Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-03T10:36:37.972Z Has data issue: false hasContentIssue false

Chapter 31 - Tyrosinemia in Children

from Section IV - Metabolic Liver Disease

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access

Summary

Hepatorenal tyrosinemia1 is a severe inborn error of metabolism that can affect numerous organs, particularly the liver, kidneys, and peripheral nerves. In the first accounts of patients with features typical of tyrosinemia in the 1950s, almost all died of liver disease in infancy and childhood [1]. However, tyrosinemia is highly variable and rare case reports described surviving affected adults. Since the identification of tyrosinemia, its clinical course has been improved successively by the introduction of diet therapy, neonatal screening, liver transplantation and treatment with nitisinone (NTBC, 2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione) [2]. Tyrosinemia raises questions in liver biology, biochemical and population genetics, cell biology, oncology, and public health.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mitchell, GA, Grompe, M, Lambert, M, Tanguay, RM. (2014). Hypertyrosinemia. In: Beaudet, AL, Vogelstein, B, Kinzler, KW, et al., (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease. New York: The McGraw-Hill Companies, Inc.Google Scholar
Lock, EA. From weed killer to wonder drug. Adv Exp Med Biol 2017;959:175–85.CrossRefGoogle ScholarPubMed
Morrow, G, Tanguay RM:Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1. Adv Exp Med Biol.2017; 959:9–21.Google Scholar
Lindblad, B, Lindstedt, S, Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 1977;74(10):4641–5.CrossRefGoogle ScholarPubMed
Kvittingen, EA, Jellum, E, Stokke, O. Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 1981;115(3):311–19.Google Scholar
Russo, P, O’Regan, S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 1990;47(2):317–24.Google Scholar
Jorquera, R, Tanguay, RM. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 1997;232(1):42–8.Google Scholar
Kvittingen, EA, Rootwelt, H, Brandtzaeg, P, Bergan, A, Berger, R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J Clin Invest 1993;91(4):1816–21.Google Scholar
Mitchell, G, Larochelle, J, Lambert, M, Michaud, J, Grenier, A, Ogier, H, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med 1990;322(7):432–7.Google Scholar
Elgilani, F, Mao, SA, Glorioso, JM, Yin, M, Iankov, ID, Singh, A, et al. Chronic phenotype characterization of a large-animal model of hereditary tyrosinemia type 1. Am J Pathol 2017;187(1):3341.CrossRefGoogle ScholarPubMed
Li, L, Zhang, Q, Yang, H, Zou, Q, Lai, C, Jiang, F, et al. Fumarylacetoacetate hydrolase knock-out rabbit model for hereditary tyrosinemia type 1. J Biol Chem 2017;292(11):4755–63.Google ScholarPubMed
Grompe, M, Al-Dhalimy, M, Finegold, M, Ou, CN, Burlingame, T, Kennaway, NG, et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 1993;7(12A):2298–307.Google Scholar
Al-Dhalimy, M, Overturf, K, Finegold, M, Grompe, M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab 2002;75(1):3845.CrossRefGoogle Scholar
Yin, H, Song, CQ, Dorkin, JR, Zhu, LJ, Li, Y, Wu, Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016;34(3):328–33.CrossRefGoogle ScholarPubMed
De Braekeleer, M, Larochelle, J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet 1990;47(2):302–7.Google Scholar
