Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-19T21:52:58.973Z Has data issue: false hasContentIssue false

24 - Full crossed products and failure of WEP for B ⊗min B

Published online by Cambridge University Press:  10 February 2020

Gilles Pisier
Affiliation:
Texas A & M University
Get access

Summary

This chapter is devoted to the proof of two new characterizations of the WEP. This mostly consists of unpublished work due to the late Uffe Haagerup. Basically, the main point is as follows: consider an inclusion of a C*-algebra A into another (larger) one B. We wish to understand when there is a contractive projection from the bidual of B onto the bidual of A. From work presented earlier, we know that this holds if and only if the inclusion from A to B remains an inclusion if we tensorize it with any auxiliary C*-algebra C for the maximal tensor product. The main theorem of this chapter shows that actually a much weaker property suffices: it is enough to take for C the complex conjugate of A and we may restrict to « positive definite » tensors. The main case of interest is when B=B(H), in which case the property in question holds iff A has the WEP. Among the corollaries, one can prove that a von Neumann subalgebra of B(H) is injective as soon as there is a c.b. projection from B(H) onto it.

Type
Chapter
Information
Tensor Products of C*-Algebras and Operator Spaces
The Connes–Kirchberg Problem
, pp. 410 - 433
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×