Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T15:24:07.928Z Has data issue: false hasContentIssue false

Section F - Impact of Gender-affirming Hormonal Therapy on Genital Organs

Published online by Cambridge University Press:  22 December 2022

Mick van Trotsenburg
Affiliation:
Sigmund Freud PrivatUniversität, Wien
Rixt A. C. Luikenaar
Affiliation:
Rebirth Health Center, Utah
Maria Cristina Meriggiola
Affiliation:
Università di Bologna
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Context, Principles and Practice of TransGynecology
Managing Transgender Patients in ObGyn Practice
, pp. 232 - 249
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Fritz, MA, Speroff, L. Clinical Gynecologic Endocrinology and Infertility. Philadelphia, PA: Lippincott Williams & Wilkins, 2012.Google Scholar
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology. ACOG practice bulletin no. 194: polycystic ovary syndrome. Obstet Gynecol 2018;131(6):e157e171. https://doi.org/10.1097/AOG.0000000000002656Google Scholar
Hembree, WC, Cohen-Kettenis, PT, Gooren, L, et al. Endocrine treatment of gender-dysphoric/gender-incongruent persons: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2017;102(11):38693903. https://doi.org/10.1210/jc.2017-01658CrossRefGoogle ScholarPubMed
Simitsidellis, I, Saunders, PTK, Gibson, DA. Androgens and endometrium: new insights and new targets. Mol Cell Endocrinol 2018;465:4860. https://doi.org/10.1016/j.mce.2017.09.022Google Scholar
Gibson, DA, Simitsidellis, I, Collins, F, Saunders, PTK. Androgens, oestrogens and endometrium: a fine balance between perfection and pathology. J Endocrinol 2020;246(3):R75R93. https://doi.org/10.1530/JOE-20-0106Google Scholar
Loverro, G, Resta, L, Dellino, M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol 2016;55(5):686691.Google Scholar
Grimstad, FW, Fowler, KG, New, EP, et al. Uterine pathology in transmasculine persons on testosterone: a retrospective multicenter case series. Am J Obstet Gynecol 2019;220(3):257.e1257.e7.CrossRefGoogle ScholarPubMed
Rose, GL, Dowsett, M, Mudge, JE, White, JO, Jeffcoate, SL. The inhibitory effects of danazol, danazol metabolites, gestrinone, and testosterone on the growth of human endometrial cells in vitro. Fertil Steril 1988;49(2):224228. https://doi.org/10.1016/s0015-0282(16)59706-4Google Scholar
Zang, H, Sahlin, L, Masironi, B, Eriksson, E, Lindén Hirschberg, A. Effects of testosterone treatment on endometrial proliferation in postmenopausal women. J Clin Endocrinol Metab 2007;92(6):21692175. https://doi.org/10.1210/jc.2006-2171CrossRefGoogle ScholarPubMed
Khalifa, MA, Toyama, A, Klein, ME, Santiago, V. Histologic features of hysterectomy specimens from female-male transgender individuals. Int J Gynecol Pathol 2019 (online). https://doi.org/10.1097/PGP.0000000000000548CrossRefGoogle Scholar
Taub, RL, Ellis, SA, Neal-Perry, G, et al. The effect of testosterone on ovulatory function in transmasculine individuals. Am J Obstet Gynecol 2020;223(2):229.e1229.e8. https://doi.org/10.1016/j.ajog.2020.01.059Google Scholar
Deutsch, MB, Bhakri, V, Kubicek, K. Effects of cross-sex hormone treatment on transgender women and men. Obstet Gynecol 2015;125(3):605610. https://doi.org/10.1097/AOG.0000000000000692CrossRefGoogle ScholarPubMed
Shim, JY, Laufer, MR, Grimstad, FW. Dysmenorrhea and endometriosis in transgender adolescents. J Pediatr Adolesc Gynecol 2020;33(5):524528. https://doi.org/10.1016/j.jpag.2020.06.001CrossRefGoogle ScholarPubMed
