Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T19:13:08.099Z Has data issue: false hasContentIssue false

Part I - Water-Related Risks under Climate Change

Published online by Cambridge University Press:  17 March 2022

Qiuhong Tang
Affiliation:
Chinese Academy of Sciences, Beijing
Guoyong Leng
Affiliation:
Oxford University Centre for the Environment
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adnan, M. S. G., Haque, A., & Hall, J. W. (2019). Have coastal embankments reduced flooding in Bangladesh? Science of the Total Environment 682: 405416.CrossRefGoogle ScholarPubMed
Ai, H., & Wu, X. (2018). Variation characteristics of rainstorm in Guangzhou. Guangdong Meteorology 40(4): 2033.Google Scholar
Chan, F. K. S., Adekola, O. A., Mitchell, G., & McDonald, A. T. (2013). Appraising sustainable flood risk management in the Pearl River Delta’s coastal megacities: A case study of Hong Kong, China. Journal of Water and Climate Change 4(4): 390409.CrossRefGoogle Scholar
Chan, F. K. S., Chuah, C. J., Ziegler, A. D., Dąbrowski, M., & Varis, O. (2018). Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. Journal of Cleaner Production 187: 576589.Google Scholar
Chan, F. K. S., Mitchell, G., & Mcdonald, A. (2012). Flood risk in Asia’s urban mega-deltas: Drivers, impacts and response. Environment and Urbanization Asia 3(1): 4161.CrossRefGoogle Scholar
Chen, Y., Qin, J., Dong, L., & Zhang, T. (2017). The formation regularity and control measures of urban pluvial floods in Guangzhou City. China Flood & Drought Management 24(2): 3941.Google Scholar
Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research 139: 310.Google Scholar
Church, J. A., Clark, P. U., Cazenave, A., et al. (2013). Sea Level Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 11371216.Google Scholar
De Moel, H., Aerts, J. C. J. H., & Koomen, E. (2011). Development of flood exposure in the Netherlands during the 20th and 21st century. Global Environmental Change 21(2): 620627.Google Scholar
Drainage Services Department (2017). Sustainability Report 2016–17. Hong Kong.Google Scholar
Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051): 686.CrossRefGoogle ScholarPubMed
Environment Bureau, Development Bureau, Transport & Housing Bureau, Commerce & Economic Development Bureau, Food & Health Bureau, & Security Bureau (2015). Hong Kong Climate Change Report 2015. Hong Kong.Google Scholar
Fischer, T., Gemmer, M., Liu, L., & Su, B. (2012). Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007. Climatic Change 110(3–4): 783799.Google Scholar
Gu, X., Zhang, Q., Liu, J., & Zhang, Z. (2014). Characteristics, causes and impact of the changes of the flood frequency in the Pearl River drainage basin from 1951–2010. Journal of Lake Sciences 26(5): 661670.Google Scholar
Hanson, S., Nicholls, R., Ranger, N., et al. (2011). A global ranking of port cities with high exposure to climate extremes. Climatic Change 104(1): 89111.CrossRefGoogle Scholar
He, Y. H., Mok, H. Y., & Lai, E. S. (2016). Projection of sea‐level change in the vicinity of Hong Kong in the 21st century. International Journal of Climatology 36(9): 32373244.CrossRefGoogle Scholar
Hong Kong Observatory (2014). Climate projections for Hong Kong – Rainfall. Available from www.HKO.gov.hk/en/climate_change/proj_hk_rainfall.htm (Last accessed 24 July 2021).Google Scholar
Hong Kong Observatory (2019a). Super Typhoon Hato (1713) 20 to 24 August 2017. Available from www.weather.gov.hk/informtc/hato17/report.htm (Last accessed 1 May 2020).Google Scholar
Hong Kong Observatory (2019b). Super Typhoon Mangkhut (1822) 7 to 17 September 2018. Available from www.weather.gov.hk/informtc/mangkhut18/report.htm (Last accessed 1 May 2020).Google Scholar
Hong Kong Observatory (2019c). Climate change in Hong Kong: Mean sea level. Available from www.HKO.gov.hk/en/climate_change/obs_hk_sea_level.htm (Last accessed 1 May 2020).Google Scholar
Hong Kong Observatory (2019d). Climate projections for Hong Kong: Mean sea level. Available from www.weather.gov.hk/climate_change/proj_hk_sea_level_e.htm (Last accessed 1 May 2020).Google Scholar
Hong Kong Observatory (2019e). Special announcement on flooding in the northern new territories. Available from www.HKO.gov.hk/wserVICe/warning/flood.htm (Last accessed 1 May 2020).Google Scholar
Huang, H., Chen, X., Zhu, Z., et al. (2018). The changing pattern of urban flooding in Guangzhou, China. Science of the Total Environment 622–623: 394401.CrossRefGoogle ScholarPubMed
Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., et al. (2017). Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh. Journal of Advances in Modeling Earth Systems 9(4): 18471862.Google Scholar
IPCC (2013). Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press.Google Scholar
Johnson, K., Depietri, Y., & Breil, M. (2016). Multi-hazard risk assessment of two Hong Kong districts. International Journal of Disaster Risk Reduction 19: 311323.CrossRefGoogle Scholar
Klijn, F., de Bruijn, K. M., Knoop, J., & Kwadijk, J. (2012). Assessment of the Netherlands’ flood risk management policy under global change. AMBIO 41(2): 180192.Google Scholar
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., & Haruyama, S. (2007). The combined impact on the flooding in Vietnam’s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuarine, Coastal and Shelf Science 71(1–2): 110116.Google Scholar
Lee, B. Y., Wong, W. T., & Woo, W. C. (2010). Sea-level rise and storm surge –impacts of climate change on Hong Kong. In HKIE Civil Division Conference, 12–14 April 2010, Hong Kong (pp. 1214).Google Scholar
Lee, T. C., Shun, C. M., & Ma, K. Y. (2016). The great rainstorm of the century in 1889. Observatory’s Blog. Available from www.HKO.gov.hk/en/blog/00000208.htm (Last accessed 24 July 2021).Google Scholar
Lenderink, G., Mok, H. Y., Lee, T. C., & van Oldenborgh, G. J. (2011). Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands. Hydrology and Earth System Sciences 15(9): 30333041.Google Scholar
Li, J., Chen, Y. D., Zhang, L., Zhang, Q., & Chiew, F. H. S. (2016). Future changes in floods and water availability across China: Linkage with changing climate and uncertainties. Journal of Hydrometeorology 17(4): 12951314.Google Scholar
Li, J., Zhang, Q., Chen, Y. D., & Singh, V. P. (2013). GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China. Journal of Geophysical Research: Atmospheres 118(19): 1101711035.Google Scholar
Li, J., Zhang, L., Shi, X., & Chen, Y. D. (2017). Response of long-term water availability to more extreme climate in the Pearl River Basin, China. International Journal of Climatology 37(7): 32233237.Google Scholar
Li, J., Zhang, Q., Chen, Y. D., & Singh, V. P. (2015). Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards. Global and Planetary Change, 124, 107122.CrossRefGoogle Scholar
Li, R. C., Zhou, W., Shun, C. M., & Lee, T. C. (2017). Change in destructiveness of landfalling tropical cyclones over China in recent decades. Journal of Climate 30(9): 33673379.Google Scholar
Liang, B. (1997). ‘94.6’ Zhujiang liuyu teda baiyuhonglao tezheng fenxi [Analysis on characteristics of ‘96.4’ extraordinary rainstorm and flood in the Pearl River Basin]. Disaster Reduction in China 7(4): 2124.Google Scholar
Liu, F., Yuan, L., Yang, Q., et al. (2014). Hydrological responses to the combined influence of diverse human activities in the Pearl River delta, China. CATENA 113: 4155.CrossRefGoogle Scholar
Liu, H., Liu, S., Zhu, J., Yin, Y., & Li, Y. (2014). Chengshi neilao zhengjie tantao ji zhengce jianyi [Discussion on the crux of urban waterlogging and policy suggestions]. China Flood & Drought Management 24(2): 3941.Google Scholar
Liu, L., Fischer, T., Jiang, T., & Luo, Y. (2013). Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quaternary International 304: 5161.Google Scholar
Liu, W., Zhan, J., Zhao, F., et al. (2019). Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecological Indicators 98: 228238.Google Scholar
Ma, Z., Hu, J., Feng, P., et al. (2017). Assessment of climate technology demands in Chinese Sponge City. Journal of Geoscience and Environment Protection 5(12): 102116.Google Scholar
Murakami, H., Wang, B., & Kitoh, A. (2011). Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. Journal of Climate, 24(4), 11541169.Google Scholar
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., et al. (2012). Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. Journal of Climate, 25(9), 32373260.Google Scholar
Ou, T., Chen, D., Linderholm, H. W., & Jeong, E.-H. (2013). Evaluation of global climate models in simulating extreme precipitation in China. Tellus A: Dynamic Meteorology and Oceanography 65(1): 19799.Google Scholar
Qian, W., Fu, J., & Yan, Z. (2007). Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophysical Research Letters 34(11): 15.Google Scholar
Qu, Y., Jevrejeva, S., Jackson, L. P., & Moore, J. C. (2019). Coastal sea level rise around the China seas. Global and Planetary Change 172: 454463.CrossRefGoogle Scholar
