Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T20:15:47.084Z Has data issue: false hasContentIssue false

Part II - Neural Mechanisms

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 87 - 164
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albers, H. E. (2012) The regulation of social recognition, social communication and aggression: Vasopressin in the social behavior neural network. Hormones and Behavior, 61(3): 283292.Google Scholar
Albers, H. E. (2015) Species, sex and individual differences in the vasotocin/vasopressin system: Relationship to neurochemical signaling in the social behavior neural network. Frontiers in Neuroendocrinology, 36: 4971.CrossRefGoogle ScholarPubMed
Albers, H. E., Dean, A., Karom, M. C., Smith, D., and Huhman, K. L. (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Research, 1073–1074: 425430.Google Scholar
Albers, H. E., Huhman, K. L., and Meisel, R. L. (2002) Hormonal basis of social conflict and communication. In Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T., eds., Hormones, Brain and Behavior. Amsterdam: Academic Press, 393433.CrossRefGoogle Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5: 325383.Google Scholar
Bales, K. L., Arias Del Razo, R., Conklin, Q. A. et al. (2017) Titi Monkeys as a novel non-human primate model for the neurobiology of pair bonding. Yale Journal of Biology and Medicine, 90(3): 373387.Google ScholarPubMed
Bester-Meredith, J. K., and Marler, C. A. (2001) Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Hormones and Behavior, 40(1): 5164.Google Scholar
Borland, J. M., Grantham, K. N., Aiani, L. M., Frantz, K. J., and Albers, H. E. (2018) Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology, 95: 128137.Google Scholar
Borland, J. M., Rilling, J. K., Frantz, K. J., and Albers, H. E. (2019) Sex-dependent regulation of social reward by oxytocin: An inverted U hypothesis. Neuropsychopharmacology, 44(1): 97110.Google Scholar
Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J., and Neumann, I. D. (2005) Brain oxytocin correlates with maternal aggression: Link to anxiety. Journal of Neuroscience, 25(29): 68076815.CrossRefGoogle ScholarPubMed
Bosch, O. J., and Neumann, I. D. (2010) Vasopressin released within the central amygdala promotes maternal aggression. European Journal of Neuroscience, 31(5): 883891.Google Scholar
Bosch, O. J., and Neumann, I. D. (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action. Hormones and Behavior, 61(3): 293303.CrossRefGoogle ScholarPubMed
Bosch, O. J., and Young, L. J. (2017) Oxytocin and social relationships: From attachment to bond disruption. In Hurlemann, R., and Grinevich, V., eds., Behavioral Pharmacology of Neuropeptides: Oxytocin. Current Topics in Behavioral Neurosciences, vol. 35. Cham: Springer, pp. 97117.Google Scholar
Bredewold, R., Nascimento, N. F., Ro, G. S., Cieslewski, S. E., Reppucci, C. J., and Veenema, A. H. (2018) Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology, 43(10): 21092117.Google Scholar
Bridges, R. S. (2015) Neuroendocrine regulation of maternal behavior. Frontiers in Neuroendocrinology, 36: 178196.Google Scholar
Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Munte, T. F., and Heldmann, M. (2016) Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Science USA, 113(8): 20512056.CrossRefGoogle ScholarPubMed
Calcagnoli, F., Stubbendorff, C., Meyer, N., de Boer, S. F., Althaus, M., and Koolhaas, J. M. (2015) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology, 90: 7481.CrossRefGoogle ScholarPubMed
Caldwell, H. K. (2017) Oxytocin and vasopressin: Powerful regulators of social behavior. Neuroscientist, 23(4): 517528.CrossRefGoogle ScholarPubMed
Caldwell, H. K. (2018) Oxytocin and sex differences in behavior. Current Opinion in Behavioral Sciences, 23: 1320.Google Scholar
Caldwell, H. K., and Albers, H. E. (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Hormones and Behavior, 46(4): 444449.Google Scholar
Caldwell, H. K., and Albers, H. E. (2016) Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Current Topics in Behavioral Neuroscience, 27: 51103.CrossRefGoogle ScholarPubMed
Caldwell, H. K., Aulino, E. A., Freeman, A. R., Miller, T. V., and Witchey, S. K. (2017) Oxytocin and behavior: Lessons from knockout mice. Developmental Neurobiology, 77(2): 190201.Google Scholar
Carter, C. S. (2017) The oxytocin-vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, 8: 356.Google Scholar
Chen, X., Gautam, P., Haroon, E., and Rilling, J. K. (2017) Within vs. between-subject effects of intranasal oxytocin on the neural response to cooperative and non-cooperative social interactions. Psychoneuroendocrinology, 78: 2230.Google Scholar
Chen, X., Nishitani, S., Haroon, E., Smith, A. K., and Rilling, J. K. (2020) OXTR methylation modulates exogenous oxytocin effects on human brain activity during social interaction. Genes Brain and Behavior, 19: e12555.Google Scholar
Cohen, D., Perry, A., Mayseless, N., Kleinmintz, O., and Shamay-Tsoory, S. G. (2018) The role of oxytocin in implicit personal space regulation: An fMRI study. Psychoneuroendocrinology, 91: 206215.Google Scholar
Cohen, D., and Shamay-Tsoory, S. G. (2018) Oxytocin regulates social approach. Social Neuroscience, 13(6): 680687.Google Scholar
Compaan, J. C., Buijs, R. M., Pool, C. W., de Ruiter, A. J., and Koolhaas, J. M. (1993) Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Research Bulletin 30(1–2): 16.CrossRefGoogle ScholarPubMed
Consigli, A. R., Borsoi, A., Pereira, G. A., and Lucion, A. B. (2005) Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiology and Behavior, 85(3): 354362.Google Scholar
Delville, Y., Mansour, K. M., and Ferris, C. F. (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiology and Behavior, 60(1): 2529.Google Scholar
Doherty, J. M., Cooke, B. M., and Frantz, K. J. (2013) A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents. Neuropsychopharmacology, 38(3): 446454.Google Scholar
Dolen, G., Darvishzadeh, A., Huang, K. W., and Malenka, R. C. (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501(7466): 179184.CrossRefGoogle ScholarPubMed
Dumais, K. M., and Veenema, A. H. (2016) Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, 40: 123.Google Scholar
Duque-Wilckens, N., Steinman, M. Q., Busnelli, M. et al. (2017) Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California Mice. Biological Psychiatry, 3(3): 203213.Google Scholar
Eckstein, M., Scheele, D., Weber, K., Stoffel-Wagner, B., Maier, W., and Hurlemann, R. (2014) Oxytocin facilitates the sensation of social stress. Human Brain Mapping, 35(9): 47414750.CrossRefGoogle ScholarPubMed
Everts, H. G. J., De Ruiter, A. J. H., and Koolhaas, J. M. (1997) Differential lateral septal vasopressin in wild-type rats: Correlation with aggression. Hormones and Behavior, 31: 136144.Google Scholar
Fernald, R. D. (2014) Communication about social status. Current Opinion in Neurobiology, 28: 14.CrossRefGoogle ScholarPubMed
Ferris, C. F., Foote, K. B., Meltser, H. M., Plenby, M. G., Smith, K. L., and Insel, T. R. (1992) Oxytocin in the amygdala facilitates maternal aggression. Annals of the New York Academy of Science, 652: 456457.Google Scholar
Ferris, C. F., Melloni, R. Jr., Koppel, G., Perry, K. W., Fuller, R. W., and Delville, Y. (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. Journal of Neuroscience, 17(11): 43314340.Google Scholar
Freeman, A. R., Hare, J. F., Anderson, W. G., and Caldwell, H. K. (2018) Effects of arginine vasopressin on Richardson’s ground squirrel social and vocal behavior. Behavioral Neuroscience, 132(1): 3450.Google Scholar
Freeman, S. M., and Bales, K. L. (2018) Oxytocin, vasopressin, and primate behavior: Diversity and insight. American Journal of Primatology, 80(10): e22919.CrossRefGoogle ScholarPubMed
Gil, M., Nguyen, N. T., McDonald, M., and Albers, H. E. (2013) Social reward: Interactions with social status, social communication, aggression, and associated neural activation in the ventral tegmental area. European Journal of Neuroscience, 38(2): 23082318.Google Scholar
Goodson, J. L., and Kabelik, D. (2009) Dynamic limbic networks and social diversity in vertebrates: From neural context to neuromodulatory patterning. Frontiers in Neuroendocrinology, 30(4): 429441.Google Scholar
Goodson, J. L., and Thompson, R. R. (2010) Nanopeptide mechanisms of social cognition, behavior and species-specific social systems. Current Opinion in Neurobiology, 20(6): 784794.Google Scholar
Gordon, I., Zagoory-Sharon, O., Schneiderman, I., Leckman, J. F., Weller, A., and Feldman, R. (2008) Oxytocin and cortisol in romantically unattached young adults: Associations with bonding and psychological distress. Psychophysiology, 45(3): 349352.Google Scholar
Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C., and Labuschagne, I. (2018) Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology, 96: 624.Google Scholar
Gutzler, S. J., Karom, M., Erwin, W. D., and Albers, H. E. (2010) Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). European Journal of Neuroscience, 31(9): 16551663.CrossRefGoogle ScholarPubMed
