Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T23:19:48.907Z Has data issue: false hasContentIssue false

Part V - Glacially Triggered Faulting Outside Europe

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

The following chapter summarize findings, suggestions and indications of glacially triggered faulting outside Europe. This concerns formerly and presently glaciated areas in North America and the polar areas on both hemispheres.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, J. (2005). On the probable rate of magnitude ≥ 6 earthquakes close to a Swedish site during a glacial cycle. Appendix 5. In Hora, S. and Mikael, J., eds., Expert Panel Elicitation of Seismicity Following Glaciation in Sweden. Swedish Radiation Protection Authority, No. SSI--2005-20, pp. 3360.Google Scholar
Adams, J., Wetmiller, R. J., Hasegawa, H. S. and Drysdale, J. (1991). The first surface faulting from a historical intraplate earthquake in North America. Nature, 352, 617619, doi.org/10.1038/352617a0.Google Scholar
Ager, J. A. and Trowell, N. F. (2000). Geological compilation of the Kirkland Lake area, Abitibi greenstone belt. Ontario Geological Survey, Preliminary Map Series, scale 1:100,000, P3425.Google Scholar
Brooks, G. R. (2016). Evidence of late glacial paleoseismicity from mass transport deposits within Lac Dasserat, northwestern Quebec, Canada. Quaternary Research, 86, 184199, doi.org/10.1016/j.yqres.2016.06.005.CrossRefGoogle Scholar
Brooks, G. R. (2018). Deglacial record of paleoearthquakes interpreted from mass transport deposits at three lakes near Rouyn-Noranda, northwestern Quebec, Canada. Sedimentology, 65, 24392467, doi.org/10.1111/sed.12473.Google Scholar
Brooks, G. R. (2020). Evidence of a strong paleoearthquake in ∼9.1 ka cal BP interpreted from mass transport deposits, northeastern Ontario – western Quebec, Canada. Quaternary Science Reviews, 234, doi.org/10.1016/j.quascirev.2020.106250.CrossRefGoogle Scholar
Brooks, G. R. and Adams, J. (2020). A review of evidence of glacially-induced faulting and seismic shaking in southeastern Canada. Quaternary Science Reviews, 228, doi.org/10.1016/j.quascirev.2019.106070.CrossRefGoogle Scholar
Brooks, G. R. and Pugin, A. J.-M. (2019). Assessment of a seismo-neotectonic origin for the New Liskeard–Thornloe scarp, Timiskaming graben, northeastern Ontario. Canadian Journal of Earth Sciences, 57(2), 267274, doi.org/10.1139/cjes-2019-0036.Google Scholar
Craig, T. J., Calais, E., Fleitout, L., Bollinger, L. and Scotti, O. (2016). Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes. Geophysical Research Letters, 43, doi.org/10.1002/2016GL069359.Google Scholar
Dyke, A. S. (2004). An outline of North American deglaciation with emphasis on central and northern Canada. In Ehlers, J. and Gibbard, P. L., eds., Quaternary Glaciations – Extent and Chronology, Part II: North America. Developments in Quaternary Science, Vol. 2, Elsevier, Amsterdam, pp. 373424, doi.org/10.1016/S1571-0866(04)80209-4.CrossRefGoogle Scholar
Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19(6), 617620, doi.org/10.1130/0091-7613(1991)019<0617:TFPF>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Fenton, C. H., Adams, J. and Halchuk, S. (2006). Seismic hazards assessment for radioactive waste disposal sites in regions of low seismic activity. Geotechnical and Geological Engineering, 24, 579592, doi.org/10.1007/s10706-005-1148-4.Google Scholar
Godin, L., Brown, R. L., Dreimanis, A., Atkinson, G. M. and Armstrong, D. K. (2002). Analysis and reinterpretation of deformation features in the Rouge River valley, Scarborough, Ontario. Canadian Journal of Earth Sciences, 39, 13731391, doi.org/10.1139/e02-059.Google Scholar
Jakobsson, M., Björck, S., O’Regan, M. et al.(2014). Major earthquake at the Pleistocene–Holocene transition in Lake Vättern, southern Sweden. Geology, 42, 379382. Data Repository item 2014142, doi.org/10.1130/G35499.1.CrossRefGoogle Scholar