Grimstad, FW, Boskey, E, Grey, M. New-onset abdominopelvic pain after initiation of testosterone therapy among trans-masculine persons: a community-based exploratory survey. LGBT Health 2020;7(5):248253. https://doi.org/10.1089/lgbt.2019.0258CrossRefGoogle ScholarPubMed
James, SE, Herman, JL, Keisling, M, Mottet, L, Anafi, M. The Report of the 2015 US Transgender Survey. National Center for Transgender Equality, 2016.Google Scholar
Kanj, RV, Conard, LAE, Corathers, SD, Trotman, GE. Hormonal contraceptive choices in a clinic-based series of transgender adolescents and young adults. Int J Transgend 2019;20(4):413420. https://doi.org/10.1080/15532739.2019.1631929Google Scholar
Group TECW. Ovarian and endometrial function during hormonal contraception. Hum Reprod 2001;16(7):15271535. https://doi.org/10.1093/humrep/16.7.1527Google Scholar
Catherino, WH, Eltoukhi, HM, Al-Hendy, A. Racial and ethnic differences in the pathogenesis and clinical manifestations of uterine leiomyoma. Semin Reprod Med 2013;31(5):370379. https://doi.org/10.1055/s-0033-1348896Google Scholar

References

Nahata, L, Chen, D, Moravek, MB, et al. Understudied and under-reported: fertility issues in transgender youth—a narrative review. J Pediatr 2019;205:265271. https://doi.org/10.1016/j.jpeds.2018.09.009CrossRefGoogle ScholarPubMed
De Roo, C, Tilleman, K, T’Sjoen, G, De Sutter, P. Fertility options in transgender people. Int Rev Psychiatry 2016;28:112119. https://doi.org/10.3109/09540261.2015.1084275CrossRefGoogle ScholarPubMed
Shea, LD, Woodruff, TK, Shikanov, A. Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng 2014;16:2952. https://doi.org/10.1146/annurev-bioeng-071813-105131Google Scholar
He, X. Microfluidic encapsulation of ovarian follicles for 3D culture. Ann Biomed Eng 2017;45:16761684. https://doi.org/10.1007/s10439-017-1823-7.Google Scholar
Rimon-Dahari, N, Yerushalmi-Heinemann, L, Alyagor, L, Dekel, N. Ovarian folliculogenesis. In Piprek, RP, Ed. Molecular Mechanisms of Cell Differentiation in Gonad Development. Cham: Springer, 2016, pp. 167190. https://doi.org/10.1007/978-3-319-31973-5_7Google Scholar
Kim, SY, Kim, SK, Lee, JR, Woodruff, TK. Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women. J Gynecol Oncol 2016;27:118. https://doi.org/10.3802/jgo.2016.27.e22Google Scholar
Williams, CJ, Erickson, GF. Morphology and Physiology of the Ovary. Endotext 2012.Google Scholar
Hennet, ML, Combelles, CMH. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol 2012;56:819831. https://doi.org/10.1387/ijdb.120133ccCrossRefGoogle ScholarPubMed
Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996;17(2):121155. https://doi.org/10.1210/edrv-17-2-121CrossRefGoogle ScholarPubMed
Gougeon, A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod 1986;1:8187. https://doi.org/10.1093/oxfordjournals.humrep.a136365Google Scholar
Telfer, EE. Progress and prospects for developing human immature oocytes in vitro. Reproduction 2019;158:F45F54. https://doi.org/10.1530/REP-19-0077Google Scholar
Hawkins, SM, Matzuk, MM. Menstrual cycle: basic biology. Ann N Y Acad Sci 2008;1135:1018. https://doi.org/10.1196/annals.1429.018CrossRefGoogle ScholarPubMed
Reed, BG, Carr, BR. The Normal Menstrual Cycle and the Control of Ovulation. Endotext 2018.Google Scholar
Walters, KA, Handelsman, DJ. Role of androgens in the ovary. Mol Cell Endocrinol 2018;465:3647. https://doi.org/10.1016/j.mce.2017.06.026Google Scholar
