Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T13:37:43.991Z Has data issue: false hasContentIssue false

Local-Global Conjectures and Blocks of Simple Groups

Published online by Cambridge University Press:  15 April 2019

C. M. Campbell
Affiliation:
University of St Andrews, Scotland
C. W. Parker
Affiliation:
University of Birmingham
M. R. Quick
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University of St Andrews, Scotland
C. M. Roney-Dougal
Affiliation:
University of St Andrews, Scotland
Get access

Summary

We give an expanded treatment of our lecture series at the 2017 Groups St Andrews conference in Birmingham on local-global conjectures and the block theory of finite reductive groups.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alperin, J. L., The main problem of block theory. In: Proceedings of the Conference on Finite Groups, Univ. Utah, Park City, Utah (1975), Academic Press, New York, 1976, 341–356.Google Scholar
Alperin, J. L., Weights for finite groups. In: The Arcata Conference on Representations of Finite Groups, Arcata, Calif. (1986), Proc. Sympos. Pure Math. 47, Part 1, Amer. Math. Soc., Providence, 1987, 369–379.Google Scholar
Alperin, J. L. and Broué, M., Local methods in block theory. Ann. of Math. 110 (1979), 143–157.CrossRefGoogle Scholar
Alperin, J. L. and Fong, P., Weights for symmetric and general linear groups. J. Algebra 131 (1990), 2–22.CrossRefGoogle Scholar
An, J., Weights for classical groups. Trans. Amer. Math. Soc. 342 (1994), 1–42.CrossRefGoogle Scholar
An, J. and Dietrich, H., The AWC-goodness and essential rank of sporadic simple groups. J. Algebra 356 (2012), 325–354.CrossRefGoogle Scholar
Berger, T. R. and Knörr, R., On Brauer’s height 0 conjecture. Nagoya Math. J. 109 (1988), 109–116.CrossRefGoogle Scholar
Blau, H. and Ellers, H., Brauer’s height zero conjecture for central quotients of special linear and special unitary groups. J. Algebra 212 (1999), 591–612.CrossRefGoogle Scholar
Bonnafé, C., Dat, J. F. and Rouquier, R., Derived categories and Deligne–Lusztig varieties II. Ann. of Math. (2) 185 (2017), 609–676.CrossRefGoogle Scholar
Bonnafé, C. and Michel, J., Computational proof of the Mackey formula for q > 2. J. Algebra 327 (2011), 506–526.CrossRefGoogle Scholar
Bonnafé, C. and Rouquier, R., Catégories dérivées et variétés de Deligne–Lusztig. Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1–59.CrossRefGoogle Scholar
Brauer, R., Number theoretical investigations on groups of finite order. In: Proceedings of the International Symposium on Algebraic Number Theory, Tokyo and Nikko (1955), Science Council of Japan, Tokyo, 1956, 55–62.Google Scholar
Brauer, R. and Robinson, G. de B., On a conjecture by Nakayama. Trans. Roy. Soc. Canada. Sect III (3) 41 (1947), 11–25.Google Scholar
Broué, M., Malle, G. and Michel, J., Generic blocks of finite reductive groups. Astérisque 212 (1993), 7–92.Google Scholar
Brunat, O. and Nath, R., The Navarro conjecture for the alternating groups. arXiv:1803.01423.Google Scholar
Cabanes, M., Brauer morphism between modular Hecke algebras. J. Algebra 115 (1988), 1–31.CrossRefGoogle Scholar
Cabanes, M. and Enguehard, M., Unipotent blocks of finite reductive groups of a given type. Math. Z. 213 (1993), 479–490.CrossRefGoogle Scholar
Cabanes, M. and Enguehard, M., On unipotent blocks and their ordinary characters. Invent. Math. 117 (1994), 149–164.CrossRefGoogle Scholar
Cabanes, M. and Enguehard, M., On blocks of finite reductive groups and twisted induction. Adv. Math. 145 (1999), 189–229.CrossRefGoogle Scholar
Cabanes, M. and Enguehard, M., Representation Theory of Finite Reductive Groups. Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Cabanes, M. and Späth, B., Equivariant character correspondences and inductive McKay condition for type A. J. reine angew. Math. 728 (2017), 153–194.Google Scholar
Carter, R., Finite Groups of Lie type: Conjugacy Classes and Complex Characters. Wiley, Chichester, 1985.Google Scholar
Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and sl2categorification. Ann. of Math. (2) 167 (2008), 245–298.CrossRefGoogle Scholar
