholar
Stokes, E. E. (1848). On a difficulty in the theory of sound. Philosophical Magazine, 33, 349356.Google Scholar
Strutt, J. W., Rayleigh, Lord. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society, 14, 170177.Google Scholar
Strutt, J. W., Rayleigh, Lord. (1910). Aerial plane waves of finite amplitude. Proceedings of the Royal Society of London, 84, 247284.Google Scholar
Subramanian, N., Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. and Hemley, R. J. (2011). Bonding changes in hot fluid hydrogen at megabar pressures. Proceedings of the National Academy of Sciences, 108, 60146019.CrossRefGoogle ScholarPubMed
Tamblyn, I. and Bonev, S. A. (2010a). Structure and phase boundaries of compressed liquid hydrogen. Physical Review Letters, 104, 065702.CrossRefGoogle ScholarPubMed
Tamblyn, I. and Bonev, S. A. (2010b). A note on the metallization of compressed liquid hydrogen. Journal of Chemical Physics, 132, 134503.CrossRefGoogle ScholarPubMed
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London, Ser. A, 201, 192196.Google Scholar
Thomson, W. (Lord Kelvin). (1848). On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Cambridge Philosophical Society, Proceedings for June 5, 100–106.Google Scholar
Trainor, R. J. and Lee, Y. T. (1982). Analytic models for design of laser-generated shock-wave experiments. Physics of Fluids, 25, 18981907.CrossRefGoogle Scholar
Trunin, R. F. (1998). Shock Compression of Condensed Materials. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Trunin, R. F., ed. (2001). Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter. Sarov: Russian Federal Nuclear Center-VNIIEF.Google Scholar
Trunin, R. F., Boriskov, G. V., Bykov, A. I., Medvedev, A. B., Simakov, G. V. and Shuikin, A. N. (2008). Shock compression of liquid nitrogen at a pressure of 320 GPa. JETP Letters, 88,189191.CrossRefGoogle Scholar
Trunin, R. F., Urlin, V. D. and Medvedev, A. B. (2010). Dynamic compression of hydrogen isotopes at megabar pressures. Physics-Uspekhi, 53, 577593.CrossRefGoogle Scholar
Tubman, N. M., Liberatore, E., Pierleoni, C., Holzmann, M. and Ceperley, D. M. (2015). Molecular-atomic transition along the deuterium Hugoniot curve with coupled electron-ion Monte Carlo simulations. Physical Review Letters, 115, 045301.CrossRefGoogle ScholarPubMed
Urlin, V. D., Mochalov, M.A. and Mikhailova, O. L. (1997). Quasi-isentropic compression of liquid argon up to 500 GPa. JETP, 84, 11451148.CrossRefGoogle Scholar
Urtiew, P. A. (1974). Effect of shock loading on transparency of sapphire crystals. Journal of Applied Physics, 45, 34903493.CrossRefGoogle Scholar
U.S. National Aeronautics and Space Agency Voyager Program. http://www.nasa.gov/voyager.Google Scholar
van Thiel, M. and Alder, B. J. (1966a). Shock compression of liquid hydrogen. Molecular Physics, 10, 427435.CrossRefGoogle Scholar
van Thiel, M. and Alder, B. J. (1966b). Shock compression of Argon. Journal of Chemical Physics, 44, 10561065.CrossRefGoogle Scholar
van Thiel, M., Hord, L. B., Gust, W. H., Mitchell, A. C., D’Addario, M., et al. (1974). Shock compression of deuterium to 900 Kbar. Physics of Earth and Planetary Interiors, 9, 5777.CrossRefGoogle Scholar
Vargaftik, N. B. (1975). Handbook of Physical Properties of Liquids and Gases (Second edition). New York: Hemisphere.CrossRefGoogle Scholar
Von Baeyer, H. C. (1993). The Fermi Solution: Essays on Science. New York: Random House.Google Scholar
Von Neumann, J. and Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21, 232237.CrossRefGoogle Scholar
Wang, Y., Ahuja, R. and Johansson, B. (2002). Reduction of shock-wave data with mean-field potential approach. Journal of Applied Physics, 92, 66166620.CrossRefGoogle Scholar
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996a). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Physical Review Letters, 76, 18601863.CrossRefGoogle ScholarPubMed
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996b). Electrical resistivity of single-crystal Al2O3 shock-compressed in the pressure range 91-220 GPa (0.91-2.20 Mbar).CrossRefGoogle Scholar
Wigner, E. and Huntington, H. B. (1935). On the possibility of a metallic modification of hydrogen. Journal of Chemical Physics, 3, 764770.CrossRefGoogle Scholar
Wilkins, M. L. (1999). Computer Simulation of Dynamic Phenomena. Berlin: Springer.CrossRefGoogle Scholar
Yakushev, V. V., Postnov, V. I., Fortov, V. E. and Yakysheva, T. I. (2000). Electrical conductivity of water during quasi-isentropic compression to 130 GPa. Journal of Experimental and Theoretical Physics, 90, 617622.CrossRefGoogle Scholar
Zaghoo, M., Salamat, A. and Silvera, I. F. (2016). Evidence of a first-order phase transition to metallic hydrogen. Physical Review B, 93, 155128.CrossRefGoogle Scholar
Zeldovich, Ya. B. and Raizer, Yu. P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Volumes I and II. New York: Academic.Google Scholar
Zhang, D.-Y., Liu, F.-S., Hao, G.-Y. and Sun, Y.-H. (2007). Shock-induced emission from Sapphire in High-pressure phase of Rh2O3 (II) structure. Chinese Physics Letters, 24, 23412344.Google Scholar
Zhernokhletov, M. V., Simakov, G. V., Sutulov, Yu. N. and Trunin, R. F. (1995). Isentropic compression of matter by a pulsed magnetic field. High Temperature, 33, 36272.Google Scholar
Zhernokhletov, M. V. (2005). Methods for Study of Substance Properties under Intensive Dynamic Loading. New York: Springer-Velar.Google Scholar
Zhou, X., Li, J., Nellis, W. J., Wang, X., Li, J., et al. (2011). Pressure-dependent Hugoniot elastic limit of Gd3Ga5O12 single crystals. Journal of Applied Physics, 109, 083536.CrossRefGoogle Scholar
Zhou, X., Nellis, W. J., Li, J., Li, J., Zhao, W., et al. (2015). Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa. Journal of Applied Physics, 118, 055903.CrossRefGoogle Scholar
Zubarev, V. N. and Telegin, G. S. (1962). The impact compressibility of liquid nitrogen and solid carbon dioxide. Soviet Physics Doklady, 142, 309312.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • William J. Nellis, Harvard University, Massachusetts
  • Book: Ultracondensed Matter by Dynamic Compression
  • Online publication: 04 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781139031981.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • William J. Nellis, Harvard University, Massachusetts
  • Book: Ultracondensed Matter by Dynamic Compression
  • Online publication: 04 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781139031981.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • William J. Nellis, Harvard University, Massachusetts
  • Book: Ultracondensed Matter by Dynamic Compression
  • Online publication: 04 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781139031981.012
Available formats
×