Zhang, Y, Zhang, C, Shu, J et al. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: a systematic review and network meta-analysis. Hum Reprod Update 2020;26:247263. https://doi.org/10.1093/humupd/dmz046CrossRefGoogle ScholarPubMed
Light, AD, Obedin-Maliver, J, Sevelius, JM, Kerns, JL. Transgender men who experienced pregnancy after female-to-male gender transitioning. Obstet Gynecol 2014;124:11201127. https://doi.org/10.1097/AOG.0000000000000540Google Scholar
Krempasky, C, Harris, M, Abern, L, Grimstad, F. Contraception across the transmasculine spectrum. Am J Obstet Gynecol 2020;222:134143. https://doi.org/10.1016/j.ajog.2019.07.043Google Scholar
Irwig, MS. Testosterone treatment for transgender (trans) men. In Legato, MJ, Ed. The Plasticity of Sex. New York: Academic Press, 2020, pp. 137157. https://doi.org/10.1016/B978-0-12-815968-2.00012-8Google Scholar
Amir, H, Yaish, I, Samara, N, et al. Ovarian stimulation outcomes among transgender men compared with fertile cisgender women. J Assist Reprod Genet 2020;37:24632472. https://doi.org/10.1007/s10815-020-01902-7CrossRefGoogle ScholarPubMed
Adeleye, AJ, Cedars, MI, Smith, J, Mok-Lin, E. Ovarian stimulation for fertility preservation or family building in a cohort of transgender men. J Assist Reprod Genet 2019;36:21552161. https://doi.org/10.1007/s10815-019-01558-yGoogle Scholar
Lierman, S, Tilleman, K, Braeckmans, K, et al. Fertility preservation for trans men: frozen-thawed in vitro matured oocytes collected at the time of ovarian tissue processing exhibit normal meiotic spindles. J Assist Reprod Genet 2017;34:14491456. https://doi.org/10.1007/s10815-017-0976-5Google Scholar
De Roo, C, Lierman, S, Tilleman, K, et al. Ovarian tissue cryopreservation in female-to-male transgender people: insights into ovarian histology and physiology after prolonged androgen treatment. Reprod Biomed Online 2017;34:557566. https://doi.org/10.1016/j.rbmo.2017.03.008CrossRefGoogle ScholarPubMed
Lierman, S, Tolpe, A, De Croo, I, et al. Low feasibility of in vitro matured oocytes originating from cumulus complexes found during ovarian tissue preparation at the moment of gender-confirmation surgery and during testosterone treatment for fertility preservation in transgender men. Fertil Steril 2021;116:1068–76. https://doi.org/10.1016/j.fertnstert.2021.03.009Google Scholar
Uzelac, PS, Delaney, AA, Christensen, GL, Bohler, HC, Nakajima, ST. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertil Steril 2015;104:12581260. https://doi.org/10.1016/j.fertnstert.2015.07.1148CrossRefGoogle ScholarPubMed
Segers, I, Mateizel, I, Van Moer, E, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising ‘ex vivo’ method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet 2015;32:12211231. https://doi.org/10.1007/s10815-015-0528-9Google Scholar
Prasath, EB, Chan, ML, Wong, WH, et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient. Hum Reprod 2014;29:276278. https://doi.org/10.1093/humrep/det420Google Scholar
Moravek, MB. Gender-affirming hormone therapy for transgender men. Clin Obstet Gynecol 2018;61:687704. https://doi.org/10.1097/GRF.0000000000000398Google Scholar
Franks, S, Stark, J, Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008;14:367378. https://doi.org/10.1093/humupd/dmn015Google Scholar
Trikudanathan, S. Polycystic ovarian syndrome. Med Clin 2015;99:221235. https://doi.org/10.1016/j.mcna.2014.09.003Google Scholar
Azziz, R. Polycystic ovary syndrome. Obstet Gynecol 2018;132:321336. https://doi.org/10.1097/AOG.0000000000002698Google Scholar