Dade, E. C., A correspondence of characters. In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, Calif. (1979), Amer. Math. Soc., Providence, R.I., 1980, 401–403.Google Scholar
Dade, E. C., Counting characters in blocks. I. Invent. Math. 109 (1992), 187–210; II.Google ScholarGoogle Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields. Ann. of Math. 103 (1976), 103–161.CrossRefGoogle Scholar
Denoncin, D., Inductive AM condition for the alternating groups in characteristic 2. J. Algebra 404 (2014), 1–17.CrossRefGoogle Scholar
Digne, F. and Michel, J., Representations of Finite Groups of Lie Type. Volume 21 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
Eaton, C. and Moretó, A., Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups. Int. Math. Res. Notices 20 (2014), 5561–5581.Google Scholar
Enguehard, M., Isométries parfaites entre blocs de groupes symétriques. Astérisque 181-182 (1990), 157–171.Google Scholar
Enguehard, M., Sur les l-blocs unipotents des groupes réductifs finis quand l est mauvais. J. Algebra 230 (2000), 334–377.CrossRefGoogle Scholar
Enguehard, M., Vers une décomposition de Jordan des blocs des groupes réductifs finis. J. Algebra 319 (2008), 1035–1115.CrossRefGoogle Scholar
Fong, P., The Isaacs–Navarro conjecture for symmetric groups. J. Algebra 260 (2003), 154–161.CrossRefGoogle Scholar
Fong, P. and Srinivasan, B., The blocks of finite classical groups. J. reine angew. Math. 396 (1989), 122–191.Google Scholar
Geck, M. and Hiss, G., Basic sets of Brauer characters of finite groups of Lie type. J. reine angew. Math. 418 (1991), 173–188.Google Scholar
Gluck, D. and Wolf, T. R., Brauer’s height conjecture for p-solvable groups. Trans. Amer. Math. Soc. 282 (1984), 137–152.Google Scholar
Gorenstein, D., Lyons, R. and Solomon, R., The Classification of the Finite Simple Groups. American Mathematical Society, 40, Number 3. Providence, RI, 1998.Google Scholar
Green, J. A., The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80 (1955), 402–447.CrossRefGoogle Scholar
Howlett, R. B. and Lehrer, G. I., Induced cuspidal representations and generalised Hecke rings. Invent. Math. 58 (1980), 37–64.CrossRefGoogle Scholar
Humphreys, J. E., Modular Representations of Finite Groups of Lie Type. London Mathematical Society Lecture Note Series, 326, Cambridge University Press, Cambridge, 2006.Google Scholar
Isaacs, I. M., Characters of solvable and symplectic groups. Amer. J. Math. 95 (1973), 594–635.CrossRefGoogle Scholar
Isaacs, I. M., Malle, G. and Navarro, G., A reduction theorem for the McKay conjecture. Invent. Math. 170 (2007), 33–101.CrossRefGoogle Scholar
Isaacs, I. M. and Navarro, G., Weights and vertices for characters of π-separable groups. J. Algebra 177 (1995), 339–366.CrossRefGoogle Scholar
Isaacs, I. M. and Navarro, G., New refinements of the McKay conjecture for arbitrary finite groups. Ann. of Math. (2) 156 (2002), 333–344.CrossRefGoogle Scholar
Kessar, R. and Malle, G., Quasi-isolated blocks and Brauer’s height zero conjecture. Ann. of Math. (2) 178 (2013), 321–384.CrossRefGoogle Scholar
Kessar, R. and Malle, G., Lusztig induction and l-blocks of finite reductive groups. Pacific J. Math. 279 (2015), 267–296.CrossRefGoogle Scholar
Kessar, R. and Malle, G., Brauer’s height zero conjecture for quasi-simple groups. J. Algebra 475 (2017), 43–60.CrossRefGoogle Scholar
Knörr, R. and Robinson, G. R., Some remarks on a conjecture of Alperin. J. London Math. Soc. (2) 39 (1989), 48–60.Google Scholar
Koshitani, S. and Späth, B., The inductive Alperin-McKay and blockwise Alperin weight conditions for blocks with cyclic defect groups and odd primes. J. Group Theory 19 (2016), 777–813.CrossRefGoogle Scholar
Lusztig, G., Characters of Reductive Groups over a Finite Field. Annals of Mathematics Studies, 107. Princeton University Press, Princeton, NJ, 1984.CrossRefGoogle Scholar
Lusztig, G., On the representations of reductive groups with disconnected centre. Astérisque 168 (1988), 157–166.Google Scholar
Macdonald, I. G., On the degrees of the irreducible representations of symmetric groups. Bull. London Math. Soc. 3 (1971), 189–192.CrossRefGoogle Scholar
Malle, G., Height 0 characters of finite groups of Lie type. Represent. Theory 11 (2007), 192–220.CrossRefGoogle Scholar