Johnston, A.C. (1987). Suppression of earthquakes by large continental ice sheets. Nature, 330, 467469, doi.org/10.1038/330467a0.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper Series C, Volume 836, 80 pp.Google Scholar
Ma, S., Eaton, D. W. and Adams, J. (2008). Intraplate seismicity of a recently deglaciated shield terrane: a case study from Northern Ontario, Canada. Bulletin of the Seismological Society of America, 98, 28282848, doi.org/10.1785/0120080134.Google Scholar
Manitoba Energy and Mines (1989). Bedrock Geology Compilation Map Series, preliminary edition, Nelson House, NTS 63-O.Google Scholar
McMartin, I. (1997). Surficial geology, Wuskatasko River area, Manitoba. Geological Survey of Canada Open File, 3324, doi.org/10.4095/208906.Google Scholar
McMartin, I. (2000). Paleogeography of Lake Agassiz and regional post-glacial uplift history of the Flin Flon region, central Manitoba and Saskatchewan. Journal of Paleolimnology, 24, 293315, doi.org/10.1023/A:1008127123310.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Muir Wood, R. (1993). A Review of Seismotectonics of Sweden. SKB Technical Report TR 93-13, Stockholm, 243 pp.Google Scholar
Olesen, O., Blikra, L. H., Braathen, A. et al. (2004). Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology, 84, 334.Google Scholar
Redfield, T. F. and Hermanns, R. L. (2016). Gravitational slope deformation, not neotectonics: Revisiting the Nordmannvikdalen feature of northern Norway. Norwegian Journal of Geology, 96, 129, doi.org/10.17850/njg96-3-05.Google Scholar
Smith, C. A., Sundh, M. and Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103, 17111724, doi.org/10.1007/s00531–014-1025-6.CrossRefGoogle Scholar
Steffen, R., Wu, P., Steffen, H. and Eaton, D. W. (2014). The effect of earth rheology and ice-sheet size on fault slip and magnitude of postglacial earthquakes. Earth and Planetary Science Letters, 388, 7180, doi.org/10.1016/j.epsl.2013.11.058.CrossRefGoogle Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.Google Scholar
Trommelen, M. S. (2014). Surficial point and line features of the Nelson House map sheet (NTS 63O), Manitoba. Manitoba Mineral Resources, Manitoba Geological Survey Surficial Geology Compilation Map Series SG-GF2013–63O.Google Scholar

References

Aagaard, B., Knepley, M. and Williams, C. (2017). PyLith v2.2.1, Computational Infrastructure for Geodynamics, doi.org/10.5281/zenodo.886600, geodynamics.org/cig/software/pylith/Google Scholar
Barbot, S. and Fialko, Y. (2010a). Fourier-domain Green’s function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophysical Journal International, 182(2), 568582, doi.org/10.1111/j.1365-246X.2010.04655.x.Google Scholar
Barbot, S. and Fialko, Y. (2010b). A unified continuum representation of postseismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophysical Journal International, 182(3), 11241140, doi.org/10.1111/j.1365-246X.2010.04678.x.Google Scholar
Bruhn, R. L., Sauber, J., Cotton, M. M. et al. (2012). Plate margin deformation and active tectonics along the northern edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska, and Yukon, Canada. Geosphere, 8(6), 13841407, doi.org/10.1130/GES00807.1.Google Scholar
Chapman, J. B. et al. (2008). Neotectonics of the Yakutat Collision: changes in deformation driven by mass redistribution. American Geophysical Union: Active Tectonics and Seismic Potential of Alaska. Geophysical Monograph Series 179, doi.org/10.1029/179GM21.Google Scholar
Doser, D. (2010). A re-evaluation of the 1958 Fairweather, Alaska, earthquake sequence. Bulletin of the Seismological Society of America, 100(4), 17921799, doi.org/10.1785/0120090343.Google Scholar