Pache, TD, Chadha, S, Gooren, LJ, et al. Ovarian morphology in long‐term androgen‐treated female to male transsexuals. A human model for the study of polycystic ovarian syndrome? Histopathology 1991;19:445452. https://doi.org/10.1111/j.1365-2559.1991.tb00235.xCrossRefGoogle Scholar
Grynberg, M, Fanchin, R, Dubost, G, et al. Histology of genital tract and breast tissue after long-term testosterone administration in a female-to-male transsexual population. Reprod Biomed Online 2010;20:553558. https://doi.org/10.1016/j.rbmo.2009.12.021CrossRefGoogle Scholar
Grimstad, FW, Fowler, KG, New, EP, et al. Ovarian histopathology in transmasculine persons on testosterone: a multicenter case series. J Sex Med 2020;17:18071818. https://doi.org/10.1016/j.jsxm.2020.05.029Google Scholar
Ikeda, K, Baba, T, Noguchi, H, et al. Excessive androgen exposure in female-to-male transsexual persons of reproductive age induces hyperplasia of the ovarian cortex and stroma but not polycystic ovary morphology. Hum Reprod 2013;28:453461. https://doi.org/10.1093/humrep/des385Google Scholar
Caanen, MR, Schouten, NE, Kuijper, EA, et al. Effects of long-term exogenous testosterone administration on ovarian morphology, determined by transvaginal (3D) ultrasound in female-to-male transsexuals. Hum Reprod 2017;32:14571464. https://doi.org/10.1093/humrep/dex098CrossRefGoogle ScholarPubMed
De Roo, C, Tilleman, K, Vercruysse, C, et al. Texture profile analysis reveals a stiffer ovarian cortex after testosterone therapy: a pilot study. J Assist Reprod Genet 2019;36:18371843. https://doi.org/10.1007/s10815-019-01513-xCrossRefGoogle ScholarPubMed
Jackson-Bey, T, Colina, J, Isenberg, BC, et al. Exposure of human fallopian tube epithelium to elevated testosterone results in alteration of cilia gene expression and beating. Hum Reprod 2020;35:20862096. https://doi.org/10.1093/humrep/deaa157Google Scholar
Stenzel, AE, Moysich, KB, Ferrando, CA, Starbuck, KD. Clinical needs for transgender men in the gynecologic oncology setting. Gynecol Oncol 2020 (online). https://doi.org/10.1016/j.ygyno.2020.09.038Google Scholar
Urban, RR, Teng, NN, Kapp, DS. Gynecologic malignancies in female-to-male transgender patients: the need of original gender surveillance. Am J Obstet Gynecol 2011;204:e9e12. https://doi.org/10.1016/j.ajog.2010.12.057CrossRefGoogle Scholar
Dizon, DS, Tejada-Berges, T, Koelliker, S, et al. Ovarian cancer associated with testosterone supplementation in a female-to-male transsexual patient. Gynecol Obstet Invest 2006;62:226228. https://doi.org/10.1159/000094097Google Scholar
Hage, JJ, Dekker, JJ, Karim, RB, Verheijen, RH, Bloemena, E. Ovarian cancer in female-to-male transsexuals: report of two cases. Gynecol Oncol 2000;76:413415. https://doi.org/10.1006/gyno.1999.5720Google Scholar

References

Hadj-Moussa, M, Ohl, DA, Kuzon, WM Jr. Feminizing genital gender-confirmation surgery. Sex Med Rev 2018;6(3):457–468.e2. https://doi.org/10.1016/j.sxmr.2017.11.005.Google Scholar
van de Wijgert, JH, Borgdorff, H, Verhelst, R et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One 2014;9(8):e105998. https://doi.org/10.1371/journal.pone.0105998.Google Scholar
Charbonneau, MR, Blanton, LV, DiGiulio, DB, et al. A microbial perspective of human developmental biology. Nature 2016;535(7610):4855. https://doi.org/10.1038/nature18845.CrossRefGoogle ScholarPubMed
Anahtar, MN, Byrne, EH, Doherty, KE, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 2015;42(5):965976. https://doi.org/10.1016/j.immuni.2015.04.019Google Scholar
