Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T07:56:32.081Z Has data issue: false hasContentIssue false

7 - Constitutive Formulations for Network Materials

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

A review of current constitutive formulations for Network materials is presented in this chapter. Network materials are composed from discrete elements and are not continua. Their behavior is somewhat similar to that of mechanisms. Furthermore, deformation is generally nonaffine due to the stochastic network structure. These observations render difficult the adaptation of classical constitutive equations for this class of materials. These issues are discussed in detail in the opening section. Further, the chapter is divided into four sections, each presenting models of a certain type. The first category includes phenomenological models defined based on a free energy functional and examples relevant for thermal networks (elastomers and gels) are presented. The next three categories encompass mechanism-based models, which are divided based on the degree to which the respective models account for nonaffinity in affine, quasi-affine, and nonaffine models. An outline of the challenges and opportunities related to the development of mechanism-based constitutive models for Network materials is presented in closure.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 252 - 277
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altan, S. B. & Aifantis, E. C. (1992). On the structure of mode III crack tip in gradient elasticity. Scripta Metall. Mater. 26, 319324.CrossRefGoogle Scholar
Arruda, M. & Boyce, M. C. (1993). A 3D constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389412.Google Scholar
Astrom, J. A., Makinen, J. P., Hirvonen, H. & Timonen, J. (2000). Stiffness of compressed fiber mats. J. Appl. Phys. 88, 50565061.Google Scholar
Berkache, K., Deogekar, S., Goda, I., Picu, R. C. & Ganghoffer, J. F. (2019a). Identification of equivalent couple-stress continuum models for planar random fibrous media. Cont. Mech. Thermodyn., 31, 10351050.Google Scholar
Berkache, K., Deogekar, S., Goda, I., Picu, R. C. & Ganghoffer, J. F. (2019b). Homogenized elastic response of random fiber networks based on strain gradient continuum models. Mathem. Mech. Sol. 24, 38803896.Google Scholar
Bischoff, J. E., Arruda, E. M. & Grosh, K. (2002). A microstructurally-based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570579.Google Scholar
Boyce, M. C. & Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chem. Techno. 73, 504523.Google Scholar
Cacho, F., Elbischger, P. J., Rodriguez, J. F., Doblare, M. & Holzapfel, G. A. (2007). A constitutive model for fibrous tissues considering collagen fiber crimp. Int. J. Non-linear Mech. 42, 391402.Google Scholar
Carnaby, G. A. & Pan, N. (1989a). Theory of the compression hysteresis of fibrous assemblies. Textile Res. J. 59, 275284.CrossRefGoogle Scholar
Carnaby, G. A. & Pan, N. (1989b). Theory of the shear deformation of fibrous assemblies. Textile Res. J. 59, 285292.CrossRefGoogle Scholar
Castro, J. & Ostoja-Starzewski, M. (2003). Elasto-plasticity of paper. Int. J. Plast. 19, 20832098.Google Scholar
Chan, V. W. L., Tobin, W. R., Zhang, S., et al. (2019). Image-based multiscale mechanical analysis of strain amplification in neurons embedded in collagen gel. Comput. Meth. Biomech. Biomed. Eng. 22, 113129.CrossRefGoogle ScholarPubMed
Chandran, P. L. & Barocas, V. H. (2006). Affine versus non-affine fibril kinematics in collagen networks: Theoretical studies of network behavior. J. Biomech. Eng. 128, 259270.CrossRefGoogle ScholarPubMed
Chen, N., Koker, M. K. A., Uzun, S. & Silberstein, M. N. (2016). In-situ X-ray study of the deformation mechanisms in non-woven polypropylene. Int. J. Sol. Struct. 97–98, 200208.CrossRefGoogle Scholar
Coffin, D. (2008). Developing constitutive equations for paper that are valid for multi-time scales and large stresses. In: Proceedings of progress in paper physics seminar, Otaniemi, pp. 17–20.Google Scholar
Cosserat, E. & Cosserat, F (1909). Theorie des corps deformables. A. Hermann et Fils, Paris.Google Scholar
Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British J. Appl. Phys. 3, 7281.Google Scholar
Delfino, A., Stergiopulos, N., Moore, J. E. & Meister, J. J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30 , 777786.Google Scholar
Diani, J., Brieu, M., Vacherand, J. M. & Rezgui, A. (2004). Directional model for isotropic and anisotropic hyperelastic rubberlike materials. Mech. Mater. 36, 313321.Google Scholar