Doser, D. I. and Lomas, R. (2000). The transition from strike‐slip to oblique subduction in southeastern Alaska from seismological studies. Tectonophysics, 316, 4565, doi.org/10.1016/S0040-1951(99)00254-1.Google Scholar
Elliott, J., Freymueller, J. T. and Larsen, C. F. (2013). Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements. Journal of Geophysical Research Solid Earth, 118, 56255642, doi.org/10.1002/jgrb.50341.Google Scholar
Elliott, J., Larsen, C. F., Freymueller, J. T. and Motyka, R. J. (2010). Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements. Journal of Geophysical Research, 115, B09407, doi.org/10.1029/2009JB007139.Google Scholar
Fletcher, H. J. and Freymueller, J. T. (2003). New constraints on the motion of the Fairweather Fault, Alaska, from GPS observations. Geophysical Research Letters, 30(3), 1139, doi.org/10.1029/2002GL016476.Google Scholar
Fu, Y., Freymueller, J. T. and Jensen, T. (2012). Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophysical Research Letters, 39(15), doi.org/10.1029/2012GL052453.Google Scholar
Hardebeck, J. L. (2004). Stress triggering and earthquake probability estimates. Journal of Geophysical Research, 109, B04310, doi.org/10.1029/2003JB002437.Google Scholar
Hu, Y. and Freymueller, J. T. (2019). Geodetic observations of time-variable glacial isostatic adjustment in southeast Alaska and its implications for Earth rheology. Journal of Geophysical Research, 124(9), 98709889, doi.org/10.1029/2018JB017028.Google Scholar
Johnson, C. W., Fu, Y. and Bürgmann, R. (2017). Stress models of the annual hydrospheric, atmospheric, thermal, and tidal loading cycles on California faults: Perturbation of background stress and changes in seismicity. Journal of Geophysical Research: Solid Earth, 122(12), 10,605–10,625, doi.org/10.1002/2017JB014778.Google Scholar
Johnson, C. W., Fu, Y. and Bürgmann, R. (2020). Hydrospheric modulation of stress and seismicity on shallow faults in southern Alaska. Earth and Planetary Science Letters, 530, 115904 doi.org/10.1016/j.epsl.2019.115904.Google Scholar
Kirchner, P. B., Bales, R. C., Molotch, N. P, Flanagan, J. and Guo, Q. (2014). LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences, 18(10), 42614275, doi.org/10.5194/hess-18-4261-2014.Google Scholar
Koehler, R. D. and Carver, G. A. (2018). Active Faulting and Seismic Hazards in Alaska. Alaska Division of Geological and Geophysical Surveys, Miscellaneous Publication 160.Google Scholar
Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A. and Ivins, E. R. (2005). Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237(3-4), 548560, doi.org/10.1016/j.epsl.2005.06.032.Google Scholar
Li, S. and Freymueller, J. T. (2018). Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska–Aleutian subduction zone. Geophysical Research Letters, 45(8), 34533460, doi.org/10.1002/2017GL076761.Google Scholar
Loomis, B. D. and Luthcke, S. B. (2014). Optimized signal denoising and adaptive estimation of seasonal timing and mass balance from simulated GRACE-like regional mass variations. Advances in Adaptive Data Analysis, 6(1), 1450003, doi.org/10.1142/S1793536914500034.Google Scholar
Lowry, A. R. (2006). Resonant slow fault slip in subduction zones forced by climatic load stress. Nature, 442, doi.org/10.1038/nature05055.Google Scholar
Luthcke, S. B., Sabaka, T. J., Loomis, B. D. et al. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613631, doi.org/10.3189/2013JoG12J147.Google Scholar
Mueller, C. S., Briggs, R. W., Wesson, R. L. and Petersen, M. D. (2015). Updating the USGS seismic hazard maps for Alaska. Quaternary Science Reviews, 113, 3947, doi.org/10.1016/j.quascirev.2014.10.006.CrossRefGoogle Scholar
Muskett, R. R., Lingle, C. S., Sauber, J. M., Rabus, B. T. and Tangborn, W. V. (2008a). Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, USA from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters, 265(3–4), 345359, doi.org/10.1016/j.epsl.2007.10.012.Google Scholar