Shen, Y., Morsy, M. M., Huxley, C., Tahvildari, N., & Goodall, J. L. (2019). Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. Journal of Hydrology 579: 124159.CrossRefGoogle Scholar
Takagi, H., Xiong, Y., & Furukawa, F. (2018). Track analysis and storm surge investigation of 2017 Typhoon Hato: Were the warning signals issued in Macau and Hong Kong timed appropriately? Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 12(4): 297307.Google Scholar
Vis, M., Klijn, F., Bruijn, K. M. D., & van Buuren, M. (2003). Resilience strategies for flood risk management in the Netherlands. International Journal of River Basin Management 1(1): 3340.Google Scholar
Walsh, K. J., McBride, J. L., Klotzbach, P. J., et al. (2016). Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7(1): 6589.Google Scholar
Wang, L., Huang, G., Zhou, W., & Chen, W. (2016). Historical change and future scenarios of sea level rise in Macau and adjacent waters. Advances in Atmospheric Sciences 33(4): 462475.CrossRefGoogle Scholar
Wong, M. C., Mok, H. Y., & Lee, T. C. (2011). Observed changes in extreme weather indices in Hong Kong. International Journal of Climatology 31(15): 23002311.Google Scholar
Wu, C., Huang, G., Yu, H., Chen, Z., & Ma, J. (2014). Impact of climate change on reservoir flood control in the upstream area of the Beijiang River Basin, South China. Journal of Hydrometeorology 15(6): 22032218.Google Scholar
Wu, C. H., Huang, G. R., & Yu, H. J. (2015). Prediction of extreme floods based on CMIP5 climate models: A case study in the Beijiang River basin, South China. Hydrology and Earth System Sciences 19(3): 13851399.CrossRefGoogle Scholar
Wu, H., Huang, G., Meng, Q., Zhang, M., & Li, L. (2016). Deep tunnel for regulating combined sewer overflow pollution and flood disaster: A case study in Guangzhou City, China. Water 8(8): 329.Google Scholar
Wu, J., Zhang, L., Zhao, D., & Tang, J. (2015). Impacts of warming and water vapor content on the decrease in light rain days during the warm season over eastern China. Climate Dynamics 45(7): 18411857.Google Scholar
Wu, Z.-Y., Lu, G.-H., Liu, Z.-Y., Wang, J.-X., & Heng, X. (2013). Trends of extreme flood events in the Pearl River basin during 1951–2010. Advances in Climate Change Research 4(2): 110116.Google Scholar
Xia, J., Zhang, Y., Xiong, L., et al. (2017). Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China: Earth Sciences 60(4): 652658.Google Scholar
Yan, D., Werners, S. E., Ludwig, F., & Huang, H. Q. (2015). Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Journal of Hydrology: Regional Studies 4(Part B): 228245.Google Scholar
Yang, L., Scheffran, J., Qin, H., & You, Q. (2014). Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change 15(2): 379391.CrossRefGoogle Scholar
Yi, W., & Chan, A. (2017). Effects of heat stress on construction labor productivity in Hong Kong: A case study of rebar workers. International Journal of Environmental Research and Public Health 14(9): 1055.CrossRefGoogle Scholar
Yi, Y. (2005). Zhujiang ‘05.6’ kanghongqiangxian lueying [A glimpse of the Pearl River ‘05.6’ flood fighting]. Pearl River (4): F0002.Google Scholar
Yin, J., Ye, M., Yin, Z., & Xu, S. (2014). A review of advances in urban flood risk analysis over China. Stochastic Environmental Research and Risk Assessment 29(3): 10631070.Google Scholar
Yu, Q., Lau, A. K. H., Tsang, K. T., & Fung, J. C. H. (2018). Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century. Natural Hazards 92(2): 10111038.CrossRefGoogle Scholar
Yuan, F., Tung, Y. K., & Ren, L. (2016). Projection of future streamflow changes of the Pearl River basin in China using two delta-change methods. Hydrology Research 47(1): 217238.CrossRefGoogle Scholar
Zhang, A., Xiao, L., Min, C., et al. (2019). Evaluation of latest GPM-era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmospheric Research 216: 7685.Google Scholar
Zhang, Q., Gu, X., Singh, V. P., Xiao, M., & Chen, X. (2015). Evaluation of flood frequency and non-stationarity resulting from climate indices and reservoir indices in the East River basin, China. Journal of Hydrology 527: 565575.Google Scholar
Zhang, Q., Li, J., Singh, V. P., & Xu, C.-Y. (2013). Copula-based spatio-temporal patterns of precipitation extremes in China. International Journal of Climatology 33(5): 11401152.CrossRefGoogle Scholar
Zhang, Q., Singh, V. P., Peng, J., Chen, Y. D., & Li, J. (2012). Spatial-temporal changes of precipitation structure across the Pearl River basin, China. Journal of Hydrology 440–441: 113122.Google Scholar
Zhang, Q., Xiao, M., Liu, C.-L., & Singh, V. P. (2014). Reservoir-induced hydrological alterations and environmental flow variation in the East River, the Pearl River basin, China. Stochastic Environmental Research and Risk Assessment 28(8): 21192131.Google Scholar
Zhang, S. (1997). Catastrophic floods in 1994 and flood control in Guangdong province. Tropical Geography 17(1): 3035.Google Scholar
Zhao, Y., Zou, X., Cao, L., & Xu, X. (2014). Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quaternary International 333: 2639.Google Scholar
Zolina, O., Simmer, C., Gulev, S. K., & Kollet, S. (2010). Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophysical Research Letters 37(6): L06704.Google Scholar

References

Alfieri, L., Bisselink, B., Dottori, F., et al. (2017). Global projections of river flood risk in a warmer world. Earth’s Future 5(2): 171182.Google Scholar
Cronin, R. (2009). Mekong dams, and the perils of peace. Survival 51(6): 147160.Google Scholar
Dang, T. D., Chowdhury, A. M. F. K., & Galelli, S. (2020). On the representation of water reservoir storage and operations in large-scale hydrological models: Implications on model parameterization and climate change impact assessments. Hydrology and Earth System Sciences 24(1): 397416.Google Scholar
Defries, R. S., and Townshend, J. R. G. (1999). Global land cover characterization from satellite data: From research to operational implementation? Global Ecology and Biogeography 8(5): 367379.CrossRefGoogle Scholar
FAO. (2012). ISRIC-World Soil Information, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), Joint Research Centre of the European Commission (JRC), Harmonized World Soil Database, v1.21. Available from www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (Last accessed March 2020).Google Scholar
Guo, J. L., Hong, Y. L., Leung, L. R., et al. (2014). Links between flood frequency and annual water balance behaviors: A basis for similarity and regionalization. Water Resources Research 50(2): 937953.Google Scholar
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., & Mao, Y. (2018). The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geoscientific Model Development 11(8): 34813496.CrossRefGoogle Scholar
Hirsch, R. M., & Archfield, S. A. (2015). Flood trends: Not higher but more often. Nature Climate Change 5(3): 198199.CrossRefGoogle Scholar
Hortle, K. G. (2007). MRC Technical Paper No. 16: Consumption and the Yield of Fish and Other Aquatic Animals from the Lower Mekong Basin. Mekong River Commission.Google Scholar
Li, R. C. (2005). Flood control history in the Netherlands. Water Encyclopedia 2: 524526.Google Scholar
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres 99(D7): 1441514428.Google Scholar
Lu, X. X., Li, S. Y., Kummu, M., Padawangi, R., & Wang, J. (2014). Observed changes in the water flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quaternary International 336(1): 145157.CrossRefGoogle Scholar
Luo, X., Wu, W. Q., He, D. M., Li, Y., & Ji, X. (2019). Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower Lancang-Mekong river basin. Chinese Geographical Science 20(1): 1325.Google Scholar
Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology, January 1993, California.Google Scholar
Mohammed, I. N., Bolten, J. D., Srinivasan, R., et al. (2018). Ground and satellite based observation datasets for the Lower Mekong River Basin. Data in Brief 21: 20202027.CrossRefGoogle ScholarPubMed
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology 10(3): 282290.Google Scholar
Pandey, S., Byerlee, D. R., Dawe, D., et al. (eds.) (2010). Rice in the Global Economy: Strategic Research and Policy Issues for Food Security. The Philippines: The International Rice Research Institute (IRRI).Google Scholar
Pech, S., & Sunada, K. (2008). Population growth and natural-resources pressures in the Mekong River Basin. AMBIO: A Journal of the Human Environment 37(3): 219224.Google Scholar
Potapov, P., Tyukavina, A., Turubanova, S., et al. (2019). Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series. Remote Sensing of Environment 232: 111278.Google Scholar
Rees, H. G., & Collins, D. N. (2006). Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes 20(10): 21572169.Google Scholar
Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate 19(13): 30883111.CrossRefGoogle Scholar
Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature 491(7424): 435438.Google Scholar
Smajgl, A., Toan, T. Q., Nhan, D. K., et al. (2015). Responding to rising sea levels in the Mekong Delta. Nature Climate Change 5(2): 167174.Google Scholar