Mendes-Soares, H, Suzuki, H, Hickey, RJ, Forney, LJ. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 2014;196(7):14581470. https://doi.org/10.1128/JB.01439-13Google Scholar
Reid, G, Brigidi, P, Burton, JP, et al. Microbes central to human reproduction. Am J Reprod Immunol 2015;73(1):111. https://doi.org/10.1111/aji.12319CrossRefGoogle ScholarPubMed
Koedooder, R, Mackens, S, Budding, A, et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update 2019;25(3):298325. https://doi.org/10.1093/humupd/dmy048Google Scholar
Jašarević, E, Bale, TL. Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front Neuroendocrinol 2019;55:100797. https://doi.org/10.1016/j.yfrne.2019.100797CrossRefGoogle ScholarPubMed
Verstraelen, H, Vilchez-Vargas, R, Desimpel, F, et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1–2 region of the 16S rRNA gene. Peer J 2016;4:e1602. https://doi.org/10.7717/peerj.1602CrossRefGoogle ScholarPubMed
Jones, BP, Saso, S, L’Heveder, A, et al. The vaginal microbiome in uterine transplantation. BJOG 2020;127(2):230238. https://doi.org/10.1111/1471-0528.15881CrossRefGoogle ScholarPubMed
Borgdorff, H, Gautam, R, Armstrong, SD, et al. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunol 2016;9(3):621633. https://doi.org/10.1038/mi.2015.86Google Scholar
Verstraelen, H, Swidsinski, A. The biofilm in bacterial vaginosis: implications for epidemiology, diagnosis and treatment: 2018 update. Curr Opin Infect Dis 2019;32(1):3842. https://doi.org/10.1097/QCO.0000000000000516CrossRefGoogle Scholar
Swidsinski, A, Guschin, A, Tang, Q, et al. Vulvovaginal candidiasis: histologic lesions are primarily polymicrobial and invasive and do not contain biofilms. Am J Obstet Gynecol 2019;220(1):91.e191.e8. https://doi.org/10.1016/j.ajog.2018.10.023Google Scholar
Willems, HME, Ahmed, SS, Liu, J, Xu, Z, Peters, BM. Vulvovaginal candidiasis: a current understanding and burning questions. J Fungi 2020;6(1):27. https://doi.org/10.3390/jof6010027Google Scholar
Mirmonsef, P, Hotton, AL, Gilbert, D, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One 2014;9(7):e102467. https://doi.org/10.1371/journal.pone.0102467Google Scholar
Mirmonsef, P, Hotton, AL, Gilbert, D, et al. Glycogen levels in undiluted genital fluid and their relationship to vaginal pH, estrogen, and progesterone. PLoS One 2016;11(4):e0153553. https://doi.org/10.1371/journal.pone.0153553CrossRefGoogle ScholarPubMed
Verstraelen, H, Vervaet, C, Remon, JP. Rationale and safety assessment of a novel intravaginal drug-delivery system with sustained dl-lactic acid release, intended for long-term protection of the vaginal microbiome. PLoS One 2016;11(4):e0153441. https://doi.org/10.1371/journal.pone.0153441Google Scholar
van de Wijgert, JH, Verwijs, MC, Turner, AN, Morrison, CS. Hormonal contraception decreases bacterial vaginosis but oral contraception may increase candidiasis: implications for HIV transmission. AIDS 2013;27(13):21412153. https://doi.org/10.1097/QAD.0b013e32836290b6Google Scholar
Vodstrcil, LA, Hocking, JS, Law, M, et al. Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis. PLoS One 2013;8(9):e73055. https://doi.org/10.1371/journal.pone.0073055Google Scholar
Wessels, JM, Felker, AM, Dupont, HA, Kaushic, C. The relationship between sex hormones, the vaginal microbiome and immunity in HIV-1 susceptibility in women. Dis Model Mech 2018;11(9):dmm035147. https://doi.org/10.1242/dmm.035147Google Scholar