Muskett, R. R., Lingle, C. S., Sauber, J. M. et al. (2008b). Surging, accelerating surface lowering and volume reduction of the Malaspina Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. Journal of Glaciology, 54(188), 788800, doi.org/10.3189/002214308787779915.CrossRefGoogle Scholar
Muskett, R. R., Lingle, C. S., Sauber, J. M. et al. (2009). Airborne and spaceborne DEM-and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006. Journal of Glaciology, 55(190), 316326, doi.org/10.3189/002214309788608750.Google Scholar
Parsons, T. (2005). Significance of stress transfer in time-dependent earthquake probability calculations. Journal of Geophysical Research, 110, B05S02, doi.org/10.1029/2004JB003190.Google Scholar
Plafker, G., Hudson, T., Bruns, T. R. and Rubin, M. (1978). Late Quaternary offsets along the Fairweather faults and crustal plate interactions in southern Alaska. Canadian Journal of Earth Sciences, 15(5), 805816, doi.org/10.1139/e78-085.Google Scholar
Plafker, G. and Thatcher, W. (2008). Geological and geophysical evaluation of the mechanisms of the great 1899 Yakutat Bay earthquakes. American Geophysical Union: Active Tectonics and Seismic Potential of Alaska, Geophysical Monograph Series 179, doi.org/10.1029/179GM21.Google Scholar
Rollins, C., Freymueller, J. T. and Sauber, J. M. (2021). Stress promotion of the 1958 Mw∼7.8 Fairweather Fault earthquake and others in southeast Alaska by glacial isostatic adjustment and inter-earthquake stress transfer. Journal of Geophysical Research Solid Earth, 126, e2020JB020411, doi.org/10.1029/2020JB020411.Google Scholar
Ruppert, N. A. (2008). Stress map for Alaska from earthquake focal mechanisms. American Geophysical Union: Active Tectonics and Seismic Potential of Alaska, Geophysical Monograph Series 179, doi.org/10.1029/179GM20.Google Scholar
Sauber, J., Plafker, G. and Gipson, J. (1995). Geodetic measurements used to estimate ice transfer during Bering Glacier surge. Eos, Transactions American Geophysical Union, 76(29), 289290, doi.org/10.1029/95EO00171.Google Scholar
Sauber, J., McClusky, S. and King, R. (1997). Relation of ongoing deformation rates to the subduction process in southern Alaska. Geophysical Research Letters, 24, 28532856, doi.org/10.1029/97GL52979.Google Scholar
Sauber, J., Plafker, G., Molnia, B. F. and Bryant, M. A. (2000). Crustal deformation associated with glacial fluctuations in the eastern Chugach Mountains, Alaska. Journal of Geophysical Research, 105, 80558077, doi.org/10.1029/1999JB900433.Google Scholar
Sauber, J. M., Freymueller, J. T., Han, S. C., Davis, J. L. and Ruppert, N.A. (2016). Short-term response of the solid Earth to cryosphere fluctuations and the earthquake cycle in south-central Alaska. American Geophysical Union, Fall Meeting 2016, Abstract #G11A-1057 (poster available on ResearchGate).Google Scholar
Sauber, J. M. and Molnia, B. F. (2004). Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska. Global and Planetary Change, 42, 279293, doi.org/10.1016/j.gloplacha.2003.11.012.CrossRefGoogle Scholar
Sauber, J. M. and Ruppert, N. (2008). Rapid ice mass loss: does it have an influence on earthquake occurrence in Southeast Alaska? American Geophysical Union: Active Tectonics and Seismic Potential of Alaska, Geophysical Monograph Series 179, doi.org/10.1029/179GM21.Google Scholar
Spada, G., Antonioli, A., Boschi, L. et al. (2003). TABOO, User Guide. Samizdat Press, Golden-White River Junction.Google Scholar

References

Adams, R. D., Hughes, A. A. and Zhang, B. M. (1985). A confirmed earthquake in continental Antarctica. Geophysical Journal International, 81(2), 489492, doi.org/10.1111/j.1365-246X.1985.tb06416.x.Google Scholar
Arvidsson, R. (1996). Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science, 274, 744746, doi.org/10.1126/science.274.5288.744.Google Scholar