Sohail, A. (2012). Mapping landcover/landuse and coastline change in the Eastern Mekong Delta (Viet Nam) from 1989 to 2002 using remote sensing. Master’s Thesis. Urban Planning & Environment. Available from www.diva-portal.org/smash/record.jsf?pid=diva2%3A563356&dswid=848 (Last accessed 31 August 2021).Google Scholar
Tatsumi, K., & Yamashiki, Y. (2015). Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters. Agricultural Water Management 159: 92106.Google Scholar
Thomaz, S. M., Bini, L. M., & Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1): 113.Google Scholar
Valbo-Jørgensen, J., Coates, D., & Hortle, K. (2009). Fish diversity in the Mekong River Basin. In Campbell, I. C. (ed.), The Mekong Biophysical Environment of an International River Basin (pp. 161196). Cambridge, MA: Academic Press.Google Scholar
Ward, P. J., Jongman, B., Aerts, J. C. J. H., et al. (2017). A global framework for future costs and benefits of river-flood protection in urban areas. Nature Climate Change 7(9): 642646.Google Scholar
Ward, P. J., Jongman, B., Weiland, F. C. S., et al. (2013). Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environmental Research Letters 8(4): 44019.Google Scholar
Wilks, D. S. (1999). Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agricultural and Forest Meteorology 93(3): 153169.CrossRefGoogle Scholar
Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A., & Wen, F. (2007). Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology 27(1): 6579.Google Scholar
Yun, X. B., Tang, Q. H., Wang, J., et al. (2020). Impacts of climate change and reservoir operation on streamflow and flood characteristics in the Lancang-Mekong river basin. Journal of Hydrology 590: 125472.Google Scholar

References

AghaKouchak, A. (2015a). A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought. Journal of Hydrology 526(5): 127135.Google Scholar
AghaKouchak, A. (2015b). Recognize anthropogenic drought. Nature 524(7566): 409411.Google Scholar
AghaKouchak, A., Farahmand, A., Melton, F. S., et al. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics 53(3): 129.CrossRefGoogle Scholar
Ayana, E. K., Ceccato, P., Fisher, J. R. B., & DeFries, R. (2016). Examining the relationship between environmental factors and conflict in pastoralist areas of East Africa. Science of the Total Environment 557–558(7): 601611.Google Scholar
Bayissa, Y. A., Moges, S. A., Xuan, Y., et al. (2015). Spatio-temporal assessment of meteorological drought under the influence of varying record length: The case of Upper Blue Nile Basin. Ethiopia. Hydrological Sciences Journal 60(11): 19271942.Google Scholar
Benson, C., & Clay, E. (1998). Drought and sub-Saharan African economies. Findings: Africa Region 118(5): 831852.Google Scholar
Camberlin, P. (2018). Climate of Eastern Africa (Vol. 1). Oxford: Oxford University Press.Google Scholar
Camberlin, P., & Okoola, R. E. (2003). The onset and cessation of the ‘long rains’ in eastern Africa and their interannual variability. Theoretical and Applied Climatology 54(1–2): 4354.CrossRefGoogle Scholar
Chen, H., & Sun, J. (2015). Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Journal of Climate 28(13): 54305447.Google Scholar
Degefu, M. A., & Bewket, W. (2015). Trends and spatial patterns of drought incidence in the Omo-Ghibe River Basin, Ethiopia. Geografiska Annaler, Series A: Physical Geography 97(2): 395414.Google Scholar
Dinku, T., Ceccato, P., & Connor, S. J. (2011). Challenges of satellite rainfall estimation over mountainous and arid parts of east Africa. International Journal of Remote Sensing 32(21): 59655979.CrossRefGoogle Scholar
Dinku, T., Ceccato, P., Grover-Kopec, E., et al. (2007). Validation of satellite rainfall products over East Africa’s complex topography. International Journal of Remote Sensing 28(7): 15031526.Google Scholar
Dutra, E., Di Giuseppe, F., Wetterhall, F., & Pappenberger, F. (2012). Seasonal forecasts of drought indices in African basins. Hydrology and Earth System Sciences Discussions 9(9): 1109311129.Google Scholar
Dutra, E., Magnusson, L., Wetterhall, F., et al. (2013). The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. International Journal of Climatology 33(7): 17201729.Google Scholar
Fenta, A. A., Yasuda, H., Shimizu, K., et al. (2017). Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrological Processes 31(25): 45554567.Google Scholar
Funk, C. (2011). We thought trouble was coming. Nature 476(7358): 7.Google Scholar
Funk, C., Dettinger, M. D., Michaelsen, J. C., et al. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the National Academy of Sciences 105(32): 1108111086.Google Scholar
Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation 13(3): 309321.Google Scholar
Grover-Kopec, E. (2007). Documenting Drought-Related Disasters (pp. 328344). Washington, DC: World Bank.Google Scholar
Guha-Sapir, D., Hargitt, D., & Hoyois, P. (2004). Thirty Years of Natural Disasters 1974–2003: The Numbers. Leuven, Belgium: Presses universitaires de Louvain.Google Scholar
Haan, N., Devereux, S., & Maxwell, D. (2012). Global implications of Somalia 2011 for famine prevention, mitigation and response. Global Food Security 1(1): 7479.Google Scholar
Haile, G. G., Tang, Q., Hosseini‐Moghari, S., et al. (2020). Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8(7): 123.Google Scholar
Haile, G. G., Tang, Q., Leng, G., et al. (2020). Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Science of the Total Environment 704: 135299.Google Scholar
Haile, G. G., Tang, Q., Li, W., Liu, X., & Zhang, X. (2020). Drought: Progress in broadening its understanding. WIREs Water 7(2): e1407.Google Scholar
Haile, G. G., Tang, Q., Sun, S., et al. (2019). Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews, 193(2018): 146161.Google Scholar
Hao, Z., & AghaKouchak, A. (2014). A nonparametric multivariate multi-index drought monitoring framework. Journal of Hydrometeorology 15(1): 89101.Google Scholar
Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal drought prediction: Advances, challenges, and future prospects. Reviews of Geophysics 56(1): 108141.Google Scholar
Hillbruner, C., & Moloney, G. (2012). When early warning is not enough – Lessons learned from the 2011 Somalia famine. Global Food Security 1(1): 2028.Google Scholar
Hua, W., Zhou, L., Chen, H., et al. (2016). Possible causes of the Central Equatorial African long-term drought. Environmental Research Letters 11(12): 124002.Google Scholar
Huang, Z., Hejazi, M., Li, X., et al. (2018). Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences 22(4): 21172133.Google Scholar
Kebbede, G., & Jacob, M. J. (1988). Drought, famine and the political economy of environmental degradation in Ethiopia. JSTOR 73(1): 6570.Google Scholar
Kiros, F. G. (1991). Economic consequences of drought, crop failure and famine in Ethiopia, 1973–1986. Ambio (Sweden) 20(5): 183185.Google Scholar
Li, Z., Chen, Y., Fang, G., & Li, Y. (2017). Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports 7(1): 112.Google Scholar
Liebmann, B., Hoerling, M. P., Funk, C., et al. (2014). Understanding recent eastern Horn of Africa rainfall variability and change. Journal of Climate 27(23): 86308645.Google Scholar
Liu, Z., Li, C., Zhou, P., & Chen, X. (2016). A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Scientific Reports 6(May): 110.Google Scholar
Lyon, B., & Dewitt, D. G. (2012). A recent and abrupt decline in the East African long rains. Geophysical Research Letters 39(2): 15.Google Scholar
Lyon, B., & Vigaud, N. (2017). Unraveling East Africa’s climate paradox. In Wang, S.-Y. S., Yoon, J.-H., Funk, C. C., & Gillies, R. R. (eds.), Climate Extremes: Patterns and Mechanisms, Geophysical Monography 226 (pp. 265287). Hoboken, NJ: John Wiley & Sons.Google Scholar
Mariotti, A., Schubert, S., Mo, K., et al. (2013). An Interpretation of the Origins of the 2012 Central Great Plains Drought. Assessment Report. Available from https://psl.noaa.gov/csi/factsheets/pdf/noaa-gp-drought-assessment-report.pdf (Last accessed 31 August 2021).Google Scholar
Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences 18(9): 36353649.Google Scholar
Maxwell, D., & Fitzpatrick, M. (2012). The 2011 Somalia famine: Context, causes, and complications. Global Food Security 1(1): 512.Google Scholar
Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology, 17–22 January 1993, Anaheim, CA. Available from www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (Last accessed 31 August 2021).Google Scholar
Menkhaus, K. (2012). No access: Critical bottlenecks in the 2011 Somali famine. Global Food Security 1(1): 2935.Google Scholar
Muller, J. C. Y. (2014). Adapting to climate change and addressing drought – Learning from the Red Cross Red Crescent experiences in the Horn of Africa. Weather and Climate Extremes 3: 3136.Google Scholar
Nash, D. J., De Cort, G., Chase, B. M., et al. (2016). African hydroclimatic variability during the last 2000 years. Quaternary Science Reviews 154: 122.Google Scholar