Eringen, A. C. (1966). Linear theory of micropolar elasticity. J. Math. Mech. 15, 909923.Google Scholar
Eringen, A. C. (1972) On nonlocal elasticity. Int. J. Eng. Sci. 10, 233248.Google Scholar
Flory, P. J. (1976). Statistical thermodynamics of random networks. Proc. R. Soc. Lond. A 351,351380.Google Scholar
Flory, P. J. (1985). Molecular theory of rubber elasticity. Polym. J. 17, 112.Google Scholar
Flory, P. J. & Erman, B. (1982). The theory of elasticity of polymer networks. Macromolecules 15, 800806.Google Scholar
Flory, P. J. & Rehner, J. Jr. (1943). Statistical mechanics of cross-linked polymer networks: I. Rubberlike elasticity. J. Chem. Phys. 11, 512520.Google Scholar
Gasser, T. C., Ogden, R. W. & Holzapfel, G. A. (2006). Hyperelastic modelling of artrial layers with distributed collagen fiber orientations. J. Roy. Soc. Interfaces 3, 1535.CrossRefGoogle Scholar
Gaylord, R. J. & Douglas, J. F. (1990). The localization model of rubber elasticity. Polym. Bull. 23, 529533.Google Scholar
Gurtin, M. E., Fried, E. & Anand, L. (2010). The mechanics and thermodynamics of continua. Cambridge University Press, New York.CrossRefGoogle Scholar
Han, W. H., Horkay, F. & McKenna, G. (1999). Mechanical and swelling behaviors of rubber: A comparison of some molecular models with experiments. Math. Mech. Sol. 4, 139167.CrossRefGoogle Scholar
Hatami-Marbini, H. & Picu, R. C. (2009). Heterogeneous long-range correlated deformation in semiflexible random fiber networks. Phys. Rev. E 80, 046703.Google Scholar
Hearle, J. W. S. & Stevenson, P. J. (1964). Studies in nonwoven fabrics: Prediction of tensile properties. Textile Res J. 34, 181191.Google Scholar
Holzapfel, G. A. (2000) Nonlinear solid mechanics: A continuum approach for engineers. Chichester, UK: Wiley.Google Scholar
Holzapfel, G. A., Gasser, T. C. & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 148.CrossRefGoogle Scholar
Humphrey, J. D., Strumpf, R. K. & Yin, F. C. P. (1990). Determination of a constitutive relation for passive myocardium: A new functional form. J. Biomech. Eng. 112, 333339.Google Scholar
Isaksson, P. & Hagglund, R. (2009). Structural effects on deformation and fracture of random fiber networks and consequences on continuum models. Int. J. Sol. Struct. 46, 23202329.Google Scholar
Khansari, S., Sinha-Ray, S., Yarin, A. L. & Pourdeyhimi, B. (2012). Stress–strain dependence for soy-protein nanofiber mats. J. Appl. Phys. 111, 044906.CrossRefGoogle Scholar
Komori, T. & Itoh, M. (1991a). A new approach to the theory of the compression of fiber assemblies. Textile Res. J. 61, 420428.Google Scholar
Komori, T. & Itoh, M. (1991b). Theory of the general deformation of fiber assemblies. Textile Res. J. 61, 588594.Google Scholar
Komori, T., Itoh, M. & Takaku, A. (1992). A model analysis of the compressibility of fiber assemblies. Textile Res. J. 62, 567574.Google Scholar
Komori, T., Makishima, K. & Itoh, M. (1980). Mechanics of large deformation of twisted-filament yarns. Textile Res. J. 50, 548555.Google Scholar
Kroon, M. (2010). A constitutive model for strain crystallizing rubber-like materials. Mech. Mater. 42, 873885.Google Scholar
Lanir, Y. (1983). Constitutive equations for fibrous connective tissue. J. Biomech. 16, 112.Google Scholar
Lee, D. H. & Carnaby, G. A. (1992). Compressional energy of the random fiber assembly. I. Theory. Textile Res. J. 62, 185191.Google Scholar
Ma, X., Schickel, M. E., Stevenson, M. D., et al. (2013). Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 14101418.Google Scholar
Mäkelä, P. & Östlund, S. (2003). Orthotropic elastic-plastic material model for paper materials. Int. J. Sol. Struct. 40, 55995620.CrossRefGoogle Scholar
Marckmann, G. & Verron, E. (2006). Comparison of hyperelastic models for rubberlike materials. Rubber Chem. Technol. 79, 835858.CrossRefGoogle Scholar
Martinez-Hergueta, F., Ridruejo, A., Gonzalez, C. & Llorca, J. (2016). A multiscale micromechanical model of needlepunched nonwoven fabrics. Int. J. Sol. Struct. 96, 8191.Google Scholar
Miehe, C., Goktepe, S. & Lulei, F. (2004). A micro-macro approach to rubber-like materials – Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Sol. 52, 26172660.CrossRefGoogle Scholar
Mooney, M. (1940). A theory of large elastic deformation. J. Appl. Phys. 11, 582592.CrossRefGoogle Scholar
Narter, M. A., Batra, S. K. & Buchanan, D. R. (1999). Micromechanics of the 3D fiberwebs: Constitutive equations. Proc. R. Soc. Lond. 455, 35433563.Google Scholar