Kvittingen, EA. Hereditary tyrosinemia type I–an overview. Scand J Clin Lab Invest Suppl 1986;184:2734.Google Scholar
Morrow, G, Angileri, F, Tanguay, RM. Molecular aspects of the FAH mutations involved in HT1 disease. Adv Exp Med Biol 2017;959:2548.Google Scholar
Ploos van Amstel, JK, Bergman, AJ, van Beurden, EA, Roijers, JF, Peelen, T, van den Berg, IE, et al. Hereditary tyrosinemia type 1: novel missense, nonsense and splice consensus mutations in the human fumarylacetoacetate hydrolase gene; variability of the genotype-phenotype relationship. Hum Genet 1996;97(1):51–9.Google Scholar
Mitchell, GA, Yang, H. Remaining challenges in the treatment of tyrosinemia from the clinician’s viewpoint. Adv Exp Med Biol 2017;959:205–13.Google Scholar
Cassiman, D, Zeevaert, R, Holme, E, Kvittingen, EA, Jaeken, J. A novel mutation causing mild, atypical fumarylacetoacetase deficiency (tyrosinemia type I): a case report. Orphanet J Rare Dis 2009;4:28.Google Scholar
Yang, H, Al-Hertani, W, Cyr, D, Laframboise, R, Parizeault, G, Wang, SP, et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J Med Genet 2017;54(4):241–7.Google Scholar
Yang, H, Rossignol, F, Cyr, D, Laframboise, R, Wang, SP, Soucy, JF, et al. Mildly elevated succinylacetone and normal liver function in compound heterozygotes with pathogenic and pseudodeficient FAH alleles. Mol Genet Metab Rep 2018;14:55–8.Google Scholar
Jakobs, C, Dorland, L, Wikkerink, B, Kok, RM, de Jong, AP, Wadman, SK. Stable isotope dilution analysis of succinylacetone using electron capture negative ion mass fragmentography: an accurate approach to the pre- and neonatal diagnosis of hereditary tyrosinemia type I. Clin Chim Acta 1988;171(2–3):223–31.CrossRefGoogle Scholar
Blackburn, PR, Hickey, RD, Nace, RA, Giama, NH, Kraft, DL, Bordner, AJ, et al. Silent tyrosinemia type I without elevated tyrosine or succinylacetone associated with liver cirrhosis and hepatocellular carcinoma. Hum Mutat 2016;37(10):1097–105.Google Scholar
Kvittingen, EA, Brodtkorb, E. The pre- and post-natal diagnosis of tyrosinemia type I and the detection of the carrier state by assay of fumarylacetoacetase. Scand J Clin Lab Invest Suppl 1986;184:3540.Google Scholar
Georgouli, H, Schulpis, KH, Michelakaki, H, Kaltsa, M, Sdogou, T, Kossiva, L. Persistent coagulopathy during Escherichia coli sepsis in a previously healthy infant revealed undiagnosed tyrosinaemia type 1. BMJ Case Rep 2010;2010: bcr0720103150.CrossRefGoogle Scholar
Castilloux, J, Laberge, AM, Martin, SR, Lallier, M, Marchand, V. “Silent” tyrosinemia presenting as hepatocellular carcinoma in a 10-year-old girl. J Pediatr Gastroenterol Nutr 2007;44(3):375–7.Google Scholar
Shanmugam, NP, Bansal, S, Greenough, A, Verma, A, Dhawan, A. Neonatal liver failure: aetiologies and management–state of the art. Eur J Pediatr 2011;170(5):573–81.Google Scholar
Rice, DN, Houston, IB, Lyon, IC, Macarthur, BA, Mullins, PR, Veale, AM, et al. Transient neonatal tyrosinaemia. J Inherit Metab Dis 1989;12(1):1322.Google Scholar
Milan, AM, Hughes, AT, Davison, AS, Devine, J, Usher, J, Curtis, S, et al. The effect of nitisinone on homogentisic acid and tyrosine: a two-year survey of patients attending the National Alkaptonuria Centre, Liverpool. Ann Clin Biochem 2017;54(3):323–30.Google Scholar
