Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T09:21:32.792Z Has data issue: false hasContentIssue false

Chapter 14 - Normal Fetal Growth and Fetal Macrosomia

from Section 3 - Fetal Medicine

Published online by Cambridge University Press:  20 November 2021

Tahir Mahmood
Affiliation:
Victoria Hospital, Kirkcaldy
Charles Savona Ventura
Affiliation:
University of Malta, Malta
Ioannis Messinis
Affiliation:
University of Thessaly, Greece
Sambit Mukhopadhyay
Affiliation:
Norfolk & Norwich University Hospital, UK
Get access

Summary

Born either small or large for gestational age is associated with raised perinatal mortality and morbidity. Insight into normal fetal growth is a prerequisite for our understanding of abnormal fetal growth. Sonographic monitoring of fetal growth and size has contributed to a better perinatal outcome.

Type
Chapter
Information
The EBCOG Postgraduate Textbook of Obstetrics & Gynaecology
Obstetrics & Maternal-Fetal Medicine
, pp. 117 - 121
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stebbins, B, Jaffe, R. Fetal biometry and gestational age estimation. In Jaffe, R, Bui, TH, eds. Textbook of Fetal Ultrasound. Carnforth: Parthenon; 1999, pp 4757.Google Scholar
Verburg, BO, Steegers, EAP, De Ridder, M, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31:388–96.CrossRefGoogle ScholarPubMed
Hadlock, F, Harrist, RB, Sharman, RS, Deter, RL, Park, SK. Estimation of fetal weight with the use of head,body and femur measurements – a prospective study. Am J ObstetGynecol. 1985;151:333–7.Google Scholar
Dudley, NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol. 2005;25:80–9.Google Scholar
Lee, W, Balasubramaniam, M, Deter, RL, et al. New weight estimation models using fractional limb volume. Ultrasound Obstet Gynaecol. 2009;34:556–65.Google Scholar
Stirnemann, J, Villar, J, Salomon, LJ, et al. International estimated fetal weight standards of the Intergrowth-21st Project. Ultrasound Obstet Gynecol. 2017;49:478–86.CrossRefGoogle Scholar
Uotila, J, Dastidar, P, Heinonen, T, et al. Magnetic resonance imaging compared to ultrasonography in fetal weight and volume estimation in diabetic and normal pregnancy. Acta Obstet Gynecol Scand. 2000;79:255–9.Google Scholar
Papageorghiou, AT, Bakoulas, V, Sebire, NJ, Nicolaides, KH. Intrauterine growth in multiple pregnancies in relation to fetal number, chorionicity and gestational age. Ultrasound Obstet Gynecol. 2008;32:890–3.Google Scholar
Altman, DG, Chitty, LS. Design and analysis of studies to derive charts of fetal size. Ultrasound Obstet Gynecol. 1993;3:378–84.CrossRefGoogle ScholarPubMed
Gardosi, J, Mongelli, M, Wilcox, M. An adjustable fetal weight standard. Ultrasound Obstet Gynecol. 1995;6:168–74.CrossRefGoogle ScholarPubMed
Gardosi, J. Fetal growth: towards an international standard. Ultrasound Obstet Gynecol. 2005:26;112–14.CrossRefGoogle ScholarPubMed
Drooger, JC, Troe, JWM, Borsboom, GJJM, et al. Ethnic differences in prenatal growth and the association with maternal and fetal characteristics. Ultrasound Obstet Gynecol. 2005;26;115–22.Google Scholar
Pang, MW, Leung, TN, Sahata, DS, Lau, TK, Chang, AMZ. Customizing fetal biometry charts. Ultrasound Obstet Gynecol. 2003;22:271–6.Google Scholar
Ioannou, C, Talbot, K, Ohuma, E, et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size. BJOG. 2012;119:1425–39.CrossRefGoogle ScholarPubMed
Papageorghiou, A, Ohuma, EO, Altman, DG, et al. International standards for growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study in the Intergrowth-21st Project. Lancet. 2014:384:869–79.Google Scholar
Cavallaro, A, Ash, ST, Napolitano, R, et al. Quality control of ultrasound for biometry: results from the INTERGROWTH-21st Project. Ultrasound Obstet Gynecol. 2018;52:332.CrossRefGoogle Scholar
Kiserud, T, Benachi, A, Hecher, K, Piaggio, G, Platt, LD. The World Health fetal growth charts: concept, findings, interpretation, and application. Am J Obstet Gynecol. 2018, 218(2):S619-S629.CrossRefGoogle ScholarPubMed
Zhang, C, Hediger, ML, Albert, PS, et al. Association of maternal obesity with longitudinal ultrasonographic measures of fetal growth: findings from the NICHD Fetal Growth Studies – Singletons. JAMA Pediat. 2018;172:2431.Google Scholar
Joseph, KS, Fahey, J, Platt, RW, et al. An outcome-based approach for the creation of fetal growth standards: do singletons and twins need separate standards? Am J Epidemiol. 2009;169:616–20.Google Scholar
Odibo, AO, Cahill, AG, Goetzinger, KR, et al. Customized growth charts for twin gestations to optimize identification of small-for-gestational age fetuses at risk of intrauterine death. Ultrasound Obstet Gynecol. 2013;41:637–42.CrossRefGoogle Scholar
Campbell, S. Editorial: fetal macrosomia in need of a policy. Ultrasound Obstet Gynecol. 2014;43:310.Google Scholar
Ehrenberg, HM, Mercer, BM, Catalano, PM. The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynaecol. 2004;191:964968.CrossRefGoogle ScholarPubMed
Kolderup, LB, Laros, RK Jr, Musci, TJ. Incidence of persistent birth injury in macrosomic infants: association with mode of delivery. Am J Obstet Gynecol. 1997;177:3741.Google Scholar
Iffy, L, Brimacombe, M, Appuzzio, JJ, et al. The risk of shoulder dystocia related permanent fetal injury in relation to birth weight. Eur J Obstet Gynecol Reprod Biol. 2008;136:5260.CrossRefGoogle ScholarPubMed
Boney, CM, Verma, A, Tucker, R, Vohr, BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity and gestational diabetes mellitus. Pediatrics. 2005;115:290–6.CrossRefGoogle ScholarPubMed
Oberwalder, M, Connor, J, Wexner, SD. Meta-analysis to determine the incidence of obstetric and sphincter damage. Br J Surg. 2003;90:1333–7.Google Scholar
Chauhan, SP, Grobman, WA, Gherman, RA. Suspicion and treatment of the macrosomic fetus: a review. Am J Obstet Gynecol. 2005;193:332–46.Google Scholar
Hart, NC, Hilbert, A, Meurer, B. Macrosomia: a new formula for optimized fetal weight estimation. Ultrasound Obstet Gynecol. 2010;35:42–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×