Barletta, V. R., Sørensen, L. S. and Forsberg, R. (2013). Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7, 14111432, doi.org/10.5194/tc-7-1411-2013.Google Scholar
Behrendt, J. (1999). Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations – a review. Global and Planetary Change, 23, 2544, doi.org/10.1016/S0921-8181(99)00049-1.Google Scholar
Brooks, G. R. and Adams, J. (2020). A review of evidence of glacially-induced faulting and seismic shaking in southeastern Canada. Quaternary Science Reviews, 228, 106070, doi.org/10.1016/j.quascirev.2019.106070.Google Scholar
Chung, W.-Y. (2002). Earthquakes along the passive margin of Greenland: evidence for postglacial rebound control. Pure and Applied Geophysics, 159, 25672584, doi.org/10.1007/s00024-002-8748-1.Google Scholar
Chung, W.-Y. and Gao, H. (1997). The Greenland earthquake of 11 July 1987 and Postglacial Fault reactivation along a passive margin. Bulletin of the Seismological Society of America, 87(4), 10581068.Google Scholar
Clinton, J. F., Nettles, M., Walter, F. et al. (2014). Seismic network in Greenland monitors Earth and ice system. Eos Transactions American Geophysical Union, 95, 1324, doi.org/10.1002/2014EO020001.Google Scholar
Dörr, N., Clift, P. D., Lisker, F. and Spiegel, C. (2013), Why is Svalbard an island? Evidence for two‐stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics, 32, 473486, doi.org/10.1002/tect.20039.Google Scholar
Dyke, A. S. (1998). Holocene delevelling of Devon Island, Arctic Canada: implications for ice sheet geometry and crustal response. Canadian Journal of Earth Sciences, 35, 885904, doi.org/10.1139/cjes-35-8-885.Google Scholar
Dyke, A. S. (2004). An outline of North American deglaciation with emphasis on central and northern Canada. In Ehlers, J. and Gibbard, P. L., eds., Quaternary Glaciations – Extent and Chronology, Part II. North America., Developments in Quaternary Science 2. Elsevier, New York, pp. 373424, doi.org/10.1016/S1571-0866(04)80209-4.Google Scholar
Dyke, A. S., Morris, T. F. and Green, D. E. C. (1991). Postglacial Tectonic and Sea Level History of the Central Canadian Arctic. Geological Survey of Canada Bulletin, 397, 56 pp.Google Scholar
Dyke, A. S., Morris, T. F., Green, D. E. C. and England, J. H. (1992). Quaternary Geology of Prince of Wales Island, Arctic Canada. Geological Survey of Canada Memoir, 433, 142 pp.CrossRefGoogle Scholar
Einarsson, P. (1989). Intraplate earthquakes in Iceland. In Gregersen, S. and Basham, P. W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Press, Dordrecht/Boston/London, pp. 329344.Google Scholar
Fenton, C. (1994). Postglacial Faulting in Eastern Canada. Geological Survey of Canada Open File, 2774, 94 pp.Google Scholar
Firth, C. R. and Stewart, I. S. (2000). Postglacial tectonics of the Scottish glacio-isostatic uplift centre. Quaternary Science Reviews, 19, 14691493, doi.org/10.1016/S0277-3791(00)00074-3.Google Scholar
Foulger, G. R., Doré, T., Emeleus, C. H. et al. (2020). The Iceland microcontinent and a continental Greenland–Iceland–Faroe Ridge. Earth-Science Reviews, 206, 102926, doi.org/10.1016/j.earscirev.2019.102926.Google Scholar
Fretwell, P., Pritchard, H. D., Vaughan, D. G. et al. (2013). Bedmap 2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393, doi.org/10.5194/tc-7-375-2013.Google Scholar
Giardini, D., Grünthal, G., Shedlock, K. M. and Zhang, P. (2003). The GSHAP Global Seismic Hazard Map. In Lee, W., Kanamori, H., Jennings, P. and Kisslinger, C., eds., International Handbook of Earthquake & Engineering Seismology, International Geophysics Series 81B. Academic Press, Amsterdam, pp. 12331239.Google Scholar
Goldner, A., Herold, N. and Huber, M. (2014). Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature, 511(7511), 574577, doi.org/10.1038/nature13597.Google Scholar