Nicholson, S. E. (2000). Land surface processes and land use change land. Reviews of Geophysics 38(1): 117139.Google Scholar
Nicholson, S. E. (2014). A detailed look at the recent drought situation in the Greater Horn of Africa. Journal of Arid Environments 103: 7179.Google Scholar
Omondi, P. A., Awange, J. L., Forootan, E., et al. (2014). Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology 34(4): 12621277.CrossRefGoogle Scholar
Palmer, W. C. (1965). Meteorological Drought. Research Paper No. 45, US Department of Commerce, Washington D.C., 58 pp. Available from www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf (Last accessed 31 August 2021)Google Scholar
Rhee, J., & Cho, J. (2015). Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. Journal of Hydrometeorology 17(1): 437451.Google Scholar
Schubert, S. D., Stewart, R. E., Wang, H., et al. (2016). Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate 29(11): 39894019.Google Scholar
Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., et al. (2017). Global patterns of drought recovery. Nature 548(7666): 202205.Google Scholar
Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. Journal of Climate 22(8): 19621981.Google Scholar
Sheffield, J., Wood, E. F., Chaney, N., et al. (2014). A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bulletin of the American Meteorological Society 95(6): 861882.Google Scholar
Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature 491(7424): 435438.Google Scholar
Solomon, N., Birhane, E., Gordon, C., et al. (2018). Environmental impacts and causes of conflict in the Horn of Africa: A review. Earth-Science Reviews 177: 284290.Google Scholar
Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology 34(8): 27922804.Google Scholar
Sternberg, T. (2011). Regional drought has a global impact. Nature 472(7342): 169.Google Scholar
Tadesse, T., Senay, G., Wardlow, B. D., Knutson, C. L., & Haile, M. (2008). The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa. Natural Resources Forum 32: 265279.Google Scholar
Telesca, L., Lovallo, M., Lopez-Moreno, I., & Vicente-Serrano, S. (2012). Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). Physica A 391(4): 16621678.Google Scholar
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., & Seager, R. (2013). Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493(7432): 389392.Google Scholar
Tierney, J. E., Ummenhofer, C. C., & DeMenocal, P. B. (2015). Supplementary materials for: Past and future rainfall in the Horn of Africa. Science Advances 1(9): e1500682.Google Scholar
Touma, D., Ashfaq, M., Nayak, M. A., Kao, S. C., & Diffenbaugh, N. S. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology 526: 196207.Google Scholar
Trenberth, K. E., Dai, A., Van Der Schrier, G., et al. (2014). Global warming and changes in drought. Nature Climate Change 4(1): 1722.CrossRefGoogle Scholar
Uhe, P., Philip, S., Kew, S., et al. (2018). Attributing drivers of the 2016 Kenyan drought. International Journal of Climatology 38: e554e568.Google Scholar
United Nations (2018). World Economic Situation and Prospects 2018. Available from www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/WESP2018_Full_Web-1.pdf (Last accessed June 2019).Google Scholar
Van Loon, A. F., Gleeson, T., Clark, J., et al. (2016). Drought in the anthropocene. Nature Geoscience 9(2): 8991.Google Scholar
Van Loon, A. F., Stahl, K., Di Baldassarre, G., et al. (2016). Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences 20(9): 36313650.Google Scholar
Vicente-Serrano, S. M., Beguería, S., Gimeno, L., et al. (2012). Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography 34: 471486.Google Scholar
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate 23(7): 16961718.Google Scholar
Wang, F., Wang, Z., Yang, H., & Zhao, Y. (2018). Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI. Science China Earth Sciences 61(8): 10981111.Google Scholar
Wang, Z., Li, J., Lai, C., et al. (2018). Increasing drought has been observed by SPEI_pm in Southwest China during 1962–2012. Theoretical and Applied Climatology 133(1–2): 2338.Google Scholar
Xu, L., Chen, N., & Zhang, X. (2018). Global drought trends under 1.5 and 2°C warming. International Journal of Climatology 39(4): 23752385.Google Scholar
Yang, W., Seager, R., Cane, M. A., & Lyon, B. (2014). The East African long rains in observations and models. Journal of Climate 27(19): 71857202.Google Scholar
Zhao, T., & Dai, A. (2015). The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. Journal of Climate 28(11): 44904512.Google Scholar

References

Achite, M., & Ouillon, S. (2016). Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrology and Earth System Sciences 20(4): 13551372.Google Scholar
Bangash, R. F., Passuello, A., Sanchez-Canales, M., et al. (2013). Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Science of the Total Environment 458–460: 246255.Google Scholar
Borrelli, P., Robinson, D. A., Fleischer, L. R., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8: 2013.Google Scholar
Challinor, A. J., Watson, J., Lobell, D. B., et al. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change 4: 287291.Google Scholar
Dai, S. B., Lu, X. X., Yang, S. L., & Cai, A. M. (2008). A preliminary estimate of human and natural contributions to the decline in sediment flux from the Yangtze River to the East China Sea. Quaternary International 186(1): 4354.Google Scholar
Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010). US Geological Survey Open-File Report 2011–1073, 26 p.Google Scholar
Doetterl, S., Van Oost, K., & Six, J. (2012). Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms 37(6): 642655.Google Scholar
García-Ruiz, J. M., Begueria, S., Lana-Renault, N., Nadal-Romero, E., & Cerda, A. (2017). Ongoing and emerging questions in water erosion studies. Land Degradation & Development 28(1): 521.Google Scholar
García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., et al. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology 239: 160173.Google Scholar
García-Ruiz, J. M., Nadal-Romero, E., Lana-Renault, N., & Beguería, S. (2013). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 198: 2036.Google Scholar
González-Hidalgo, J. C., Batalla, R. J., Cerdà, A., & de Luis, M. (2010). Contribution of the largest events to suspended sediment transport across the USA. Land Degradation & Development 21(2): 8391.Google Scholar
Guo, Y., Peng, C., Zhu, Q., et al. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management 250: 109403.Google Scholar
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12(2): e0169748.Google Scholar
IPCC (2007). Climate change: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of IPCC, Cambridge, UK.Google Scholar
Ito, A. (2007). Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100. Geophysical Research Letters 34(9): 15.Google Scholar
Kieta, K. A., Owens, P. N., Lobb, D. A., Vanrobaeys, J. A., & Flaten, D. N. (2018). Phosphorus dynamics in vegetated buffer strips in cold climates: A review. Environmental Reviews 26(3): 255272.Google Scholar
Komissarov, M. A., & Gabbasova, I. M. (2014). Snowmelt-induced soil erosion on gentle slopes in the southern Cis-Ural region. Eurasian Soil Science 47(6): 598607.Google Scholar
Li, Y., Chen, B. M., Wang, Z. G., & Peng, S. L. (2011). Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modelling. Hydrological Sciences Journal 56(1): 6883.Google Scholar
Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews 163: 94117.Google Scholar
Li, Z., Liu, W., Zhang, X., & Zheng, F. (2010). Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climatic Change 105(1–2): 223242.Google Scholar
Li, Z., Sun, R., Zhang, J., & Zhang, C. (2017). Temporal-spatial analysis of vegetation coverage dynamics in Beijing-Tianjin-Hebei metropolitan regions. Acta Ecologica Sinica 37(22): 74187426.Google Scholar
Litschert, S. E., Theobald, D. M., & Brown, T. C. (2014). Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion. Catena 118: 206219.Google Scholar
Liu, X., Yu, L., Si, Y., et al. (2018). Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sensing Letters 9(10): 972981.Google Scholar
Liu, Y., Fu, B., Liu, Y., Zhao, W., & Wang, S. (2019 ). Vulnerability assessment of the global water erosion tendency: Vegetation greening can partly offset increasing rainfall stress. Land Degradation & Development 30(9): 10611069.Google Scholar
Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology 160(4): 16861697.Google Scholar
Longfield, S. A., & Macklin, M. G. (1999). The influence of recent environmental change on flooding and sediment fluxes in the Yorkshire Ouse basin. Hydrological Processes 13(7): 10511066.Google Scholar
Lu, S., Bai, X., Li, W., & Wang, N. (2019). Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change 143: 7684.Google Scholar
Lu, X. X., Ran, L. S., Liu, S., et al. (2013). Sediment loads response to climate change: A preliminary study of eight large Chinese rivers. International Journal of Sediment Research 28(1): 114.Google Scholar