Harmon, A. C., Huhman, K. L., Moore, T. O., and Albers, H. E. (2002a) Oxytocin inhibits aggression in female Syrian hamsters. Journal of Neuroendocrinology, 14(12): 963969.Google Scholar
Harmon, A. C., Moore, T. O., Huhman, K. L., and Albers, H. E. (2002b) Social experience and social context alter the behavioral response to centrally administered oxytocin in female Syrian hamsters. Neuroscience, 109(4): 767772.Google Scholar
Holt-Lunstad, J., Birmingham, W. A., and Light, K. C. (2008) Influence of a “warm touch” support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, alpha amylase, and cortisol. Psychosomatic Medicine, 70(9): 976985.Google Scholar
Hung, L. W., Neuner, S., Polepalli, J. S. et al. (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science, 357(6358): 14061411.CrossRefGoogle ScholarPubMed
Insel, T. R. (1992) Oxytocin – A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17(1): 335.Google Scholar
Jarcho, M. R., Mendoza, S. P., Mason, W. A., Yang, X., and Bales, K. L. (2011) Intranasal vasopressin affects pair bonding and peripheral gene expression in male Callicebus cupreus. Genes Brain and Behavior, 10(3): 375383.CrossRefGoogle ScholarPubMed
Johnson, Z. V., Walum, H., Xiao, Y., Riefkohl, P. C., and Young, L. J. (2017) Oxytocin receptors modulate a social salience neural network in male prairie voles. Hormones and Behavior, 87: 1624.Google Scholar
Johnson, Z. V., and Young, L. J. (2017) Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neuroscience Biobehavioral Reviews, 76(Pt A): 8798.Google Scholar
Kleiman, D. G. (1977) Monogamy in mammals. Quarterly Review of Biology, 52: 3969.Google Scholar
Maldonado, R., Robledo, P., Chover, A. J., Caine, S. B., and Koob, G. F. (1993) D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacology Biochemistry and Behavior, 45(1): 239242.CrossRefGoogle ScholarPubMed
Maninger, N., Hinde, K., Mendoza, S. P. et al. (2017) Pair bond formation leads to a sustained increase in global cerebral glucose metabolism in monogamous male titi monkeys (Callicebus cupreus). Neuroscience, 348: 302312.Google Scholar
Marlin, B. J., and Froemke, R. C. (2017) Oxytocin modulation of neural circuits for social behavior. Developmental Neurobiology, 77(2): 169189.Google Scholar
Martinez, M., Guillen-Salazar, F., Salvador, A., and Simon, V. M. (1995) Successful intermale aggression and conditioned place preference in mice. Physiology and Behavior, 58(2): 323328.Google Scholar
Meisel, R. L., and Joppa, M. A. (1994) Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiology and Behavior, 56(5): 11151118.Google Scholar
Murphy, M. R., Seckl, J. R., Burton, S., Checkley, S. A., and Lightman, S. L. (1987) Changes in oxytocin and vasopressin secretion during sexual activity in men. Journal of Clinical Endocrinology and Metabolism, 65: 738741.Google Scholar
Newman, S. W. (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Annals of the New York Academy of Science, 877: 242257.Google Scholar
O’Connell, L. A., and Hofmann, H. A. (2011a) Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Frontiers in Neuroendocrinology, 32(3): 320335.Google Scholar
O’Connell, L. A., and Hofmann, H. A. (2011b) The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. Journal of Comparative Neurology, 519(18): 35993639.Google Scholar
Ophir, A. G. (2017) Navigating monogamy: Nanopeptide sensitivity in a memory neural circuit may shape social behavior and mating decisions. Frontiers in Neuroscience, 11: 397.Google Scholar
Oxford English Dictionary (2018) “OED Online.” From December 20, 2018, www.oed.com/view/Entry/152981.Google Scholar
Penner, L. A., Dovidio, J. F., Piliavin, J. A., and Schroeder, D. A. (2005) Prosocial behavior: Multilevel perspectives. Annual Review of Psychology, 56: 365392.Google Scholar
Perkeybile, A. M., and Bales, K. L. (2017) Intergenerational transmission of sociality: The role of parents in shaping social behavior in monogamous and non-monogamous species. Journal of Experimental Biology, 220(Pt 1): 114123.Google Scholar
Phelps, S. M., Okhovat, M., and Berrio, A. (2017) Individual differences in social behavior and cortical vasopressin receptor: Genetics, epigenetics, and evolution. Frontiers in Neuroscience, 11: 537.Google Scholar
Samuni, L., Preis, A., Mielke, A., Deschner, T., Wittig, R. M., and Crockford, C. (2018) Social bonds facilitate cooperative resource sharing in wild chimpanzees. Proceedings of the Royal Society B Biological Science, 285: 20181643.Google Scholar
Sauer, C., Montag, C., Reuter, M., and Kirsch, P. (2019) Oxytocinergic modulation of brain activation to cues related to reproduction and attachment: Differences and commonalities during the perception of erotic and fearful social scenes. International Journal of Psychophysiology, 136: 8796.Google Scholar
Scheele, D., Wille, A., Kendrick, K. M. et al. (2013) Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Science USA, 110(50): 2030820313.Google Scholar
Schneiderman, I., Kanat-Maymon, Y., Ebstein, R. P., and Feldman, R. (2014) Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love. Social Cognitive and Affective Neuroscience, 9(10): 15241529.Google Scholar
Schneiderman, I., Zagoory-Sharon, O., Leckman, J. F., and Feldman, R. (2012) Oxytocin during the initial stages of romantic attachment: Relations to couples’ interactive reciprocity. Psychoneuroendocrinology, 37(8): 12771285.Google Scholar
Song, Z., and Albers, H. E (2018) Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Frontiers in Neuroendocrinology, 51: 1424.CrossRefGoogle ScholarPubMed
Song, Z., Borland, J. M., Larkin, T. E., O’Malley, M., and Albers, H. E. (2016) Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology, 74: 164172.Google Scholar
Sosnowski, M. J., and Brosnan, S. F. (2019) Pro-social behavior. In Vonk, J. and Shackelford, T. K., eds., Encyclopedia of Animal Cognition and Behavior. New York: Springer, DOI: https://doi.org/10.1007/978-3-319-47829-6_1410-1.Google Scholar
Stetzik, L., Payne, R. E. 3rd, Roache, L. E., Ickes, J. R., and Cushing, B. S. (2018) Maternal and paternal origin differentially affect prosocial behavior and neural mechanisms in prairie voles. Behavioral Brain Research, 360: 94102.Google Scholar
Tabbaa, M., Paedae, B., Liu, Y., and Wang, Z. (2016) Neuropeptide regulation of social attachment: The Prairie Vole model. Comprehensive Physiology, 7(1): 81104.CrossRefGoogle ScholarPubMed
Tamborski, S., Mintz, E. M., and Caldwell, H. K. (2016) Sex differences in the embryonic development of the central oxytocin system in mice. Journal of Neuroendocrinology, 28(4), DOI: https://doi.org/10.1111/jne.12364.Google Scholar
Teles, M. C., Almeida, O., Lopes, J. S., and Oliveira, R. F. (2015) Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish. Proceedings of the Royal Society B Biological Science, 282: 20151099.Google Scholar
Walum, H., and Young, L. J. (2018) The neural mechanisms and circuitry of the pair bond. Nature Reviews Neuroscience, 19(11): 643-654.CrossRefGoogle ScholarPubMed
Wilczynski, W., Quispe, M., Munoz, M. I., and Penna, M. (2017) Arginine vasotocin, the social neuropeptide of amphibians and reptiles. Frontiers in Endocrinology, 8: 186.Google Scholar
Winslow, J. T., and Insel, T. R. (1991) Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. Journal of Neuroscience, 11(7): 20322038.Google Scholar
Young, K. A., Gobrogge, K. L., Liu, Y., and Wang, Z. (2011) The neurobiology of pair bonding: Insights from a socially monogamous rodent. Frontiers in Neuroendocrinology, 32(1): 5369.Google Scholar

References

Adolphs, R. (2003) Is the human amygdala specialized for processing social information? Annals of the New York Academy of Science, 985: 326340.Google Scholar
Adolphs, R. (2010) What does the amygdala contribute to social cognition? Annals of the New York Academy of Science, 1191: 4261.Google Scholar
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372: 669672.Google Scholar
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. R. (1995) Fear and the human amygdala. Journal of Neuroscience, 15: 58795891.Google Scholar
Allman, J. (1982) Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data. In Armstrong, E., and Falk, D., eds., Primate Brain Evolution: Methods and Concepts. Boston, MA: Springer US, pp. 1328.Google Scholar
Andrews-Hanna, J. R. (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist, 18: 251270.Google Scholar
Baleydier, C., and Mauguiere, F. (1980) The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain, 103: 525554.Google Scholar
Barger, N., Stefanacci, L., Schumann, C. M. et al. (2012) Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared with apes: A stereological study. Journal of Comparative Neurology, 520: 30353054.Google Scholar
Barton, R. A. (1998) Visual specialization and brain evolution in primates. Proceedings of the Royal Society B Biological Sciences, 265: 19331937.Google Scholar
Beevor, C. E. (1891) On the course of the fibres of the cingulum and the posterior parts of the corpus callosum and fornix in the marmoset monkey. Proceedings of the Royal Society B Biological Sciences, 182: 135199.Google Scholar