Gregersen, S. (1989). The seismicity of Greenland. In Gregersen, S. and Basham, P.W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Press, Dordrecht/Boston/London, pp. 345353.Google Scholar
Gregersen, S. (2006). Intraplate earthquakes in Scandinavia and Greenland. Neotectonics or postglacial uplift. Journal of the Indian Geophysical Union, 10, 2530.Google Scholar
Henry, C., Das, S. and Woodhouse, J. H. (2000). The March 25, 1998 Mw = 8.1 Antarctic Plate earthquake: moment tensor and rupture history. Journal of Geophysical Research Solid Earth, 105, 1609716119, doi.org/10.1029/2000JB900077.Google Scholar
Hjartardóttir, Á. R., Einarsson, P. and Brandsdóttir, B. (2011). The Kerlingar fault, Northeast Iceland: a Holocene normal fault east of the divergent plate boundary. Jökull, 60, 103116.Google Scholar
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. and Svendsen, J. I. (2016). The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas, 45(1), 145, doi.org/10.1111/bor.12142.Google Scholar
Ivins, E. R., James, T. S. and Klemann, V. (2003). Glacial isostatic stress shadowing by the Antarctic Ice Sheet. Journal of Geophysical Research Solid Earth, 108(B12), doi.org/10.1029/2002LB002182.Google Scholar
Jacob, T., Wahr, J., Pfeffer, W. T. and Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518, doi.org/10.1038/nature10847.Google Scholar
Johnston, A. C. (1987). Suppression of earthquakes by large continental ice sheets. Nature, 330, 467469, doi.org/10.1038/330467a0.Google Scholar
Johnston, A. C. (1996). A wave in the Earth. Science, 274, p. 735, 10.1126/science.274.5288.735.Google Scholar
Jones, S. (1997). Late Quaternary faulting and neotectonics. South Victoria Land, Antarctica. Journal of the Geological Society of London, 153, 645653, doi.org/10.1144/gsjgs.154.4.0645.Google Scholar
Kaufmann, G., Wu, P. and Ivins, E. R. (2005). Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics. Journal of Geodynamics, 39, 165181, doi.org/10.1016/j.jog.2004.08.009.Google Scholar
King, M. A. and Santamaría-Gómez, A. (2016). Ongoing deformation of Antarctica following recent Great Earthquakes. Geophysical Research Letters, 43, 19181927, doi.org/10.1002/2016GL067773.CrossRefGoogle Scholar
Kreemer, C. and Holt, W. E. (2000). What caused the March 25, 1998 Antarctic plate earthquake?: inferences from regional stress and strain rate fields. Geophysical Research Letters, 27, 22972300, doi.org/10.1029/1999GL011188.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 16, 3036 (in Finnish).Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper, Series C, Vol. 836, 80 pp.Google Scholar
Lecavalier, B. S., Milne, G. A., Simpson, M. J. R. et al. (2014). A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews, 102, 5484, doi.org/10.1016/j.quascirev.2014.07.018.Google Scholar
Lough, A. C., Wiens, D. A. and Nyblade, A. (2018). Reactivation of ancient Antarctic rift zones by intraplate seismicity. Nature Geoscience, 11(7), 515519, doi.org/10.1038/s41561-018-0140-6.Google Scholar
Motazedian, D. and Ma, S. (2018). Source parameter studies on the 8 January 2017 Mw 6.1 Resolute, Nunavut, Canada, Earthquake. Seismological Research Letters, 89, 10301039, doi.org/10.1785/0220170260.Google Scholar
Munier, R. and Fenton, C. (2004). Review of postglacial faulting. In R. Munier and H. Hökmark, eds., Respect Distances. SKB Technical Report TR-04-17, Swedish Nuclear Fuel and Waste Management Co., Stockholm, pp 157–218.Google Scholar
Olesen, O., Blikra, L. H., Braathen, A. et al.(2004). Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology, 84, 334.Google Scholar
Olesen, O., Bungum, H., Dehls, J. et al. (2013). Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O., eds., Quaternary Geology of Norway, Geological Survey of Norway Special Publication, Vol. 13. pp. 145174.Google Scholar
Olivieri, M. and Spada, G. (2015). Ice melting and earthquake suppression in Greenland. Polar Science, 9, 94106, doi.org/10.1016/j.polar.2014.09.004.Google Scholar