Maas, G. S., & Macklin, M. G. (2002). The impact of recent climate change on flooding and sediment supply within a Mediterranean mountain catchment, southwestern Crete, Greece. Earth Surface Processes and Landforms 27(10): 10871105.Google Scholar
Maeda, E. E., Pellikka, P. K. E., Siljander, M., & Clark, B. J. F. (2010). Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 123(3–4): 279289.Google Scholar
Maetens, W., Poesen, J., & Vanmaercke, M. (2012). How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Reviews 115(1–2): 2136.Google Scholar
Maetens, W., Vanmaercke, M., Poesen, J., et al. (2012). Effects of land use on annual runoff and soil loss in Europe and the Mediterranean. Progress in Physical Geography 36(5): 599653.Google Scholar
Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research 3(4): 273281.Google Scholar
Mukundan, R., Pradhanang, S. M., Schneiderman, E. M., et al. (2013). Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology 183: 110119.Google Scholar
Mullan, D., Favis-Mortlock, D., & Fealy, R. (2012). Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology 156: 1830.Google Scholar
Naipal, V., Reick, C., Pongratz, J., & Van Oost, K. (2015). Improving the global applicability of the RUSLE model – Adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development 8(9): 28932913.Google Scholar
Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004). Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59(4): 4350.Google Scholar
Nunes, J. P., Seixas, J., & Keizer, J. J. (2013). Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. Catena 102: 2739.Google Scholar
Pan, N., Feng, X., Fu, B., et al. (2018). Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment 214: 5972.Google Scholar
Panagos, P., Borrelli, P., Meusburger, K., et al. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48: 3850.Google Scholar
Panagos, P., Borrelli, P., Meusburger, K., et al. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports 7: 4175.Google Scholar
Parajuli, P. B., Jayakody, P., Sassenrath, G. F., & Ouyang, Y. (2016). Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin. Agricultural Water Management 168: 112124.Google Scholar
Paroissien, J. B., Darboux, F., Couturier, A., et al. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management 150: 5768.Google Scholar
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 16331644.Google Scholar
Pham, T. N., Yang, D., Kanae, S., Oki, T., & Musiake, K. (2001). Application of RUSLE model on global soil erosion estimate. Annual Journal of Hydraulic Engineering 45: 811816.Google Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena 50(2–4): 91133.Google Scholar
Rao, E., Ouyang, Z., Yu, X., & Xiao, Y. (2014). Spatial patterns and impacts of soil conservation service in China. Geomorphology 207: 6470.Google Scholar
Renard, K. G., Foster, G. R., McCool, W. D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss equation. In Agricultural Handbook (p. 703). Washington, DC: US Department of Agriculture.Google Scholar
Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157(1–4): 287306.Google Scholar
Routschek, A., Schmidt, J., & Kreienkamp, F. (2014). Impact of climate change on soil erosion – A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 121: 99109.Google Scholar
Ruiz-Sinoga, J. D., & Daiz, A. R. (2010). Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology 118(3–4): 359368.Google Scholar
Scherer, L., & Pfister, S. (2015). Modelling spatially explicit impacts from phosphorus emissions in agriculture. International Journal of Life Cycle Assessment 20(6): 785795.Google Scholar
Serpa, D., Nunes, J. P., Santos, J., et al. (2015). Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Science of the Total Environment 538: 6477.Google Scholar
Shabani, F., Kumar, L., & Esmaeili, A. (2014). Improvement to the prediction of the USLE K factor. Geomorphology 204: 229234.Google Scholar
Sharpley, A. N., & Williams, C. F. (1990). EPIC: Erosion/Productivity Impact Calculator. U.S. Department of Agriculture Technical Bulletin No. 1768. 235 pp.Google Scholar
Shi, H., & Wang, G. (2015). Impacts of climate change and hydraulic structures on runoff and sediment discharge in the middle Yellow River. Hydrological Processes 29(14): 32363246.Google Scholar
Simonneaux, V., Cheggour, A., Deschamps, C., et al. (2015). Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). Journal of Arid Environments 122: 6475.Google Scholar
Tang, J. L., Cheng, X. Q., Zhu, B., et al. (2015). Rainfall and tillage impacts on soil erosion of sloping cropland with subtropical monsoon climate: A case study in hilly purple soil area. Journal of Mountain Science 12(1): 134144.Google Scholar
Van Oost, K., Quine, T. A., Govers, G., et al. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science 318: 626629.Google Scholar
Wang, J., Wang, K., Zhang, M., & Zhang, C. (2015). Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecological Engineering 81: 451461.Google Scholar
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning. In Agricultural Handbook (p. 537). Washington, DC: US Department of Agriculture.Google Scholar
Wu, Y., Ouyang, W., Hao, Z., et al. (2018). Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed. Geoderma 328: 5665.Google Scholar
Wuepper, D., Borrelli, P., & Finger, R. (2019). Countries and the global rate of soil erosion. Nature Sustainability 3(1): 5155.Google Scholar
Xiong, M. Q., Sun, R. H., & Chen, L. D. (2019). A global comparison of soil erosion associated with land use and climate type. Geoderma 343: 3139.Google Scholar
Xu, J. X. (2003). Sediment flux to the sea as influenced by changing human activities and precipitation: Example of the Yellow River, China. Environmental Management 31(3): 328341.Google Scholar
Yang, D. W., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes 17(14): 29132928.Google Scholar
Yao, H., Shi, C., Shao, W., Bai, J., & Yang, H. (2015). Impacts of climate change and human activities on runoff and sediment load of the Xiliugou Basin in the Upper Yellow River. Advances in Meteorology 2015: 112.Google Scholar
Zhang, K. L., Shu, A. P., Xu, X. L., Yang, Q. K., & Yu, B. (2008). Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments 72(6): 10021011.Google Scholar
Zhang, X. C., & Nearing, M. A. (2005). Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 61(2–3): 185195.Google Scholar
Zhang, X. C. J. (2012). Cropping and tillage systems effects on soil erosion under climate change in Oklahoma. Soil Science Society of America Journal 76(5): 17891797.Google Scholar
Zhang, Y., Hernandez, M., Anson, E., et al. (2012). Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices. Journal of Soil and Water Conservation 67(5): 390405.Google Scholar

References

Abedini, M., Said, M. A. M., & Ahmad, F. (2012). Effectiveness of check dam to control soil erosion in a tropical catchment (The Ulu Kinta Basin). Catena 97: 6370.Google Scholar
Alberts, E. E., & Neibling, W. H. (1994). Influence of crop residues on water erosion. In Unger, P. W. (ed.), Managing Agricultural Residues (pp. 1939). Boca Raton, FL: Lewis Publishers.Google Scholar
Alewell, C., Borelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research 7(3): 203225.Google Scholar
Allen, P. M., Arnold, J. G., Auguste, L., White, J., & Dunbar, J. (2018). Application of a simple headcut advance model for gullies. Earth Surface Processes and Landforms 43(1): 202217.CrossRefGoogle Scholar
An, J., Zheng, F., Lu, J., & Li, G. (2012). Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Science 177(8): 517526.Google Scholar
Bakr, N., Elbana, T. A., Arceneaux, A., et al. (2015). Runoff and water quality from highway hillsides: Influence compost/mulch. Soil & Tillage Research 150: 158170.Google Scholar
Bennett, S. J., Casalí, J., Robinson, K. M., & Kadavy, K. C. (2000). Characteristics of actively eroding ephemeral gullies in an experimental channel. Transactions of the ASAE 43(3): 641.Google Scholar
Birkinshaw, S. J., & Bathurst, J. C. (2006). Model study of the relationship between sediment yield and river basin area. Earth Surface Processes and Landforms 31(6): 750761.Google Scholar
Blevins, R. L., Lal, R., Doran, J. W., Langdale, G. W., & Frye, W. W. (2018). Conservation tillage for erosion control and soil quality. In Pierce, F. J., & Frye, W. W. (eds.), Advances in Soil and Water Conservation (pp. 5168). Boca Raton, FL: Routledge.Google Scholar
Bocco, G. (1991). Gully erosion: Processes and models. Progress in Physical Geography 15(4): 392406.Google Scholar
Borrelli, P., Robinson, D. A., Fleischer, L. R., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1): 2013.Google Scholar
Buendia, C., Bussi, G., Tuset, J., et al. (2016). Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of the Total Environment 540: 144157.Google Scholar
Bullard, J. E., & McTainsh, G. H. (2003). Aeolian-fluvial interactions in dryland environments: Examples, concepts and Australia case study. Progress in Physical Geography 27(4): 471501.Google Scholar