Malle, G., The inductive McKay condition for simple groups not of Lie type. Comm. Algebra 36 (2008), 455–463.CrossRefGoogle Scholar
Malle, G., Extensions of unipotent characters and the inductive McKay condition. J. Algebra 320 (2008), 2963–2980.CrossRefGoogle Scholar
Malle, G., On the inductive Alperin–McKay and Alperin weight conjecture for groups with abelian Sylow subgroups. J. Algebra 397 (2014), 190–208.CrossRefGoogle Scholar
Malle, G. and Späth, B., Characters of odd degree. Ann. of Math. (2) 184 (2016), 869–908.CrossRefGoogle Scholar
Malle, G. and Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Studies in Advanced Mathematics, 133, Cambridge University Press, Cambridge, 2011.CrossRefGoogle Scholar
Maslowski, J., Equivariant Bijections in Groups of Lie Type. Dissertation, TU Kaiserslautern, 2010.Google Scholar
McKay, J., Irreducible representations of odd degree. J. Algebra 20 (1972), 416–418.CrossRefGoogle Scholar
Michler, G. O. and Olsson, J. B., The Alperin-McKay conjecture holds in the covering groups of symmetric and alternating groups, p ≠ 2. J. reine angew. Math. 405 (1990), 78–111.Google Scholar
Nagao, H. and Tsushima, Y., Representations of Finite Groups. Academic Press, San Diego, 1987.Google Scholar
Nakayama, T., On some modular properties of irreducible representations of a symmetric group I. Jap. J. Math. 18 (1941), 89–108.Google Scholar
Nath, R., The Isaacs–Navarro conjecture for the alternating groups. J. Algebra 321 (2009), 1632–1642.CrossRefGoogle Scholar
Navarro, G., The McKay conjecture with Galois automorphisms. Ann. of Math. (2) 160 (2004), 1129–1140.CrossRefGoogle Scholar
Navarro, G. and Späth, B., On Brauer’s height zero conjecture. J. Eur. Math. Soc. 16 (2014), 695–747.CrossRefGoogle Scholar
Navarro, G. and Tiep, P. H., A reduction theorem for the Alperin weight conjecture. Invent. Math. 184 (2011), 529–565.CrossRefGoogle Scholar
Navarro, G. and Tiep, P. H., Brauer’s height zero conjecture for the 2-blocks of maximal defect. J. reine angew. Math. 669 (2012), 225–247.Google Scholar
Okuyama, T., Module correspondence in finite groups. Hokkaido Math. J. 10 (1981), 299–318.CrossRefGoogle Scholar
Okuyama, T. and Wajima, M., Character correspondence and p-blocks of p-solvable groups. Osaka J. Math. 17 (1980), 801–806.Google Scholar
Olsson, J. B., McKay numbers and heights of characters. Math. Scand. 38 (1976), 25–42.Google Scholar
Puig, L., The Nakayama conjecture and the Brauer pairs. In: Séminaire sur les groupes finis, Tome III Publ. Math. Univ. Paris VII, 25 Paris (1986), 171–189.Google Scholar
Ruhstorfer, L., The Navarro refinement of the McKay conjecture for finite groups of Lie type in defining characteristic. Preprint, arXiv:1703.09006.Google Scholar
Sambale, B., Blocks of Finite Groups and Their Invariants. Lecture Notes in Mathematics, 2127. Springer, Cham, 2014.CrossRefGoogle Scholar
Schulte, E., The inductive blockwise Alperin weight condition for G2(q) and 3D4(q). J. Algebra 466 (2016), 314–369.CrossRefGoogle Scholar
Späth, B., Sylow d-tori of classical groups and the McKay conjecture. I. J. Algebra 323 (2010), 2469–2493; II.Google ScholarGoogle Scholar
Späth, B., Inductive McKay condition in defining characteristic. Bull. Lond. Math. Soc. 44 (2012), 426–438.CrossRefGoogle Scholar
Späth, B., A reduction theorem for the Alperin–McKay conjecture. J. reine angew. Math. 680 (2013), 153–189.Google Scholar
Späth, B., A reduction theorem for the blockwise Alperin weight conjecture. J. Group Theory 16 (2013), 159–220.CrossRefGoogle Scholar
Späth, B., A reduction theorem for Dade’s projective conjecture. J. Eur. Math. Soc. 19 (2017), 1071–1126.CrossRefGoogle Scholar
Späth, B., Inductive conditions for counting conjectures via character triples. In: Representation Theory — Current Trends and Perspectives, Bad Honnef (2015), Eur. Math. Soc., Zürich, 2017, 665–680.Google Scholar
Turull, A., Character correspondences in solvable groups. J. Algebra 295 (2006), 157–178.CrossRefGoogle Scholar
Wolf, T., Variations on McKay’s character degree conjecture. J. Algebra 135 (1990), 123–138.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×