Belin, P. (2006) Voice processing in human and non-human primates. Proceedings of the Royal Society B Biological Sciences, 361: 20912107.Google ScholarPubMed
Belin, P, Zatorre, R. J., Lafaille, P., Ahad, P., and Pike, B. (2000) Voice-selective areas in human auditory cortex. Nature, 403: 309312.Google Scholar
Bernal, B., and Ardila, A. (2009) The role of the arcuate fasciculus in conduction aphasia. Brain, 132: 23092316.Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., and Barrett, L. F. (2011) Amygdala volume and social network size in humans. Nature Neuroscience, 14: 163164.Google Scholar
Bijanki, K. R., Kovach, C. K., McCormick, L. M. et al. (2014) Case report: Stimulation of the right amygdala induces transient changes in affective bias. Brain Stimulation, 7: 690693.Google Scholar
Binder, J. R., and Desai, R. H. (2011) The neurobiology of semantic memory. Trends in Cognitive Science, 15: 527536.Google Scholar
Breiter, H. C., Etcoff, N. L., Whalen, P. J. et al. (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17: 875887.Google Scholar
Bryant, K. L., Glasser, M. F., Li, L. et al. (2019) Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex, 118: 223243.Google Scholar
Bryant, K. L., Li, L., and Mars, R. B. (2018) White matter projection maps in chimpanzees in comparison with humans and macaques. Cortical Evolution Conference 2018.Google Scholar
Bryant, K. L., and Preuss, T. M. (2018) A comparative perspective on the human temporal lobe. In Bruner, E., Ogihara, N., and Tanabe, H. C., eds., Digital Endocasts: From Skulls to Brains. Tokyo: Springer Japan, pp. 239258.Google Scholar
Bubb, E. J., Metzler-Baddeley, C., and Aggleton, J. P. (2018) The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 92: 104127.Google Scholar
Buckner, R. L., and Carroll, D. C. (2007) Self-projection and the brain. Trends in Cognitive Science, 11: 4957.Google Scholar
Buxhoeveden, D. P., Switala, A. E., Litaker, M., Roy, E., and Casanova, M. F. (2001) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behavior and Evolution, 57: 349358.Google Scholar
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., and Eickhoff, S. B. (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217: 783796.Google Scholar
Calder, A. J. (1996) Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology, 13: 699745.Google Scholar
Call, J., and Tomasello, M. (2008) Does the chimpanzee have a theory of mind? Thirty years later. Trends in Cognitive Science, 12: 187192.Google Scholar
Cancelliere, A. E., and Kertesz, A. (1990) Lesion localization in acquired deficits of emotional expression and comprehension. Brain and Cognition, 13: 133147.Google Scholar
Cantalupo, C., Oliver, J., Smith, J., Nir, T., Taglialatela, J. P., and Hopkins, W. D. (2009) The chimpanzee brain shows human-like perisylvian asymmetries in white matter. European Journal of Neuroscience, 30: 431438.Google Scholar
Catani, M. (2006) Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Current Opinion in Neurology, 19: 599606.Google Scholar
Catani, M., and ffytche, D. H. (2005) The rises and falls of disconnection syndromes. Brain, 128: 22242239.Google Scholar
Catani, M., Jones, D. K., Donato, R., and ffytche, D. H. (2003) Occipito‐temporal connections in the human brain. Brain, 126: 20932107.Google Scholar
Catani, M., and Mesulam, M. (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44: 953961.Google Scholar
Catani, M., and Thiebaut de Schotten, M. A (2008) diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44: 11051132.Google Scholar
Chance, S. A., Sawyer, E. K., Clover, L. M., Wicinski, B., Hof, P. R., and Crow, T. J. (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Structure and Function, 218: 13911405.Google Scholar
Coccia, M., Bartolini, M., Luzzi, S. Provinciali, L., and Ralph, M. A. L. (2004) Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychology, 21: 513527.Google Scholar
Curran, E. J. (1909) A new association fiber tract in the cerebrum with remarks on the fiber tract dissection method of studying the brain. Journal of Comparative Neurology and Psychology, 19: 645656.Google Scholar
Dahl, C. D., Rasch, M. J., Tomonaga, M., and Adachi, I. (2013) Laterality effect for faces in chimpanzees (Pan troglodytes). Journal of Neuroscience, 33: 1334413349.Google Scholar
Damasio, H., and Damasio, A. R. (1980) The anatomical basis of conduction aphasia. Brain, 103: 337350.Google Scholar
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., and Damasio, A. (2004) Neural systems behind word and concept retrieval. Cognition, 92: 179229.Google Scholar
Davis, L. E. (1921) An anatomic study of the inferior longitudinal fasciculus. Archives of Neurology and Psychology, 5: 370381.Google Scholar
DeCramer, T., Swinnen, S., Van Loon, J., Janssen, P., & Theys, T. (2018) White matter tract anatomy in the rhesus monkey: a fiber dissection study. Brain Structure and Function, 223(8) 36813688.Google Scholar
Deen, B., Koldewyn, K., Kanwisher, N., and Saxe, R. (2015) Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25: 45964609.Google Scholar
Deen, B., Richardson, H., Dilks, D. D. et al. (2017) Organization of high-level visual cortex in human infants. Nature Communications, 8: 13995.Google Scholar
Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4: 20512062.Google Scholar
De Witt Hamer, P. C., Moritz-Gasser, S., Gatignol, P., and Duffau, H. (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Human Brain Mapping, 32: 962973.Google Scholar
Dolan, R. J., Lane, R., Chua, P., and Fletcher, P. (2000) Dissociable temporal lobe activations during emotional episodic memory retrieval. Neuroimage, 11: 203209.Google Scholar
Duffau, H., Gatignol, P., Mandonnet, E., Capelle, L., and Taillandier, L. (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. Journal of Neurosurgury, 109(3): 461471.Google Scholar
Engell, A. D., and Haxby, J. V. (2007) Facial expression and gaze-direction in human superior temporal sulcus. Neuropsychologia, 45: 32343241.Google Scholar
Epelbaum, S., Pinel, P., Gaillard, R. et al. (2008) Pure alexia as a disconnection syndrome: New diffusion imaging evidence for an old concept. Cortex, 44: 962974.Google Scholar
Eskenazi, B., Cain, W. S., Novelly, R. A., and Mattson, R. (1986) Odor perception in temporal lobe epilepsy patients with and without temporal lobectomy. Neuropsychologia, 24: 553562.Google Scholar
ffytche, D. H., Blom, J. D., and Catani, M. (2010) Disorders of visual perception. Journal of Neurology, Neurosurgery, and Psychiatry, 81: 12801287.Google Scholar
Fischl, B. (2012) FreeSurfer. Neuroimage, 62: 774781.Google Scholar
Fitch, W. T. (2005) The evolution of language: A comparative review. Biology and Philosophy, 20: 193203.Google Scholar
Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell’Acqua, F., Danek, A., and Catani, M. (2014) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56: 7384.Google Scholar
Fouts, R. S. (1973) Acquisition and testing of gestural signs in four young chimpanzees. Science, 180: 978980.Google Scholar
Fox, C. J., Iaria, G., and Barton, J. J. S. (2008) Disconnection in prosopagnosia and face processing. Cortex, 44: 9961009.Google Scholar
Freese, J. L., and Amaral, D. G. (2009) Neuroanatomy of the primate amygdala. In Whalen, P. J., and Phelps, E. A., eds., The Human Amygdala. New York: Guilford Press, pp. 342.Google Scholar
Freeman, H. D., Cantalupo, C., and Hopkins, W. D. (2004). Asymmetries in the hippocampus and amygdala of chimpanzees (Pan troglodytes). Behavioral Neuroscience, 118(6): 1460.Google Scholar
Freiwald, W. A., and Tsao, D. Y. (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330: 845851.Google Scholar
Frey, S., Campbell, J. S. W., Pike, G. B., and Petrides, M. (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28: 1143511444.Google Scholar
Fried, I., MacDonald, K. A., and Wilson, C. L. (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron, 18: 753765.Google Scholar
Frith, C. D. (2007) The social brain? Proceedings of the Royal Society B Biological Science, 362: 671678.Google Scholar
Frith, U., and Frith, C. D. (2003) Development and neurophysiology of mentalizing. Proceedings of the Royal Society B Biological Sciences, 358: 459473.Google Scholar
Gallagher, H. L., and Frith, C. D. (2003) Functional imaging of “theory of mind”. Trends in Cognitive Science, 7: 7783.Google Scholar
Gallup, G. G. Jr. (1977) Absence of self-recognition in a monkey (Macaca fascicularis) following prolonged exposure to a mirror. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 10: 281284.Google Scholar
Gallup, G. G., McClure, M. K., Hill, S. D., and Bundy, R. A. (1971) Capacity for self-recognition in differentially reared chimpanzees. Psychology Record, 21: 6974.Google Scholar
Gamer, M., and Büchel, C. (2009) Amygdala activation predicts gaze toward fearful eyes. Journal of Neuroscience, 29: 91239126.Google Scholar
Gannon, P. J., Holloway, R. L., Broadfield, D. C., and Braun, A. R. (1998) Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279: 220222.Google Scholar