Capra, A., & La Spada, C. (2015). Medium-term evolution of some ephemeral gullies in Sicily (Italy). Soil and Tillage Research 154: 3443.Google Scholar
Capra, A., Porto, P., & Scicolone, B. (2009). Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy). Soil and Tillage Research 105(1): 7787.Google Scholar
Casalí, J., Giménez, R., & Bennett, S. (2009). Gully erosion processes: Monitoring and modelling. Earth Surface Processes and Landforms 34(14): 18391840.Google Scholar
Casalí, J., López, J. J., & Giráldez, J. V. (1999). Ephemeral gully erosion in southern Navarra (Spain). Catena 36(1–2): 6584.Google Scholar
Castillo, C., & Gómez, J. A. (2016). A century of gully erosion research: Urgency, complexity and study approaches. Earth-Science Reviews 160: 300319.Google Scholar
Castillo, V. M., Mosch, W. M., García, C. C., et al. (2007). Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 70(3): 416427.Google Scholar
Chen, C., Park, T., Wang, X., et al. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability 2(2): 122129.Google Scholar
Chen, D., Wei, W., & Chen, L. (2017). Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Science Reviews 173: 109121.Google Scholar
Chen, S. K., Liu, C. W., & Chen, Y. R. (2012). Assessing soil erosion in a terraced paddy field using experimental measurements and universal soil loss equation. Catena 95: 131141.Google Scholar
Chen, Y., Wu, J., Wang, H., et al. (2019). Evaluating the soil quality of newly created farmland in the hilly and gully region on the Loess Plateau, China. Journal of Geographical Sciences 29(5): 791802.Google Scholar
Cheng, H., Zou, X., Wu, Y., et al. (2007). Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil & Tillage Research 94(1): 414.Google Scholar
CTIC (Conservation Technology Information Center) (2002). National Crop Residue Management Survey. West Lafayette, IN: CTIC.Google Scholar
Deng, L., Shangguan, Z. P., & Li, R. (2012). Effects of the grain-for-green program on soil erosion in China. International Journal of Sediment Research 27(1): 120127.Google Scholar
Derpsch, R. (2003). Conservation tillage, no-tillage and related technologies. In Luis, G. T., José, B., Armando, M. V., & Antonio, H. C. (eds.), Conservation Agriculture (pp. 181190). Dordrecht: Springer.Google Scholar
Dong, J., Zhang, K., & Guo, Z. (2012). Runoff and soil erosion from highway construction spoil deposits: A rainfall simulation study. Transportation Research Part D-transport and Environment 17(1): 814.Google Scholar
Ellison, W. D. (1944). Studies of raindrop erosion. Agricultural Engineering 25(4): 131136.Google Scholar
Erpul, G., Gabriels, D., Cornelis, W. M., Samray, H., & Guzelordu, T. (2009). Average sand particle trajectory examined by the Raindrop Detachment and Wind‐driven Transport (RD‐WDT) process. Earth Surface Processes and Landforms 34(9): 12701278.Google Scholar
Evans, K. G., Loch, R. J., Aspinall, T. O., & Bell, L. C. (1997). Laboratory rainfall simulator studies of selected open-cut coal mine overburden spoils from Central Queensland. Soil Research 35(1): 1530.Google Scholar
Fernández-Raga, M., Palencia, C., Keesstra, S., et al. (2017). Splash erosion: A review with unanswered questions. Earth-Science Reviews 171: 463477.Google Scholar
Foster, G. R. (1986). Understanding ephemeral gully erosion. In National Research Council, Board on Agriculture (ed.), Soil Conservation: Assessing the National Research Inventory (pp. 90118). Washington, DC: National Academy Press.Google Scholar
Foster, G. R., & Meyer, L. D. (1972). A closed-form soil erosion equation for upland areas. In Shen, H. W. (ed.), Sedimentation: Symposium to Honor Professor H.A. Einstein (pp. 12.112.19). Fort Collins, CO: Einstein.Google Scholar
Foster, G. R., Meyer, L. D., & Onstad, C. A. (1977). An erosion equation derived from basic erosion principles. Transactions of the ASAE 20(4): 678682.Google Scholar
Goebes, P., Seitz, S., Geißler, C., et al. (2014). Momentum or kinetic energy – How do substrate properties influence the calculation of rainfall erosivity? Journal of Hydrology 517: 310316.Google Scholar
Grossi, C. M., Brimblecombe, P., & Harris, I. (2007). Predicting long term freeze–thaw risks on Europe built heritage and archaeological sites in a changing climate. Science of the Total Environment 377(2–3): 273281.Google Scholar
Guerra, A. J. T., Fullen, M. A., Jorge, M. D. C. O., Bezerra, J. F. R., & Shokr, M. S. (2017). Slope processes, mass movement and soil erosion: A review. Pedosphere 27(1): 2741.Google Scholar
Gyssels, G., & Poesen, J. (2003). The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 28(4): 371384.Google Scholar
Han, Y., Zheng, F. L., & Xu, X. M. (2017). Effects of rainfall regime and its character indices on soil loss at loessial hillslope with ephemeral gully. Journal of Mountain Science 14(3): 527538.Google Scholar
Hancock, G. R., & Evans, K. G. (2006). Gully position, characteristics and geomorphic thresholds in an undisturbed catchment in northern Australia. Hydrological Processes 20(14): 29352951.Google Scholar
Hatfield, J. L., Allmaras, R. R., Rehm, G. W., & Lowery, B. (1998). Ridge tillage for corn and soybean production: Environmental quality impacts. Soil and Tillage Research 48(3): 145154.Google Scholar
Heede, B. H. (1990). Vegetation Strips Control Erosion in Watersheds (Vol. 499). Fort Collins, CO: USDA Forest Service, Rocky Mountain Forest and Range Experiment Station.Google Scholar
Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems & Environment 103(1): 125.Google Scholar
Horton, R. E., Leach, H. R., & Van Vliet, R. (1934). Laminar sheet‐flow. Eos, Transactions American Geophysical Union 15(2): 393404.Google Scholar
Hürlimann, M., Coviello, V., & Bel, C. (2019). Debris-flow monitoring and warning: Review and examples. Earth-Science Reviews 199(1): 102981.Google Scholar
Hurni, H., Herweg, K., Portner, B., & Liniger, H. (2008). Soil erosion and conservation in global agriculture. In Braimoh, A. K., & Vlek, P. L. G. (eds.), Land Use and Soil Resources (pp. 4171). Dordrecht: Springer.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Forth Assessment Report of IPCC. Cambridge: IPCC.Google Scholar
Jin, Z., Cui, B., Song, Y., et al. (2012). How many check dams do we need to build on the Loess Plateau? Environmental Science & Technology 46(16): 85278528.Google Scholar
Jordán, A., Zavala, L. M., & Gil, J. (2010). Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81(1): 7785.Google Scholar
Kinnell, P. I. A. (2005). Raindrop‐impact‐induced erosion processes and prediction: A review. Hydrological Processes: An International Journal 19(14): 28152844.Google Scholar
Lal, R. (1990). Ridge-tillage. Soil & Tillage Research 18(2–3): 107111.Google Scholar
Laws, J. O., & Parsons, D. A. (1943). The relation of raindrop‐size to intensity. Eos, Transactions American Geophysical Union 24(2): 452460.Google Scholar
Lenzi, M. A., & Comiti, F. (2003). Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology 55(1–4): 97109.Google Scholar
Li, X., Niu, J., & Xie, B. (2014). The effect of leaf litter cover on surface runoff and soil erosion in Northern China. PloS One 9(9): e107789.Google Scholar
Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews 163: 94117.Google Scholar
Li, Z., & Fang, H. (2017). Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology 293: 255271.Google Scholar
Litschert, S. E., Theobald, D. M., & Brown, T. C. (2014). Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion. Catena 118: 206219.Google Scholar
Liu, B., Zhang, K., & Xie, Y. (2002). An empirical soil loss equation. In 12th International Soil Conservation Organization Conference, May 2002 (pp. 2125). Beijing, China: Tsinghua University Press.Google Scholar
Liu, Q. J., Shi, Z. H., Yu, X. X., & Zhang, H. Y. (2014). Influence of microtopography, ridge geometry and rainfall intensity on soil erosion induced by contouring failure. Soil and Tillage Research 136: 18.Google Scholar
Liu, Y., Fu, B., Liu, Y., Zhao, W., & Wang, S. (2019). Vulnerability assessment of the global water erosion tendency: Vegetation greening can partly offset increasing rainfall stress. Land Degradation & Development 30(9): 10611069.Google Scholar
Maeda, E. E., Pellikka, P. K., Siljander, M., & Clark, B. J. (2010). Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya. Geomorphology 123(3–4): 279289.Google Scholar
Maetens, W., Poesen, J., & Vanmaercke, M. (2012). How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Reviews 115(1–2): 2136.Google Scholar
Martınez-Casasnovas, J. A., Ramos, M. C., & Poesen, J. (2004). Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology 58(1–4): 305321.Google Scholar
Meng, L., Feng, Q., Wu, K., & Meng, Q. (2012). Quantitative evaluation of soil erosion of land subsided by coal mining using RUSLE. International Journal of Mining Science and Technology 22(1): 711.Google Scholar
Meyer, L. D., & Monke, E. J. (1965). Mechanics of soil erosion by rainfall and overland flow. Transactions of the ASAE 8(4): 572577.Google Scholar