Nowacki, W. (1986). Theory of asymmetric elasticity. Pergamon Press, New York.Google Scholar
Ogden, R. W. (1984). Nonlinear elastic deformations. Wiley, New York.Google Scholar
Ostoja-Starzewski, M. & Castro, J. (2003). Random formation, inelastic response and scale effects in paper. Proc. R. Soc. London A 361, 965985.Google Scholar
Picu, R. C. (2011). Mechanics of random fiber networks: A review. Soft. Matt. 7, 67686785.Google Scholar
Picu, R. C., Deogekar, S. & Islam, M. R. (2018). Poisson’s contraction and fiber kinematics in tissue: Insight from collagen network simulations. J. Biomech. Eng. 140, 021002.Google Scholar
Planas, J., Guinea, G. V. & Elices, M. (2007). Constitutive model for fiber-reinforced materials with deformable matrices. Phys. Rev. E 76, 041903.Google Scholar
Raina, A. & Linder, C. (2014). A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J. Mech. Phys. Sol. 65, 1234.CrossRefGoogle Scholar
Raina, A. & Linder, C. (2015). A micromechanical model with strong discontinuities for failure in nonwovens at finite deformations. Int. J. Sol. Struct. 75–76, 247259.Google Scholar
Ridruejo, A., Gonzalez, C. & Llorca, J. (2012). A constitutive model for the in-plane mechanical behavior of nonwoven fabrics. Int. J. Sol. Struct. 49, 22152229.Google Scholar
Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. IV Further development of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379397.Google Scholar
Ronca, G. & Allegra, G. (1975). An approach to rubber elasticity with internal constraints. J. Chem. Phys. 63, 49904997.Google Scholar
Rubinstein, M. & Colby, R. H. (2003). Polymer physics. Oxford University Press, Oxford.Google Scholar
Rubinstein, M. & Panyukov, S. (2002). Elasticity of polymer networks. Macromolecules 35, 66706686.Google Scholar
Schaefer, H (1967). Das Cosserat kontinuum. ZAMM 47, 485498.Google Scholar
Silberstein, M. N., Pai, C. L., Rutledge, G. C. & Boyce, M. C. (2012). Elastic–plastic behavior of non-woven fibrous mats. J. Mech. Phys. Sol. 60, 295318.Google Scholar
Thirlwell, B. E. & Treloar, L. R. G. (1965). Nonwoven fabrics. Part VI: Dimensional and mechanical anisotropy. Text. Res. J. 35, 827835.Google Scholar
Ting, T. C. T. & Chen, T. (2005). Poisson’s ratio for anisotropic elastic materials can have no bounds. Quart. J. Mech. Appl. Math. 58, 7382.CrossRefGoogle Scholar
Tkachuk, M. & Linder, C. (2012). The maximal advance path constraint for the homogenization of materials with random microstructure. Phil. Mag. 92, 27792808.Google Scholar
Treloar, L. R. G. (1944). Stress–strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 5970.Google Scholar
Treloar, L. R. G. (1946). The elasticity of a network of long-chain molecules. III. Trans. Faraday Soc. 42, 8394.Google Scholar
Treloar, L. R. G. (1975). The physics of rubber elasticity. Oxford University Press, Oxford.Google Scholar
Tyznik, S. & Notbohm, J. (2019). Length scale dependent elasticity in random three-dimensional fiber networks. Mech. Mater. 138, 103155.Google Scholar
Vader, D., Kablea, A., Weitz, D. & Mahadevan, L. (2009). Strain-induced alignment in collagen gels. PLoS ONE 4: e5902.Google Scholar
Voigt, W (1887). Theoretische studien uber die elastizitatsverhaltnisse der krystalle. Abhandlungen der Mathematischen Classe der Koniglichen Gesellschaft der Wissenschaften zu Gottingen 34, 351.Google Scholar
Wang, M. & Guth, E. (1952). Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 11441157.Google Scholar
Wong, D., Andriyana, A., Ang, B. C., et al. (2019a). Poisson’s ratio and volume change accompanying deformation of randomly oriented electrospun nanofibrous membranes. Plastic Rubber Comp. 48, 456465.Google Scholar
Wong, D., Verron, E., Andriyana, A. & Ang, B. C. (2019b). Constitutive modeling of randomly oriented electrospun nanofibrous membranes. Cont. Mech. Thermodyn. 31, 317329.Google Scholar
Wu, P. D. & van der Giessen, E. (1993). On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Sol. 41, 427456.Google Scholar
Wu, W. F. & Dzenis, Y. A. (2005). Elasticity of planar fiber networks. J. Appl. Phys. 98, 093501.Google Scholar
Xia, Q. S., Boyce, M. C. & Parks, D. M. (2002). A constitutive model for the anisotropic elastic–plastic deformation of paper and paperboard. Int. J. Sol. Struct. 39, 40534071.Google Scholar
Yeoh, O. H. (1990). Characterization of elastic properties of carbon black filled rubber vulcanizates. Rubber Chem. Technol. 63, 792805.Google Scholar
Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754771.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×