Baldassarre, M, Giannone, FA, Foschini, MP, et al. Effects of long-term high dose testosterone administration on vaginal epithelium structure and estrogen receptor-α and -β expression of young women. Int J Impot Res 2013;25(5):172177. https://doi.org/10.1038/ijir.2013.9Google Scholar
Winston McPherson, G, Long, T, Salipante, SJ, et al. The vaginal microbiome of transgender men. Clin Chem 2019;65(1):199207. https://doi.org/10.1373/clinchem.2018.293654Google Scholar
Litvak, Y, Bäumler, AJ. The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathog 2019;15(2):e1007563. https://doi.org/10.1371/journal.ppat.1007563Google Scholar
Thomas-White, K, Forster, SC, Kumar, N, et al. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 2018;9(1):1557. https://doi.org/10.1038/s41467-018-03968-5Google Scholar
Bauer, MA, Kainz, K, Carmona-Gutierrez, D, Madeo, F. Microbial wars: competition in ecological niches and within the microbiome. Microb Cell 2018;5(5):215219. https://doi.org/10.15698/mic2018.05.628Google Scholar
Toolenaar, TA, Freundt, I, Wagenvoort, JH, et al. Bacterial flora of the sigmoid neovagina. J Clin Microbiol 1993;31(12):33143316. https://doi.org/10.1128/JCM.31.12.3314-3316.1993Google Scholar
van der Sluis, WB, Bouman, MB, Mullender, MG, et al. The effect of surgical fecal stream diversion of the healthy colon on the colonic microbiota. Eur J Gastroenterol Hepatol 2019;31(4):451457. https://doi.org/10.1097/MEG.0000000000001330Google Scholar
Weyers, S, Verstraelen, H, Gerris, J, et al. Microflora of the penile skin-lined neovagina of transsexual women. BMC Microbiol 2009;9:102. https://doi.org/10.1186/1471-2180-9-102Google Scholar
Birse, KD, Kratzer, K, Zuend, CF, et al. The neovaginal microbiome of transgender women post-gender reassignment surgery. Microbiome 2020;8(1):61. https://doi.org/10.1186/s40168-020-00804-1Google Scholar
Petricevic, L, Kaufmann, U, Domig, KJ, et al. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women. Sci Rep 2014a;4:3746. https://doi.org/10.1038/srep03746Google Scholar
Petricevic, L, Kaufmann, U, Domig, KJ, et al. Rectal Lactobacillus species and their influence on the vaginal microflora: a model of male-to-female transsexual women. J Sex Med 2014b;11(11):27382743.Google Scholar
Jain, A, Bradbeer, C. A case of successful management of recurrent bacterial vaginosis of neovagina after male to female gender reassignment surgery. Int J STD AIDS 2007;18(2):140141. https://doi.org/10.1258/095646207779949790Google Scholar
de Haseth, KB, Buncamper, ME, Özer, M, et al. Symptomatic neovaginal candidiasis in transgender women after penile inversion vaginoplasty: a clinical case series of five consecutive patients. Transgend Health 2018;3(1):105108. https://doi.org/10.1089/trgh.2017.0045Google Scholar
van der Sluis, WB, Neefjes-Borst, EA, Bouman, MB, et al. Morphological spectrum of neovaginitis in autologous sigmoid transplant patients. Histopathology 2016;68(7):10041012. https://doi.org/10.1111/his.12894Google Scholar
Tominaga, K, Kamimura, K, Takahashi, K, et al. Diversion colitis and pouchitis: a mini-review. World J Gastroenterol 2018;24(16):17341747. https://doi.org/10.3748/wjg.v24.i16.1734Google Scholar
van der Sluis, WB, Bouman, MB, Meijerink, WJHJ, et al. Diversion neovaginitis after sigmoid vaginoplasty: endoscopic and clinical characteristics. Fertil Steril 2016;105(3):834–839.e1. https://doi.org/10.1016/j.fertnstert.2015.11.013CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×