Gardner, B. T., and Gardner, R. A. (1975) Evidence for sentence constitutents in the early utterances of child and chimpanzee. Journal of Experimental Psychology: General, 104: 244.Google Scholar
Gardner, R. A., and Gardner, B. T. (1969) Teaching sign language to a chimpanzee. Science, 165: 664672.Google Scholar
Geschwind, N. (1965) Disconnexion syndromes in animals and man. II. Brain, 88: 585644.Google Scholar
Geschwind, N. (1970) The organization of language and the brain. Science, 170: 940944.Google Scholar
Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., and Van Essen, D. C. (2014) Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage, 93(Pt 2): 165175.Google Scholar
Glasser, M. F., and Rilling, J. K. (2008) DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18: 24712482.Google Scholar
Glasser, M. F., and Van Essen, D. C. (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. Journal of Neuroscience, 31: 1159711616.Google Scholar
Gobbini, M. I., Koralek, A. C., Bryan, R. E., Montgomery, K. J., and Haxby, J. V. (2007) Two takes on the social brain: A comparison of theory of mind tasks. Journal of Cognitive Neuroscience, 19: 18031814.Google Scholar
Goldman-Rakic, P. S., Selemon, L. D., and Schwartz, M. L. (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12: 719743.Google Scholar
Grill-Spector, K., Knouf, N., and Kanwisher, N. (2004) The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7: 555562.Google Scholar
Hackett, T. A., Preuss, T. M., and Kaas, J. H. (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology, 441: 197222.Google Scholar
Halwani, G. F., Loui, P., Rüber, T., and Schlaug, G. (2011) Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2: 156.Google Scholar
Harasty, J., Seldon, H. L., Chan, P., Halliday, G., and Harding, A. (2003) The left human speech-processing cortex is thinner but longer than the right. Laterality, 8: 247260.Google Scholar
Hare, B., Call, J., and Tomasello, M. (2001) Do chimpanzees know what conspecifics know? Animal Behaviour, 61: 139151.Google Scholar
Hare, B., Call, J., and Tomasello, M. (2006) Chimpanzees deceive a human competitor by hiding. Cognition, 101: 495514.Google Scholar
Hau, J., Sarubbo, S., Houde, J. C. et al. (2017) Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Structure and Function, 222: 16451662.Google Scholar
Hecht, E. E., Gutman, D. A., Dunn, W., Keifer, O. P. Jr., Sakai, S., Kent, M., and Preuss, T. (2016) Neuroanatomical variation in domestic dog breeds. Program No. 834.13/III15.Google Scholar
Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H.-P., and Villringer, A. (2003) An fMRI study of simple ethical decision-making. Neuroreport, 14: 12151219.Google Scholar
Hickok, G., and Poeppel, D. (2007) The cortical organization of speech processing. Nature Reviews Neuroscience, 8: 393402.Google Scholar
Hoffman, E. A., and Haxby, J. V. (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3: 8084.Google Scholar
Hof, P. R., and Van der Gucht, E. (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anatomical Record, 290: 131.Google Scholar
Hopkins, W. D., Taglialatela, J. P., Nir, T., Schenker, N. M., and Sherwood, C. C. (2010) A voxel-based morphometry analysis of white matter asymmetries in chimpanzees (Pan troglodytes). Brain Behavior and Evolution, 76: 93100.Google Scholar
Hung, C.-C., Yen, C. C., Ciuchta, J. L., Papoti, D., Bock, N. A., Leopold, D. A., and Silva, A. C. (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. Journal of Neuroscience, 35: 11601172.Google Scholar
Insausti, R., Marcos, P., Arroyo-Jiménez, M. M., Blaizot, X., and Martínez-Marcos, A. (2002) Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain. Brain Research Bulletin, 57: 557560.Google Scholar
Issa, H. A., Staes, N., Diggs-Galligan, S. et al. (2018) Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Structure and Function, 224(1): 239251.Google Scholar
Jaeggi, A. V., Boose, K. J., White, F. J., and Gurven, M. (2016) Obstacles and catalysts of cooperation in humans, bonobos, and chimpanzees: Behavioural reaction norms can help explain variation in sex roles, inequality, war and peace. Behaviour, 153: 10151051.Google Scholar
Jaeggi, A. V., De Groot, E., Stevens, J. M. G., and Van Schaik, C. P. (2013) Mechanisms of reciprocity in primates: Testing for short-term contingency of grooming and food sharing in bonobos and chimpanzees. Evolution and Human Behavior, 34: 6977.Google Scholar
Jaeggi, A. V., Stevens, J. M. G., and Van Schaik, C. P. (2010) Tolerant food sharing and reciprocity is precluded by despotism among bonobos but not chimpanzees. American Journal of Physical Anthropology, 143: 4151.Google Scholar
Jastorff, J., Popivanov, I. D., Vogels, R., Vanduffel, W., and Orban, G. A. (2012) Integration of shape and motion cues in biological motion processing in the monkey STS. Neuroimage, 60: 911921.Google Scholar
Kaas, J. H. (2006) Evolution of the neocortex. Current Biology, 16: R910R914.Google Scholar
Kaas, J. H. (2013) The evolution of brains from early mammals to humans. Interdisciplinary Reviews of Cognitive Science, 4: 3345.Google Scholar
Kaas, J. H., Hackett, T. A., and Tramo, M. J. (1999) Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9: 164170.Google Scholar
Kanwisher, N., McDermott, J., and Chun, M. M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17: 43024311.Google Scholar
Kanwisher, N., and Yovel, G. (2006) The fusiform face area: A cortical region specialized for the perception of faces. Proceedings of the Royal Society B Biological Sciences, 361: 21092128.Google Scholar
Karg, K., Schmelz, M., Call, J., and Tomasello, M. (2016) Differing views: Can chimpanzees do Level 2 perspective-taking? Animal Cognition, 19: 555564.Google Scholar
Kiefer, M., and Pulvermüller, F. (2012) Conceptual representations in mind and brain: Theoretical developments, current evidence and future directionsCortex48(7): 805825.Google Scholar
Klüver, H., and Bucy, P. C. (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. American Journal of Physiology, 119: 352353.Google Scholar
Klüver, H., and Bucy, P. C. (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 42: 9791000.Google Scholar
Krachun, C., Carpenter, C. M., Call, J., and Tomasello, M. (2010) A new change-of-contents false belief test: Children and chimpanzees compared. International Journal of Comparative Psychology, 23: 145165.Google Scholar
Kriegeskorte, N., Formisano, E., Sorger, B., and Goebel, R. (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Science USA, 104: 2060020605.Google Scholar
Lambon Ralph, M. A., and Patterson, K. (2008) Generalization and differentiation in semantic memory: Insights from semantic dementia. Annals of the New York Academy of Science, 1124: 6176.Google Scholar
Lambon Ralph, M. A., Sage, K., Jones, R. W., and Mayberry, E. J. (2010) Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Science USA, 107: 27172722.Google Scholar
LeDoux, J. (2007) The amygdala. Current Biology, 17: R868R874.Google Scholar
Leslie, A. M. (1987) Pretense and representation: The origins of “theory of mind.” Psychology Review, 94: 412.Google Scholar
Levine, B., Svoboda, E., Turner, G. R, Mandic, M., and Mackey, A. (2009) Behavioral and functional neuroanatomical correlates of anterograde autobiographical memory in isolated retrograde amnesic patient M.L. Neuropsychologia, 47: 21882196.Google Scholar
Lieberman, M. D. (2007) Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58: 259289.Google Scholar
Livingstone, M., and Hubel, D. (1988) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240: 740749.Google Scholar
Livingstone, M. S., Vincent, J. L., Arcaro, M. J., Srihasam, K., Schade, P. F., and Savage, T. (2017) Development of the macaque face-patch system. Nature Communications, 8: 14897.Google Scholar
Lyras, G. A. (2009) The evolution of the brain in Canidae (Mammalia: Carnivora). Scripta Geologica, 139: 193.Google Scholar
Machado, C. J., Kazama, A. M., and Bachevalier, J. (2009) Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion, 9: 147163.Google Scholar
Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., and Pandya, D. N. (2009) Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 19: 777785.Google Scholar
Marchina, S., Zhu, L. L., Norton, A., Zipse, L., Wan, C. Y., and Schlaug, G. (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke, 42: 22512256.Google Scholar
Mars, R. B., Neubert, F.-X., Verhagen, L., Sallet, J., Miller, K. L., Dunbar, R. I. M., and Barton, M. A. (2014) Primate comparative neuroscience using magnetic resonance imaging: Promises and challenges. Frontiers in Neuroscience, 8: 298.Google Scholar
Mason, W. A., Capitanio, J. P., Machado, C. J., Mendoza, S. P., and Amaral, D. G. (2006) Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): Generality and individual consistency of effects. Emotion, 6: 7381.Google Scholar
Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafé, A., and Duffau, H. (2013) Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human. European Journal of Radiology, 82: 151157.Google Scholar
Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6: 414417.Google Scholar
Moll, J., Eslinger, P. J., and Oliveira-Souza, R. (2001) Frontopolar and anterior temporal cortex activation in a moral judgment task: Preliminary functional MRI results in normal subjects. Arquivos de Neuro-Psiquiatria, 59: 657664.Google Scholar
Moll, J., de Oliveira-Souza, R., Bramati, I. E., and Grafman, J. (2002) Functional networks in emotional moral and nonmoral social judgments. Neuroimage, 16: 696703.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., and Doland, R. J. (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383: 812815.Google Scholar
Nasr, S., Liu, N., Devaney, K. J., Yue, X., Rajimehr, R., Ungerleider, L. G., and Tooteli, R. B. H. (2011) Scene-selective cortical regions in human and nonhuman primates. Journal of Neuroscience, 31: 1377113785.Google Scholar
Nucifora, P. G. P., Verma, R., Melhem, E. R., Gur, R. E., and Gur, R. C. (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. Neuroreport, 16: 791794.Google Scholar
Olson, I. R., McCoy, D., Klobusicky, E., and Ross, L. A. (2013) Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8: 123133.Google Scholar
Orban, G. A., Van Essen, D., and Vanduffel, W. (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Science, 8: 315324.Google Scholar
Pabba, M. (2013) Evolutionary development of the amygdaloid complex. Frontiers in Neuroanatomy, 7: 27.CrossRefGoogle ScholarPubMed
Parker, G. J. M., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A. M., Ciccarelli, O., and Lambon Ralph, M. A. (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage, 24: 656666.Google Scholar
Parr, L. A., Hecht, E., Barks, S. .K, Preuss, T. M., and Votaw, J. R. (2009) Face processing in the chimpanzee brain. Current Biology, 19: 5053.Google Scholar
Parr, L. A., Siebert, E., and Taubert, J. (2011) Effect of familiarity and viewpoint on face recognition in chimpanzees. Perception, 40: 863872.Google Scholar
Parr, L. A., and Taubert, J. (2011) The importance of surface-based cues for face discrimination in non-human primates. Proceedings of the Royal Society B Biological Science, 278: 19641972.Google Scholar
Parvizi, J., Jacques, C., Foster, B. L., Witthoft, N., Rangarajan, V., Weiner, K. S., and Grill-Spector, K. (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. Journal of Neuroscience, 32: 1491514920.Google Scholar
Passingham, R. E., and Wise, S. P. (2012) The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford: Oxford University Press.Google Scholar
Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., and Jeeves, M. A. (1984) Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology, 3: 197208.Google Scholar
Pessoa, L., McKenna, M., Gutierrez, E., and Ungerleider, L. G. (2002) Neural processing of emotional faces requires attention. Proceedings of the National Academy of Science USA, 99: 1145811463.Google Scholar
Petrides, M., and Pandya, D. N. (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. Journal of Neuroscience, 27: 1157311586.Google Scholar
Pitcher, D., Duchaine, B., Walsh, V., Yovel, G., and Kanwisher, N. (2011) The role of lateral occipital face and object areas in the face inversion effect. Neuropsychologia, 49: 34483453.Google Scholar
Pobric, G., Jefferies, E., and Ralph, M. A. L. (2007) Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Science USA, 104: 2013720141.Google Scholar
Pobric, G., Jefferies, E., and Ralph, M. A. L. (2010) Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 48: 13361342.Google Scholar
Povinelli, D. J., and Eddy, T. J. (1996) Chimpanzees: Joint visual attention. Psychological Science, 7: 129135.Google Scholar
Povinelli, D. J., Nelson, K. E., and Boysen, S. T. (1992a) Comprehension of role reversal in chimpanzees: Evidence of empathy? Animal Behaviour, 43(4): 633640.Google Scholar
Povinelli, D. J., Parks, K. A., and Novak, M. A. (1992b) Role reversal by rhesus monkeys, but no evidence of empathy. Animal Behaviour, 44: 269281.Google Scholar
Powell, H. W. R., Parker, G. J. M., Alexander, D. C. et al. (2006) Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study. Neuroimage, 32: 388399.Google Scholar
Premack, D., and Woodruff, G. (1978) Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1: 515526.Google Scholar
Preuss, T. M. (2011) The human brain: Rewired and running hot. Annals of the New York Academy of Science, 1225 (Suppl. 1): E182E191.Google Scholar
Rausch, R., Serafetinides, E. A., and Crandall, P. H. (1977) Olfactory memory in patients with anterior temporal lobectomy. Cortex, 13: 445452.Google Scholar
Reiman, E. M., Lane, R. D., Ahern, G. L. et al. (1997) Neuroanatomical correlates of externally and internally generated human emotion. American Journal of Psychiatry, 154: 918925.Google Scholar
Rilling, J. K. (2006) Human and nonhuman primate brains: Are they allometrically scaled versions of the same design? Evolutionary Anthropology, 15: 6577.Google Scholar
Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., and Preuss, T. M. (2011) Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3: 11.Google Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., and Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11: 426.Google Scholar
Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., and Behrens, T. E. (2012) Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social Cognitive and Affective Neuroscience, 7: 369379.Google Scholar
Rilling, J. K., and Seligman, R. A. (2002) A quantitative morphometric comparative analysis of the primate temporal lobe. Journal of Human Evolution, 42: 505533.Google Scholar
Rivas, E. (2005) Recent use of signs by chimpanzees (Pan troglodytes) in interactions with humans. Journal of Comparative Psychology, 119: 404417.Google Scholar
Rogers Flattery, C. N., Rosen, R. F., Farberg, A. S. et al. (2020). Quantification of neurons in the hippocampal formation of chimpanzees: Comparison to rhesus monkeys and humans. Brain Structure and Function, 1–11.Google Scholar
Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., and Patterson, K. (2004) Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111: 205235.Google Scholar
Romanski, L. M., Bates, J. F., and Goldman-Rakic, P. S. (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403: 141157.Google Scholar
Ross, L. A., and Olson, I. R. (2010) Social cognition and the anterior temporal lobes. Neuroimage, 49: 34523462.Google Scholar
Rossion, B., Dricot, L., Devolder, A. et al. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 12(5): 793802.Google Scholar
Rudrauf, D., Mehta, S. and Grabowski, T. J. (2008) Disconnection’s renaissance takes shape: Formal incorporation in group-level lesion studies. Cortex, 44: 10841096.Google Scholar
Rutishauser, U., Mamelak, A. N., and Adolphs, R. (2015) The primate amygdala in social perception – Insights from electrophysiological recordings and stimulation. Trends in Neuroscience, 38: 295306.Google Scholar
Rutishauser, U., Tudusciuc, O., Neumann, D. et al. (2011) Single-unit responses selective for whole faces in the human amygdala. Current Biology, 21: 16541660.Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P. et al. (2011) Social network size affects neural circuits in macaques. Science, 334: 697700.Google Scholar
Samson, D., Apperly, I. A., Chiavarino, C., and Humphreys, G. W. (2004) Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7: 499500.Google Scholar
Saur, D., Kreher, B. W., Schnell, S. et al. (2008) Ventral and dorsal pathways for language. Proceedings of the National Academy of Science USA, 105: 1803518040.Google Scholar
Savage-Rumbaugh, S., McDonald, K., Sevcik, R. A., Hopkins, W. D., and Rubert, E. (1986) Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus). Journal of Experimental Psychology: General, 115: 211235.Google Scholar
Saxe, R., and Kanwisher, N. (2003) People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.” Neuroimage, 19: 18351842.Google Scholar
Saxe, R., and Powell, L. J. (2006) It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17: 692699.Google Scholar
Schalk, G., Kapeller, C., Guger, C. et al. (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proceedings of the National Academy of Science USA, 114: 1228512290.Google Scholar
Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J., and Wedeen, V. J. (2007) Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130: 630653.Google Scholar
Schmahmann, J., and Pandya, D. (2009) Fiber Pathways of the Brain. Oxford: Oxford University Press.Google Scholar
Schmolck, H., and Squire, L. R. (2001) Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology, 15: 3038.Google Scholar
Schoenemann, P. T. (1997) An MRI study of the relationship between human neuroanatomy and behavioral ability. PhD Dissertation, University of California, Berkeley.Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., and Perner, J. (2014) Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42: 934.Google Scholar
Seltzer, B., and Pandya, D. N. (1984) Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research, 55: 301312.Google Scholar