Peulvast, J.-P., Bonow, J. M., Japsen, P., Wilson, R. W. and McCaffrey, K. J. W. (2011). Morphostructural patterns and landform generations in a glaciated passive margin: the Kobberminebugt-Qaqortoq region of South Greenland. Geodinamica Acta, 24(1), 119, doi.org/10.3166/ga.24.1-19.Google Scholar
Piepjohn, K. (1994). Tektonische Evolution der Devongräben (Old Red) in NW-Svalbard [Tectonic evolution of Devonian graben (Old Red) in NW Svalbard]. Unpublished PhD thesis, Westfälische Wilhelms-Universität, Münster, 170 pp.Google Scholar
Roy, K. and Peltier, W. R. (2018). Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on Late Holocene Antarctic deglaciation. Quaternary Science Reviews, 183, 7687, doi.org/10.1016/j.quascirev.2017.12.021.Google Scholar
Seierstadt, I., Abbott, P. M., Bigler, M. et al. (2014). Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews, 106, 2946, doi.org/10.1016/j.quascirev.2014.10.032.Google Scholar
Shepherd, A., Ivins, E., Rignot, E. et al. (2020). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233239 doi.org/10.1038/s41586-019-1855-2.Google Scholar
Simon, K. M., James, T. S., Henton, J. A. and Dyke, A. S. (2016). A glacial isostatic adjustment model for the central and northern Laurentide Ice Sheet based on relative sea-level and GPS measurements. Geophysical Journal International, 205, 16181636, doi.org/10.1093/gji/ggw103.Google Scholar
Steffen, H. and Wu, P. (2011). Glacial isostatic adjustment in Fennoscandia – a review of data and modeling. Journal of Geodynamics, 52, 169204, doi.org/10.1016/j.jog.2011.03.002.Google Scholar
Steffen, R., Steffen, H., Weiss, R. et al. (2020). Early Holocene Greenland-ice mass loss likely triggered earthquakes and tsunami. Earth and Planetary Science Letters, 546, 116443, doi.org/10.1016/j.epsl.2020.116443.Google Scholar
Svendsen, J. I. and Mangerud, J. (1997). Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene, 7, 4557, doi.org/10.1177%2F095968369700700105.Google Scholar
Thiede, J., Jessen, C., Knutz, P. et al. (2011). Millions of years of Greenland Ice Sheet history recorded in ocean sediments. Polarforschung, 80(3), 141159, doi.org/10.2312/polarforschung.80.3.141.Google Scholar
Tsuboi, S., Kikuchi, M., Yamanaka, Y. and Kanao, M. (2000). The March 25, 1998 Antarctic earthquake: great earthquake caused by postglacial rebound. Earth Planets Space, 52, 133136, doi.org/10.1186/BF03351621.Google Scholar
van den Heuvel, F., Hübner, C., Błaszczyk, M., Heimann, M. and Lihavainen, H. (2020). SESS Report 2019 – The State of Environmental Science in Svalbard – An Annual Report. Svalbard Integrated Arctic Earth Observing System, Longyearbyen.Google Scholar
Voss, P., Kildegaard Poulsen, S., Simonsen, S. and Gregersen, S. (2007). Seismic hazard assessment of Greenland. GEUS Bulletin, 13, 5760.Google Scholar
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F. and Wobbe, F. (2013). Generic Mapping Tools: improved version released. Eos Transactions American Geophysical Union, 94, 409410, doi.org/10.1002/2013EO450001.Google Scholar
Wu, P. and Hasegawa, H. S. (1996a). Induced stresses and fault potential in eastern Canada due to a disc load: a preliminary analysis. Geophysical Journal International, 125, 415430, doi.org/10.1111/j.1365-246X.1996.tb00008.x.Google Scholar
Wu, P. and Hasegawa, H. S. (1996b). Induced stresses and fault potential in Eastern Canada due to a realistic load: a preliminary analysis. Geophysical Journal International, 127, 215229, doi.org/10.1111/j.1365-246X.1996.tb01546.x.Google Scholar
Yau, A. M., Bender, M. L., Blunier, T. and Jouzel, J. (2016). Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth and Planetary Science Letters, 451, 19, doi.org/10.1016/j.epsl.2016.06.053.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×