Larochelle, J, Prive, L, Belanger, M, Belanger, L, Tremblay, M, Claveau, JC, et al. Hereditary tyrosinemia. I. Clinical and biological study of 62 cases. Pediatrie 1973;28(1):518.Google Scholar
Paradis, K, Weber, A, Seidman, EG, Larochelle, J, Garel, L, Lenaerts, C, et al. Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet 1990;47(2):338–42.Google Scholar
Mieles, LA, Esquivel, CO, Van Thiel, DH, Koneru, B, Makowka, L, Tzakis, AG, et al. Liver transplantation for tyrosinemia. A review of 10 cases from the University of Pittsburgh. Dig Dis Sci 1990;35(1):153–7.Google Scholar
Weinberg, AG, Mize, CE, Worthen, HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976;88(3):434–8.Google Scholar
Seda Neto, J, Leite, KM, Porta, A, Fonseca, EA, Feier, FH, Pugliese, R, et al. HCC prevalence and histopathological findings in liver explants of patients with hereditary tyrosinemia type 1. Pediatr Blood Cancer 2014;61(9):1584–9.CrossRefGoogle ScholarPubMed
Nobili, V, Jenkner, A, Francalanci, P, Castellano, A, Holme, E, Callea, F, et al. Tyrosinemia type 1: metastatic hepatoblastoma with a favorable outcome. Pediatrics 2010;126(1):e235–8.Google Scholar
Suchy, FJ, Sokol, RJ, Balistreri, WF. (2014). Liver Disease in Children, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Baber, MD. A case of congenital cirrhosis of the liver with renal tubular defects akin to those in the Fanconi syndrome. Arch Dis Child 1956;31(159):335–9.Google Scholar
Tuchman, M, Freese, DK, Sharp, HL, Ramnaraine, ML, Ascher, N, Bloomer, JR. Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation. J Pediatr 1987;110(3):399403.Google Scholar
Edwards, MA, Green, A, Colli, A, Rylance, G. Tyrosinaemia type I and hypertrophic obstructive cardiomyopathy. Lancet 1987;1(8547):1437–8.Google Scholar
Dubois, J, Garel, L, Patriquin, H, Paradis, K, Forget, S, Filiatrault, D, et al. Imaging features of type 1 hereditary tyrosinemia: a review of 30 patients. Pediatr Radiol 1996;26(12):845–51.CrossRefGoogle ScholarPubMed
Shteyer, E, Simanovsky, N, Koplewitz, B, Korman, SH. Multiple hepatic lesions in a girl with tyrosinemia: not always hepatocellular carcinoma. J Pediatr 2011;158(3):513–e1.Google Scholar
Crone, J, Moslinger, D, Bodamer, OA, Schima, W, Huber, WD, Holme, E, et al. Reversibility of cirrhotic regenerative liver nodules upon NTBC treatment in a child with tyrosinaemia type I. Acta Paediatr 2003;92(5):625–8.Google Scholar
Parikh, T, Drew, SJ, Lee, VS, Wong, S, Hecht, EM, Babb, JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246(3):812–22.Google Scholar
Yu, JS, Walker-Smith, JA, Burnard, ED. Neonatal hepatitis in premature infants simulating hereditary tyrosinosis. Arch Dis Child 1971;46(247):306–9.Google Scholar
Dehner, LP, Snover, DC, Sharp, HL, Ascher, N, Nakhleh, R, Day, DL. Hereditary tyrosinemia type I (chronic form): pathologic findings in the liver. Hum Pathol 1989;20(2):149–58.Google Scholar
Tremblay, M, Belanger, L, Larochelle, J, Prive, L, Gagnon, PM. Hereditary tyrosinemia: examination of the liver by electron microscopy of hepatic biopsies: observation of 7 cases. Union Med Can 1977;106(7):1014–16.Google Scholar
Jevtic, MM, Thorp, FK, Hruban, Z. Hereditary tyrosinemia with hyperplasia and hypertrophy of juxtaglomerular apparatus. Am J Clin Pathol 1974;61(3):423–37.Google Scholar
Kvittingen, EA, Talseth, T, Halvorsen, S, Jakobs, C, Hovig, T, Flatmark, A. Renal failure in adult patients with hereditary tyrosinaemia type I. J Inherit Metab Dis 1991;14(1):5362.Google Scholar