Semendeferi, K., and Damasio, H. (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38: 317332.Google Scholar
Shapleske, J., Rossell, S. L., Woodruff, P. W., and David, A. S. (1999) The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Research Brain Research Reviews, 29: 2649.Google Scholar
Simmons, W. K., and Martin, A. (2009) The anterior temporal lobes and the functional architecture of semantic memory. Journal of the International Neuropsychology Society, 15: 645649.Google Scholar
Simmons, W. K., Reddish, M., Bellgowan, P. S. F., and Martin, A. (2010) The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20: 813825.Google Scholar
Skeide, M. A., and Friederici, A. D. (2016) The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17: 323332.Google Scholar
Small, D. M., Jones-Gotman, M., Zatorre, R. J., Petrides, M., and Evans, A. C. (1997) A role for the right anterior temporal lobe in taste quality recognition. Journal of Neuroscience, 17: 51365142.Google Scholar
Sobolewski, M. E., Brown, J. L., and Mitani, J. C. (2012) Territoriality, tolerance and testosterone in wild chimpanzees. Animal Behaviour, 84: 14691474.Google Scholar
Spocter, M. A., Hopkins, W.D., Barks, S. K. et al. (2012) Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. Journal of Comparative Neurology, 520: 29172929.Google Scholar
Spocter, M. A., Hopkins, W. D., Garrison, A. R., Bauernfeind, A. L., Stimpson, C. D., Hof, P. R., and Sherwood, C. C. (2010) Wernicke’s area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100011.Google Scholar
Stefanacci, L., and Amaral, D. G. (2002) Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 451: 301323.Google Scholar
Steiper, M. E., and Seiffert, E. R. (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of the National Academy of Science USA, 109: 60066011.Google Scholar
Stimpson, C. D., Barger, N., Taglialatela, J. P., Gendron-Fitzpatrick, A., Hof, P. R., Hopkins, W. D., and Sherwood, C. C. (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social Cognitive and Affective Neuroscience, 11: 413422.Google Scholar
Sugiura, M., Sassa, Y., Watanabe, J. et al. (2006) Cortical mechanisms of person representation: Recognition of famous and personally familiar names. Neuroimage, 31: 853860.Google Scholar
Surbeck, M., Girard-Buttoz, C., Boesch, C. et al. (2017) Sex-specific association patterns in bonobos and chimpanzees reflect species differences in cooperation. Royal Society Open Science, 4: 161081.Google Scholar
Tan, J., Ariely, D., and Hare, B. (2017) Bonobos respond prosocially toward members of other groups. Scientific Reports, 7: 14733.Google Scholar
Tan, J., and Hare, B. (2013) Bonobos share with strangers. PLoS ONE, 8: e51922.Google Scholar
Taubert, J., Wardle, S., Flessert, M., Leopold, D., and Ungerleider, L. (2017) Evidence for face pareidolia in rhesus monkeys. Journal of Vision, 17: 845845.Google Scholar
Terrace, H. S. (1979) Nim. New York: Alfred A. Knoff.Google Scholar
Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., and Catani, M. (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex, 48: 8296.Google Scholar
Thomas Schoenemann, P. (1999) Syntax as an emergent characteristic of the evolution of semantic complexity. Minds Mach, 9: 309346.Google Scholar
Thompson, J. C., Clarke, M., Stewart, T., and Puce, A. (2005) Configural processing of biological motion in human superior temporal sulcus. Journal of Neuroscience, 25: 90599066.Google Scholar
Tomonaga, M., Tanaka, M., Matsuzawa, T. et al. (2004) Development of social cognition in infant chimpanzees (Pan troglodytes): Face recognition, smiling, gaze, and the lack of triadic interactions 1. Japanese Psychological Research, 46: 227235.Google Scholar
Tsao, D. Y., Moeller, S., and Freiwald, W. A. (2008) Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Science USA, 105: 1951419519.Google Scholar
Tsukiura, T., Mano, Y., Sekiguchi, A. et al. (2010) Dissociable roles of the anterior temporal regions in successful encoding of memory for person identity information. Journal of Cognitive Neuroscience, 22: 22262237.Google Scholar
Turken, A. U., and Dronkers, N. F. (2011) The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5: 1.Google Scholar
Ueno, T., Saito, S., Rogers, T. T., and Lambon Ralph, M. A (2011) Lichtheim 2: Synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72: 385396.Google Scholar
Ungerleider, L. G., and Desimone, R. (1986) Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology, 248: 190222.Google Scholar
Visser, M., Jefferies, E., Embleton, K. V., and Ralph, M. A. L. (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. Journal of Cognitive Neuroscience, 24: 17661778.Google Scholar
Watson, J. D., Myers, R., Frackowiak, R. S. et al. (1993) Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3: 7994.Google Scholar
Weiller, C., Bormann, T., Saur, D., Musso, M., and Rijntjes, M. (2011) How the ventral pathway got lost – And what its recovery might mean. Brain and Language, 118: 2939.Google Scholar
Whiten, A. (1998) Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 112: 270281.Google Scholar
Wong, F. C. K., Chandrasekaran, B., Garibaldi, K., and Wong, P. C. M. (2011) White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31: 87808785.Google Scholar
Yeatman, J. D., Dougherty, R. F., Rykhlevskaia, E., Sherbondy, A. J., Deutsch, G. K., Wandell, B. A., and Ben-Shacharet, M. (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. Journal of Cognitive Neuroscience, 23: 33043317.Google Scholar
Yeo, B. T. T., Krienen, F. M., Sepulcre, J. et al. (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106: 11251165.Google Scholar
Young, L., Dodell-Feder, D., and Saxe, R. (2010) What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia, 48: 26582664.Google Scholar
Zahn, R., Moll, J., Iyengar, V., Huey, E. D., Tierney, M., Krueger, F., and Grafman, J. (2009) Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain, 132: 604616.Google Scholar
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., and Grafman, J. (2007) Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Science USA, 104: 64306435.Google Scholar

References

Anderson, J. R., and Gallup, G. G., Jr. (2015) Mirror self-recognition: A review and critique of attempts to promote and engineer self-recognition in primates. Primates, 56: 317326.Google Scholar
Anestis, S. F., Webster, T. H., Kamilar, J. M., Fontenot, M. B., Watts, D. P., and Bradley, B. J. (2014) AVPR1A variation in chimpanzees (Pan troglodytes): Population differences and association with behavioral style. International Journal of Primatology, 35(1): 305324.Google Scholar
Avinum, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., and Knafo, A. (2011) AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9): E25274.Google Scholar
Bachner-Melman, R., Dina, C., Zohar, A. H. et al. (2005) AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3): e42.Google Scholar
Baker, K. C., and Aureli, F. (1997) Behavioural indicators of anxiety: An empirical test in chimpanzees. Behaviour, 134: 10311050.Google Scholar
Baldwin, D. A. (1995) Understanding the link between joint attention and language. In Moore, C., and Dunham, P. J., eds., Joint Attention: Its Origins and Role in Development. Hillsdale, NJ: Erlbaum, pp. 131158.Google Scholar
Bauernfeind, A. A., Sousa, A. M. M., Avashti, T. et al. (2013) A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution, 64: 263279.Google Scholar
Bauman, M. D., Murai, T., Hogrefe, C. E., and Platt, M. L. (2018) Opportunities and challenges for intranasal oxytocin treatment studies in nonhuman primates. American Journal of Primatology, 80(10): e22913.Google Scholar
Bauman, M. D., and Schumann, C. M. (2018) Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Experimental Neurology, 299(Pt A): 252265.Google Scholar
Bottema-Beutel, K. (2016) Associations between joint attention and language in autism spectrum disorder and typical development: A systematic review and meta-regression analysis. Autism Research, 10: 10211035.Google Scholar
Brosnan, S. F., Talbot, C. F., Essler, J. L., Leverett, K., Felemming, T. P. G., Heyler, C., and Zak, P. J. (2015) Oxytocin reduces food sharing in capuchin monkeys by modulating social distance. Behaviour (152): 941961.Google Scholar
Caldwell, H. K. (2017) Oxytocin and vasopressin: Powerful regulators of social behavior. Neuroscientist, 23(5): 517528.Google Scholar
Carpenter, M., Nagell, K., Tomasello, M., Butterworth, G., and Moore, C. (1998) Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monographs of the Society for Research in Child Development, 63(4).Google Scholar
Cavanaugh, J., Mustoe, A., Womack, S. L., and French, J. A. (2018) Oxytocin modulates mate-guarding behavior in marmoset monkeys. Hormones and Behavior, 106: 150161.Google Scholar
Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., and Drew, A. (2000) Testing joint attention, imitation and play as infancy precursors to language and theory of mind. Cognitive Development, 15: 481498.Google Scholar