Meyer, L. D., Foster, G. R., & Romkens, M. J. M. (1975). Source of soil eroded by water from upland slopes. In ARS-S-40 (ed.), Present and Prospective Technology for Predicting Sediment Yields and Sources (pp. 177189). Oxford, MS: US Department of Agriculture, National Sedimentation Laboratory.Google Scholar
Mondal, A., Khare, D., & Kundu, S. (2016). Change in rainfall erosivity in the past and future due to climate change in the central part of India. International Soil and Water Conservation Research 4(3): 186194.Google Scholar
Montanarella, L. (2015). Agricultural policy: Govern our soils. Nature 528: 3233.Google Scholar
Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences 104(33): 1326813272.Google Scholar
Navarrohevia, J., Limafarias, T. R., De Araujo, J. C., Osoriopelaez, C., & Pando, V. (2016). Soil erosion in steep road cut slopes in Palencia (Spain). Land Degradation & Development 27(2): 190199.Google Scholar
Nearing, M. A. (2001). Potential changes in rainfall erosivity in the US with climate change during the 21st century. Journal of Soil and Water Conservation 56(3): 229232.Google Scholar
Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE 32(5): 15871593.Google Scholar
Nearing, M. A., Jetten, V., Baffaut, C., et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61(2–3): 131154.Google Scholar
Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004). Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59(1): 4350.Google Scholar
Nichols, M. H., Nearing, M., Hernandez, M., & Polyakov, V. O. (2016). Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology 265: 107116.Google Scholar
Nunes, J. P., Seixas, J., & Keizer, J. J. (2013). Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. Catena 102: 2739.Google Scholar
Nyssen, J., Vandenreyken, H., Poesen, J., et al. (2005). Rainfall erosivity and variability in the Northern Ethiopian highlands. Journal of Hydrology 311(1–4): 172187.Google Scholar
Nyssen, J., Veyret‐Picot, M., Poesen, J., et al. (2004). The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use and Management 20(1): 5564.Google Scholar
O’Neal, M. R., Nearing, M. A., Vining, R. C., Southworth, J., & Pfeifer, R. A. (2005). Climate change impacts on soil erosion in midwest United States with changes in crop management. Catena 61(2–3): 165184.Google Scholar
Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., & Chen, Z. (2007). The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin 119(11–12): 14621476.Google Scholar
Panagos, P., Ballabio, C., Meusburger, K., et al. (2017). Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology 548: 251262.Google Scholar
Paroissien, J. B., Darboux, F., Couturier, A., et al. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management 150: 5768.Google Scholar
Peigné, J., Vian, J. F., Payet, V., & Saby, N. P. (2018). Soil fertility after 10 years of conservation tillage in organic farming. Soil and Tillage Research 175: 194204.Google Scholar
Pimentel, D., Harvey, C., Resosudarmo, P., et al. (1995). Environmental and economic costs of soil erosion and conservation. Science 267(5201): 11171123.Google Scholar
Pittelkow, C. M., Linquist, B. A., Lundy, M. E., et al. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research 183: 156168.Google Scholar
Poesen, J. (2018). Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43(1): 6484.Google Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena 50(2–4): 91133.Google Scholar
Prosdocimi, M., Tarolli, P., & Cerdà, A. (2016). Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews 161: 191203.Google Scholar
Pruski, F. F., & Nearing, M. A. (2002). Climate‐induced changes in erosion during the 21st century for eight US locations. Water Resources Research 38(12): 34-1–34-11.Google Scholar
Qin, C., Zheng, F., Wilson, G. V., Zhang, X. J., & Xu, X. (2019). Apportioning contributions of individual rill erosion processes and their interactions on loessial hillslopes. Catena 181: 104099.Google Scholar
Ramos, M. C., & Martínez-Casasnovas, J. A. (2015). Climate change influence on runoff and soil losses in a rainfed basin with Mediterranean climate. Natural Hazards 78(2): 10651089.Google Scholar
Rauws, G., & Covers, G. (1988). Hydraulic and soil mechanical aspects of rill generation on agricultural soils. Journal of Soil Science 39(1): 111124.Google Scholar
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703. Washington, DC: United States Government Printing.Google Scholar
Reubens, B., Poesen, J., Danjon, F., Geudens, G., & Muys, B. (2007). The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 21(4): 385402.Google Scholar
Ryżak, M., Bieganowski, A., & Polakowski, C. (2015). Effect of soil moisture content on the splash phenomenon reproducibility. PloS One 10(3): 115.Google Scholar
Sartori, M., Philippidis, G., Ferrari, E., et al. (2019). A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy 86: 299312.Google Scholar
Segura, C., Sun, G., McNulty, S., & Zhang, Y. (2014). Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. Journal of Soil and Water Conservation 69(2): 171181.Google Scholar
Seitz, S., Goebes, P., Puerta, V. L., et al. (2019). Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development 39(1): 4.Google Scholar
Serpa, D., Nunes, J. P., Santos, J., et al. (2015). Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Science of the Total Environment 538: 6477.Google Scholar
Shao, H., Baffaut, C., Nelson, N. O., et al. (2013). Development and application of algorithms for simulating terraces within SWAT. Transactions of the ASABE 56(5): 17151730.Google Scholar
Shen, W., Zou, C., Liu, D., et al. (2015). Climate-forced ecological changes over the Tibetan Plateau. Cold Regions Science and Technology 114: 2735.Google Scholar
Shrestha, N. K., & Wang, J. (2018). Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate. Science of the Total Environment 625: 10301045.Google Scholar
Sidorchuk, A. (1999). Dynamic and static models of gully erosion. Catena 37(3–4): 401414.Google Scholar
Simon, A., & Rinaldi, M. (2006). Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 79(3–4): 361383.Google Scholar
Simonneaux, V., Cheggour, A., Deschamps, C., et al. (2015). Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). Journal of Arid Environments 122: 6475.Google Scholar
Soil and Water Conservation Society (SWCS) (2003). Conservation Implications of Climate Change: Soil Erosion and Runoff from Cropland. Ankeny, IA: Soil and Water Conservation Society.Google Scholar
Soil Science Society of America (2008). Glossary of Soil Science Terms. Madison, WI: ASA-CSSA-SSSA.Google Scholar
Song, Y., Yan, P., & Liu, L. (2006). A review of the research on complex erosion by wind and water. Journal of Geographical Sciences 16(2): 231241.Google Scholar
Southworth, J., Randolph, J. C., Habeck, M., et al. (2000). Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agriculture, Ecosystems & Environment 82(1–3): 139158.Google Scholar
Stavi, I., Perevolotsky, A., & Avni, Y. (2010). Effects of gully formation and headcut retreat on primary production in an arid rangeland: Natural desertification in action. Journal of Arid Environments 74(2): 221228.Google Scholar
Stevens, C. J., Quinton, J. N., Bailey, A. P., et al. (2009). The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil and Tillage Research 106(1): 145151.Google Scholar
Sun, L., Fang, H., Qi, D., Li, J., & Cai, Q. (2013). A review on rill erosion process and its influencing factors. Chinese Geographical Science 23(4): 389402.Google Scholar
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences 63(3): 459462.Google Scholar
Tien Bui, D., Shirzadi, A., Shahabi, H., et al. (2019). A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 19(11): 2444.Google Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al. (2007). Observations: Surface and atmospheric climate change. In Solomon, S., Qin, D., Manning, M., et al. (eds.), Climate Change 2007: The Physical Science Basis (pp. 235336). Cambridge: Cambridge University Press.Google Scholar
Trimble, S. W. (1997). Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 278(5342): 14421444.Google Scholar
Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena 63(2–3): 132153.Google Scholar
Van den Putte, A., Govers, G., Diels, J., Gillijns, K., & Demuzere, M. (2010). Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. European Journal of Agronomy 33(3): 231241.Google Scholar
Vanmaercke, M., Maetens, W., Poesen, J., et al. (2012). A comparison of measured catchment sediment yields with measured and predicted hillslope erosion rates in Europe. Journal of Soils and Sediments 12(4): 586602.Google Scholar
de Vente, J., Poesen, J., Bazzoffi, P., Rompaey, A. V., & Verstraeten, G. (2006). Predicting catchment sediment yield in Mediterranean environments: The importance of sediment sources and connectivity in Italian drainage basins. Earth Surface Processes and Landforms 31(8): 10171034.Google Scholar