Lindberg, T, Nilsson, KO, Jeppsson, JO. Hereditary tyrosinaemia and diabetes mellitus. Acta Paediatr Scand 1979;68(4):619–20.Google Scholar
Scott, CR. The genetic tyrosinemias. Am J Med Genet C Semin Med Genet 2006;142C(2):121–6.Google Scholar
de Laet, C, Dionisi-Vici, C, Leonard, JV, McKiernan, P, Mitchell, G, Monti, L, et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 2013;8:8.Google Scholar
Chinsky, JM, Singh, R, Ficicioglu, C, van Karnebeek, CDM, Grompe, M, Mitchell, G, et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017;19(12). doi: 10.1038/gim.2017.101CrossRefGoogle Scholar
Quebec, NSG, Alvarez, F, Atkinson, S, Bouchard, M, Brunel-Guitton, C, Buhas, D, et al. The Quebec NTBC Study. Adv Exp Med Biol 2017;959:187–95.Google Scholar
Donlon, J, Sarkissian, C, Levy, H, Scriver, CR. (2014). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In Beaud, AL, Vogelstein, B, Kinzler, KW, et al., (Eds.). The Online Metabolic and Molecular Bases of Inherited Disease. New York: The McGraw-Hill Companies, Inc.Google Scholar
Larochelle, J, Alvarez, F, Bussieres, JF, Chevalier, I, Dallaire, L, Dubois, J, et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Quebec. Mol Genet Metab 2012;107(1–2):4954.Google Scholar
Lock, EA, Gaskin, P, Ellis, MK, Provan, WM, Robinson, M, Smith, LL, et al. Tissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1–3-dione (NTBC): effect on enzymes involved in tyrosine catabolism and relevance to ocular toxicity in the rat. Toxicol Appl Pharmacol 1996;141(2):439–47.Google Scholar
Ahmad, S, Teckman, JH, Lueder, GT. Corneal opacities associated with NTBC treatment. Am J Ophthalmol 2002;134(2):266–8.CrossRefGoogle ScholarPubMed
van Ginkel, WG, Jahja, R, Huijbregts, SCJ, van Spronsen, FJ. Neurological and neuropsychological problems in tyrosinemia type I patients. Adv Exp Med Biol 2017;959:111–22.CrossRefGoogle ScholarPubMed
Hillgartner, MA, Coker, SB, Koenig, AE, Moore, ME, Barnby, E, MacGregor, GG. Tyrosinemia type I and not treatment with NTBC causes slower learning and altered behavior in mice. J Inherit Metab Dis 2016;39(5):673–82.Google Scholar
Arnon, R, Annunziato, R, Miloh, T, Wasserstein, M, Sogawa, H, Wilson, M, et al. Liver transplantation for hereditary tyrosinemia type I: analysis of the UNOS database. Pediatr Transplant 2011;15(4):400–5.Google Scholar
Rank, JM, Pascual-Leone, A, Payne, W, Glock, M, Freese, D, Sharp, H, et al. Hematin therapy for the neurologic crisis of tyrosinemia. J Pediatr 1991;118(1):136–9.Google Scholar
Jehan, P, Buchman, M, Odievre, M. Dietary management of hereditary tyrosinemia. Apropos of 7 cases. Ann Pediatr 1984;31(1):3340.Google Scholar
Calne, RY, Sells, RA, Pena, JR, Davis, DR, Millard, PR, Herbertson, BM, et al. Induction of immunological tolerance by porcine liver allografts. Nature 1969;223(5205):472–6.Google Scholar
Herzog, D, Martin, S, Turpin, S, Alvarez, F. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation 2006;81(5):672–7.Google Scholar
Pierik, LJ, van Spronsen, FJ, Bijleveld, CM, van Dael, CM. Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 2005;28(6):871–6.Google Scholar
McKiernan, P. Liver transplantation for hereditary tyrosinaemia type 1 in the United Kingdom. Adv Exp Med Biol 2017;959:8591.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×