Dawson, G., Munson, J., Estes, A. et al. (2002) Neurocognitive function and joint attention ability in young children with autism spectrum disorder versus developmental delay. Child Development, 73(2): 345358.Google Scholar
Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., and Liaw, J. (2004) Early social attention impairments in autism: Social orienting, joint attention and attention to distress. Developmental Psychology, 40(2): 271283.Google Scholar
de Vries, G. J. (2008) Sex differences in vasopressin and oxytocin innervation of the brain. Progress in Brain Research, 170: 1727.Google Scholar
Donaldson, Z. R., Bai, Y., Kondrashov, F. A., Stoinski, T. L., Hammock, E. A. D., and Young, L. J. (2008) Evolution of a behavior-linked microsatellite-containing element of the 5′ flanking region of the primate AVPR1A gene. BMC Evolutionary Biology, 8: 180188.Google Scholar
Donaldson, Z. R., and Young, L. J. (2008) Oxytocin, vasopressin and the neurogenetics of sociality. Science, 322: 900904.Google Scholar
Ebert, A., and Brune, M. (2017) Oxytocin and social cognition. In Hurlemann, R., and Grinevich, V., eds., Behavioral Pharmacology of Neuropeptides: Oxytocin. Switzerland: Springer, pp. 375388.Google Scholar
Ebstein, R. P., Knafo, A., Mankuta, D., Chew, S. H., and Lai, P. S. (2012) The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones and Behavior, 61(3): 359379.Google Scholar
Eckardt, W., Steklis, H. D. Steklis, N. G., Fletcher, A. W., Stoinski, T. S., and Weiss, A. (2015) Personality dimensions and their behavioral correlates in wild Virunga mountain gorillas (Gorilla beringei beringei). Journal of Comparative Psychology, 129(1): 2641.Google Scholar
Evans, S. L., Dal Monte, O., Noble, P., and Averbeck, B. B. (2014) Intranasal oxytocin effects on social cognition: A critique. Brain Research, 1580: 6977.Google Scholar
Feczko, E. J., Bliss-Moreau, E., Walum, H., Pruett, J. R. Jr., and Parr, L. A. (2016) The Macaque Social Responsiveness Scale (mSRS): A rapid screening tool for assessing variability in the social responsiveness of Rhesus monkeys (Macaca mulatta). PLoS ONE, 11(1): e0145956.Google Scholar
Francis, S. M., Kim, S. J., Kistner-Griffin, E., Guter, S., Cook, E. H., and Jacob, S. (2016) ASD and genetic associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR. Frontiers in Neuroscience, 10: 516.Google Scholar
Freeman, H. D., Brosnan, S. F., Hopper, L. M., Lambeth, S. P., Schapiro, S. J., and Gosling, S. D. (2013) Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top‐down/bottom‐up design. American Journal of Primatology, 75: 10421053.Google Scholar
Freeman, H. D., and Gosling, S. D. (2010) Personality in nonhuman primates: a review and evaluation of past research. American Journal of Primatology, 72(8): 653671.Google Scholar
Freeman, S. M., Inoue, K., Smith, A. L., Goodman, M. M., and Young, L. J. (2014a) The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology, 45: 128141.Google Scholar
Freeman, S. M., Walum, H., Inoue, K., Smith, A. L., Goodman, M. M., Bales, K. L., and Young, L. J. (2014b) Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience, 273: 1223.Google Scholar
French, J. A., Taylor, J. H., Mustoe, A. C., and Cavanaugh, J. (2016) Neuropeptide diversity and the regulation of social behavior in New World primates. Frontiers in Neuroendocrinology, 42: 1839.Google Scholar
Goodson, J. L., and Bass, A. H. (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews, 35: 246265.Google Scholar
Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., and Hickie, I. B. (2010a) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biological Psychiatry, 67(7): 692694.Google Scholar
Guastella, A. J., Kenyon, A. R., Alvares, G. A., Carson, D. S., and Hickie, I. B. (2010b) Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biological Psychiatry, 67(12): 12201222.Google Scholar
Hammock, E. A., and Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science, 308: 16301634.Google Scholar
Hammock, E. A., and Young, L. J. (2006) Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 361(1476): 21872198.Google Scholar
Hare, B., and Yamamoto, S. (2017) Bonobos: Unique in Mind, Brain and Behavior. Oxford: Oxford University Press.Google Scholar
Hopkins, W. D., Donaldson, Z. R., and Young, L. Y. (2012) A polymorphic indel containing the RS3 microsatellitein the 5′ flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. Genes, Brain and Behavior, 11: 552558.Google Scholar
Hopkins, W. D., Keebaugh, A. C., Reamer, L. A., Schaeffer, J., Schapiro, S. J., and Young, L. J. (2014) Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Scientific Reports 4(3774): 17.Google Scholar
Hopkins, W. D., Latzman, R. D., Mareno, M. C., Schapiro, S. J., Gomez-Robles, A., and Sherwood, C. C. (2018) Heritability of gray matter structural covariation and tool use skills in Chimpanzees (Pan troglodytes): A source-based morphometry and quantitative genetic analysis. Cerebral Cortex, 29: 37023711.Google Scholar
Hopkins, W. D., Reamer, L., Mareno, M. C., and Schapiro, S. J. (2015) Genetic basis for motor skill and hand preference for tool use in chimpanzees (Pan troglodytes). Proceedings of the Royal Society London B Biological Sciences, 282: 1800.Google Scholar
Hopkins, W. D., Russell, J. L., Freeman, H., Reynolds, E. A. M., Griffis, C., and Leavens, D. A. (2006) Lateralized scratching in chimpanzees (Pan troglodytes): Evidence of a functional asymmetry in arousal. Emotion, 6(4): 553559.Google Scholar
Hopkins, W. D., Stimpson, C. D., and Sherwood, C. C. (2017) Social cognition and brain organization in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). In Hare, B., and Yamamoto, S. eds., Bonobos: Unique Mind, Brain and Behavior. Oxford: Oxford University Press, pp. 199213.Google Scholar
Hostetter, A. B., Cantero, M., and Hopkins, W. D. (2001) Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to the attentional status of a human (Homo sapiens). Journal of Comparative Psychology, 115(4): 337343.Google Scholar
Hostetter, A. B., Russell, J. L., Freeman, H., and Hopkins, W. D. (2007) Now you see me, now you don’t: Evidence that chimpanzees understand the role of the eyes in attention. Animal Cognition, 10: 5562.Google Scholar
Inoue-Murayama, M., Yokoyama, C., Yamanashi, Y., and Weiss, A. (2018) Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes. Science Reports, 8(1): 10255.Google Scholar
Issa, H. A., Staes, N., Diggs-Galligan, S. et al. (2018) Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Structure and Function, 224: 239251.Google Scholar
Jiang, Y., and Platt, M. L. (2018) Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex. Science Reports, 8(1): 8201.Google Scholar
Kim, H. S., Young, L. J., Gonen, D. et al. (2002) Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry, 7: 503507.Google Scholar
King, J. E., and Figueredo, A. J. (1997) The five-factor model plus dominance in chimpanzee personality. Journal of Research in Personality, 31(2), 257271, DOI: https://doi.org/10.1006/jrpe.1997.2179.Google Scholar
Kramer, M. D., Patrick, C. J., Krueger, R. F., and Gasperi, M. (2012) Delineating physiologic defensive reactivity in the domain of self-report: Phenotypic and etiologic structure of dispositional fear. Psychological Medicine, 42(6): 13051320.Google Scholar
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., and Kramer, M. D. (2007) Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116(4): 645666.Google Scholar
Latzman, R. D., Drislane, L. E., Hecht, L. K. et al. (2016) A chimpanzee model of triarchic psychopathy constructs: development and initial validation. Clinical Psychological Science, 4(1): 5066.Google Scholar
Latzman, R. D., Green, L. M., and Fernandes, M. A. (2017) The importance of chimpanzee personality research to understanding processes associated with human mental health. International Journal of Comparative Psychology, 30: 34268.Google Scholar
Latzman, R. D., Hopkins, W. D., Keebaugh, A. C., and Young, L. J. (2014) Personality in chimpanzees (Pan troglodytes): Exploring the hierarchical structure and associations with the vasopressin V1A receptor gene. PLoS ONE, 9(4): e95741.Google Scholar
Latzman, R. D., Patrick, C. J., Freeman, H. D., Schapiro, S. J., and Hopkins, W. D. (2017) Etiology of triarchic psychopathy dimensions in Chimpanzees (Pan troglodytes). Clinical Psychological Science, 5(2): 341354.Google Scholar
Latzman, R. D., Schapiro, S. J., and Hopkins, W. D. (2017) Triarchic psychopathy dimensions in Chimpanzees (Pan troglodytes): Investigating associations with genetic variation in the vasopressin receptor 1A gene. Frontiers in Neuroscience, 11: 407.Google Scholar
Latzman, R. D., Young, L. J., and Hopkins, W. D. (2016) Displacement behaviors in chimpanzees (Pan troglodytes): A neurogenomics investigation of the RDoC Negative Valence Systems domain. Psychophysiology, 53: 355363.Google Scholar
Leavens, D. A., Aureli, F., and Hopkins, W. D. (1997) Scratching and cognitive stress: Performance and reinforcement effects on hand use, scratch type, and afferent cutaneous pathways during computer cognitive testing by a chimpanzee (Pan troglodytes). American Journal of Primatology, 42: 126127.Google Scholar