Walling, D. E., & Collins, A. L. (2005). Suspended sediment sources in British rivers. Sediment Budgets 1 IAHS Publication 291.Google Scholar
Wang, Y., Fu, B., Chen, L., , Y., & Gao, Y. (2011). Check dam in the Loess Plateau of China: Engineering for environmental services and food security. Environmental Science & Technology 45(24): 1029810299.Google Scholar
Wang, Y., Wu, Y., Kou, Q., et al. (2007). Definition of arsenic rock zone borderline and its classification. Science of Soil and Water Conservation 5(1): 48.Google Scholar
Wei, W., Chen, D., Wang, L., et al. (2016). Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Science Reviews 159: 388403.Google Scholar
Wilson, G. (2011). Understanding soil‐pipe flow and its role in ephemeral gully erosion. Hydrological Processes 25(15): 23542364.Google Scholar
Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil-loss equation. Soil Science Society of America Journal 23(3): 246249.Google Scholar
Wischmeier, W. H. (1962). Rainfall erosion potential. Agricultural Engineering 43(4): 212225.Google Scholar
Wischmeier, W. H., & Smith, D. D. (1960). A universal soil-loss equation to guide conservation farm planning. Transactions of the 7th International Congress on Soil Sciences, 1: 418425.Google Scholar
Wu, H., Xu, X., Zheng, F., Qin, C., & He, X. (2018). Gully morphological characteristics in the loess hilly–gully region based on 3D laser scanning technique. Earth Surface Processes and Landforms 43(8): 17011710.Google Scholar
Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability 3: 5155.Google Scholar
Xiong, M., Sun, R., & Chen, L. (2018). Effects of soil conservation techniques on water erosion control: A global analysis. Science of the Total Environment 645: 753760.Google Scholar
Xiong, M., Sun, R., & Chen, L. (2019). A global comparison of soil erosion associated with land use and climate type. Geoderma 343: 3139.Google Scholar
Xu, X., Zhang, H., & Zhang, O. (2004). Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science & Policy 7(2): 7986.Google Scholar
Xu, X., Zheng, F., Qin, C., Wu, H., & Wilson, G. V. (2017). Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding. Catena 149: 417425.Google Scholar
Xu, X., Zheng, F., Wilson, G. V., et al. (2018). Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China. Soil and Tillage Research 177: 111.Google Scholar
Xu, X., Zheng, F., Wilson, G. V., et al. (2019). Quantification of upslope and lateral inflow impacts on runoff discharge and soil loss in ephemeral gully systems under laboratory conditions. Journal of Hydrology 579: 124174.Google Scholar
Xu, X. Z., Xu, Y., Chen, S. C., Xu, S. G., & Zhang, H. W. (2010). Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environmental Science & Policy 13(8): 793800.Google Scholar
Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes 17(14): 29132928.Google Scholar
Zhang, P., Yao, W., Liu, G., & Xiao, P. (2019). Research progress and prospects of complex soil erosion. Transactions of the Chinese Society of Agricultural Engineering 35(24): 154161.Google Scholar
Zhang, X. C., & Nearing, M. A. (2005). Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 61(2–3): 185195.Google Scholar
Zhang, X. H., Zheng, F. L., & Li, J. (2007). Current situation and existing problems of gully erosion research. Research of Soil Water Conservation 14(4): 3132.Google Scholar
Zhang, Y. G., Nearing, M. A., Zhang, X. C., Xie, Y., & Wei, H. (2010). Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. Journal of Hydrology 384(1–2): 97106.Google Scholar
Zhang, Y. G., Wu, Y. Q., Liu, B. Y., Zheng, Q. H., & Yin, J. Y. (2007). Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil & Tillage Research 96(1–2): 2841.Google Scholar
Zhao, Y., Wang, E., Cruse, R. M., & Chen, X. (2012). Characterization of seasonal freeze–thaw and potential impacts on soil erosion in northeast China. Canadian Journal of Soil Science 92(3): 567571.Google Scholar
Zheng, F., Xu, X., & Qin, C. (2016). A review of gully erosion process research. Transactions of the Chinese Society for Agricultural Machinery 47(8): 4859.Google Scholar
Zhu, X. M. (1956). Classification on the soil erosion in the loess region. Acta Pedologica Sinica 4(2): 99115.Google Scholar

References

Anderson, M. P., & Woessner, W. W. (1991). Applied Groundwater Modeling: Simulation of Flow and Advective Transport. San Diego, CA: Academic Press.Google Scholar
Barlow, P. M., & Reichard, E. G. (2010). Saltwater intrusion in coastal regions of North America. Hydrogeology Journal 18: 247260.Google Scholar
Bear, J. (1979). Hydraulics of Groundwater. New York: McGraw-Hill.Google Scholar
Bear, J., Cheng, A., Sorek, S., et al. (1999). Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices (Theory and Applications of Transport in Porous Media). Netherlands: Kluwer Academic Publishers.Google Scholar
Bocanegra, E., Da Silva, G. C., Custodio, E., et al. (2010). State of knowledge of coastal aquifer management in South America. Hydrogeology Journal 18: 261267.Google Scholar
Custodio, E. (2010). Coastal aquifers of Europe: An overview. Hydrogeology Journal 18: 269280.Google Scholar
Diersch, H. J. G. (1996). Interactive, graphics-based finite-element simulation system FEFLOW for modeling groundwater flow, contaminant mass and heat transport processes, FEFLOW User’s Manual Version 4.5. Institute for Water Resources Planning and System Research, Ltd.Google Scholar
Drabbe, J., & Badon Ghyben, W. (1888–1889). Notes on the probable results of the proposed well drilling near Amsterdam: The Hague. Koninklijk Instituut Instagram Tijdschrift 822.Google Scholar
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Guo, W., & Langevin, C. D. (2002). User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow. Techniques of Water-Resources Investigations 06-A7: 77.Google Scholar
Herzberg, A. (1901). The water supply on parts of the North Sea coast: Munich. Journal of Gasbeleucht and Wasserversorg 44: 815819, 842–844.Google Scholar
Holzbecher, E. (1998). Modeling Density-Driven Flow in Porous Media: Principles, Numerics, Software. Berlin: Springer-Verlag.Google Scholar
Huyakorn, P. S., Anderson, P. F., Mercer, J. W., et al. (1987). Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite-element model. Water Resources Research 23(2): 293312.Google Scholar
Kipp, K. L. (1986). HST3D – A computer code for simulation of heat and solute transport in three-dimensional groundwater flow systems. International groundwater modeling center, U.S. Geological Survey Water Resources Investigations Report 86-4095.Google Scholar
Lin, J., Snodsmith, B., Zheng, C., et al. (2006). A modeling study of seawater intrusion in Alabama Gulf coast, USA. Environmental Geology 57: 119130.Google Scholar
Oude Essink, G. H. P. (1998). Simulating density dependent groundwater flow: The adapted MOC3D. In Proceedings of the 15th Saltwater Intrusion Meeting, Ghent, Belgium.Google Scholar
Rosenzweig, C., Horton, R. M., Bader, D. A., et al. (2014). Enhancing climate resilience at NASA centers: A collaboration between science and stewardship. Bulletin of the American Meteorological Society 95(9): 13511363.Google Scholar
Sauter, F. J., Leijnse, A., & Beusen, A. H. W. (1993). METROPOL’s User Guide. Netherlands: National Institute of Public Health and Environmental Protection.Google Scholar
Sherif, M. M., & Singh, V. P. (1999). Effect of climate change on sea water intrusion in coastal aquifers. Hydrological Processes 13(8): 12771287.Google Scholar
Shi, L., & Jiao, J. J. (2014). Seawater intrusion and coastal aquifer management in China: A review. Environmental Earth Sciences 72: 28112819.Google Scholar
Steyl, G., & Dennis, I. (2010). Review of coastal-area aquifers in Africa. Hydrogeology Journal 18: 217225.Google Scholar
Van Biersel, T. P., Carlson, D. A., & Milner, L. R. (2007). Impact of hurricane storm surges on the groundwater resources. Environmental Geology 53: 813826.Google Scholar
Voss, C. I. (1984). A finite element simulation model for saturated-unsaturated, fluid-density-dependent groundwater flow with energy transport or chemically-reactive single species solute transport. Water Resources Investigation Report 84-4369, U.S. Geological Survey.Google Scholar
Ward, D. S. (1991). Date input for SWIFT/386 (version 2.50). Geo-trans Technical Report, Sterling, VA.Google Scholar
Werner, A. D. (2010). A review of seawater intrusion and its management in Australia. Hydrogeology Journal 18: 281285.Google Scholar
White, I., & Falkland, T. (2010). Management of freshwater lenses on small Pacific islands. Hydrogeology Journal 18: 227246.Google Scholar
Xiao, H., Wang, D., Hagen, S. C., et al. (2016). Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA). Hydrogeology Journal 24(7): 17911806.Google Scholar
Xiao, H., Wang, D., Medeiros, S. C., et al. (2019). Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Science of the Total Environment 648: 10021017.Google Scholar
Zienkiewicz, O. C. (1977). The Finite Element Method (3rd ed.). London: McGraw-Hill.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×