Leavens, D. A., and Hopkins, W. D. (1998) Intentional communication by chimpanzee (Pan troglodytes): A cross-sectional study of the use of referential gestures. Developmental Psychology, 34: 813822.Google Scholar
Leavens, D. A., Hopkins, W. D., and Bard, K. A. (1996) Indexical and referential pointing in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 110(4): 346353.Google Scholar
Leavens, D. A., Hopkins, W. D., and Thomas, R. (2004) Referential communication by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 118: 4857.Google Scholar
Leavens, D. A., Reamer, L. A., Mareno, M. C., Russell, J. L., Wilson, D. C., Schapiro, S. J., and Hopkins, W. D. (2015) Distal communication by chimpanzees (Pan troglodytes): Evidence for common ground? Child Development, 86(5): 16231638.Google Scholar
Leng, G., and Ludwig, M. (2016) Intranasal oxytocin: Myths and delusions. Biological Psychiatry, 79(3): 243250.Google Scholar
Lilienfeld, S. O., and Latzman, R. D. (2018) Personality disorders: Current scientific status and ongoing controversies. In Butcher, J. N., ed., APA Handbook of Psychopathology: Psychopathology: Understanding, Assessing, and Treating Adult Mental Disorders. Washington, DC: American Psychological Association, pp. 557606.Google Scholar
Lilienfeld, S. O., Watts, A. L., Francis Smith, S., Berg, J. M., and Latzman, R. D. (2015) Psychopathy deconstructed and reconstructed: Identifying and assembling the personality building blocks of Cleckley’s Chimera. Journal of Personality, 83(6): 593610.Google Scholar
LoParo, D., and Waldman, I. D. (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Molecular Psychiatry, 20: 640646.Google Scholar
Madlon-Kay, S., Montague, M. J., Brent, L. J. N. et al. (2018) Weak effects of common genetic variation in oxytocin and vasopressin receptor genes on rhesus macaque social behavior. American Journal of Primatology, 80(10): e22873.Google Scholar
Madrid, J. E., Oztan, O., Sclafani, V. et al. (2017) Preference for novel faces in male infant monkeys predicts cerebrospinal fluid oxytocin concentrations later in life. Science Reports, 7(1): 12935.Google Scholar
Mahovetz, L. M., Young, L. J., and Hopkins, W. D. (2016) The influence of AVPR1A genotype on individual differences in behaviors during a mirror self-recognition task in chimpanzees (Pan troglodytes). Genes Brain and Behavior, 15(5): 445452.Google Scholar
Marrus, N., Faughn, C., Shuman, J., Petersen, S. E., Constantino, J. N., Povinelli, D. J., and Pruett, J. R., Jr. (2011) Initial description of a quantitative, cross-species (chimpanzee-human) social responsiveness measure. Journal of the American Academy of Child and Adolescent Psychiatry, 50(5): 508518.Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., and Heinrichs, M. (2011) Oxytocin and vasopressin in the human brain: Social neuropepetides for translational medicine. Nature Neuroscience Reviews, 12: 524538.Google Scholar
Morales, M., Mundy, P., Delgado, C. E. F., Yale, M., Messinger, D., Neal, R., and Schwartz, H. K. (2000) Responding to joint attention across the 6- through 24-month age period and early language acquisition. Journal of Applied Developmental Psychology, 21(3): 283298.Google Scholar
Mundy, P. (2018) A review of joint attention and social-cognitive brain systems in typical development and autism spectrum disorder. European Journal of Neuroscience, 47(6): 497514.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., Van Hecke, A. V., and Parlade, M. V. (2007) Individual differences and the development of joint attention in infancy. Child Development, 78(3): 938954.Google Scholar
Mundy, P., Card, J., and Fox, N. (2000) EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36: 325338.Google Scholar
Mundy, P., Delgado, P., Block, J., Venezia, M., Hogan, A., and Siebert, J. (2003) A Manual for the Abridged Early Social Communication Scales (ESCS). Coral Gables, FL: University of Miami Press.Google Scholar
Murray, L. (2011) Predicting primate behavior from personality ratings. In Weiss, A., King, J. E., and Murray, L., eds., Personality and Temperament in Nonhuman Primates. New York: Springer, pp. 129166.Google Scholar
Palumbo, I. M., and Latzman, R. D. (2019) Translational value of nonhuman primate models of antagonism. In Lyman, D. R., and Miller, J. D., eds., The Handbook of Antagonism. San Diego, CA: Elsevier, pp. 113126.Google Scholar
Parker, K. J., Garner, J. P., Oztan, O. et al. (2018) Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Science Translational Medicine, 10: 439.Google Scholar
Parr, L. A., Mitchell, T., and Hecht, E. (2018) Intranasal oxytocin in rhesus monkeys alters brain networks that detect social salience and reward. American Journal of Primatology, 80(10): e22915.Google Scholar
Parr, L. A., Modi, M., Siebert, E., and Young, L. J. (2013) Intranasal oxytocin selectively attenuates rhesus monkeys’ attention to negative facial expressions. Psychoneuroendocrinology, 38(9): 17481756.Google Scholar
Patrick, C. J., Fowles, D. C., and Krueger, R. F. (2009) Triarchic conceptualization of psychopathy: Developmental origins of disinhibition, boldness, and meanness. Developmental Psychopathology, 21(3): 913938.Google Scholar
Pavani, S., Maestripieri, D., Schino, G., Giovanni Turillazzi, P., and Scucchi, S. (1991) Factors influencing scratching behaviour in long-tailed macaques (Macaca fascicularis). Folia Primatologica, 57: 3438.Google Scholar
Presmanes, A. G., Walden, T. A., Stone, W. L., and Yoder, P. J. (2007) Effects of different attentional cues on responding to joint attention in younger siblings of children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37: 133144.Google Scholar
Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., and Behrens, T. E. (2012) Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social, Cognitive and Affective Neuroscience, 7(4): 369379.Google Scholar
Rogers, C. N., Ross, A. P., Sahu, S. P. et al. (2018) Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. American Journal of Primatology, 80: e22875.Google Scholar
Rosso, L., Keller, L., Kaessmann, H., and Hammond, R. L. (2008) Mating systems and avpr1a promoter variation in primates. Biology Letters, 4: 375378.Google Scholar
Samuni, L., Preis, A., Mundry, R., Deschner, T., Crockford, C., and Wittig, R. M. (2017) Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proceedings of the National Academy of Science USA, 114(2): 268273.Google Scholar
Schaefer, S. A., and Steklis, H. D. (2014) Personality and subjective well-being in captive male western lowland gorillas living in bachelor groups. American Journal of Primatology, 76(9): 879889.Google Scholar
Schino, G., Peretta, G., Taglioni, A. M., Monaco, V., and Troisi, A. (1996) Primate displacement activities as an ethopharmacological model of anxiety. Anxiety, 2: 186191.Google Scholar
Schino, G., Troisi, A., Perretta, G., and Monaco, V. (1991) Measuring anxiety in nonhuman primates: Effect of lorazepam on macaque scratching. Pharmacology, Biochemistry and Behavior, 38: 889891.Google Scholar
Skuse, D. H., Lori, A., Cubelis, J. F. et al. (2014) Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proceedings of the National Academy of Science USA, 111(5): 19871992.Google Scholar
Staes, N., Bradley, B. J., Hopkins, W. D., and Sherwood, C. C. (2018) Genetic signatures of socio-communicative abilities in primates. Current Opinion in Behavioral Sciences, 21: 3338.Google Scholar
Staes, N., Koski, S. E., Helsen, P., Fransen, E., Eens, M., and Stevens, J. M. (2015) Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Hormones and Behavior, 75: 8490.Google Scholar
Staes, N., Stevens, J. M. G., Helsen, P., Hillyer, M., Korody, M., and Eens, M. (2014) Oxytocin and vasopressin receptor gene variation as a proximate base for Inter- and intraspecific behavioral differences in bonobos and chimpanzees. PLoS ONE, 9(11): e113364.Google Scholar
Staes, N., Weiss, A., Helsen, P., Korody, M., Eens, M., and Stevens, J. M. (2016) Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation. Science Reports, 6: 38193.Google Scholar
Stimpson, C. D., Hopkins, W. D., Taglialatela, J., Barger, N., Hof, P. R., and Sherwood, C. C. (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social, Cognitive and Affective Neuroscience, 11(3): 413422.Google Scholar
Tabak, B. A., Teed, A. R., Castle, E. et al. (2019) Null results of oxytocin and vasopressin administration across a range of social cognitive and behavioral paradigms: Evidence from a randomized controlled trial. Psychoneuroendocrinology, 107: 124132.Google Scholar
Taylor, J. H., and French, J. A. (2015) Oxytocin and vasopressin enhance responsiveness to infant stimuli in adult marmosets. Hormones and Behavior, 75: 154159.Google Scholar
Terranova, J. I., Song, Z., Larkin, T. E., 2nd, Hardcastle, N., Norvelle, A., Riaz, A., and Albers, H. E. (2016) Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proceedings of the National Academy of Science USA, 113(46): 1323313238.Google Scholar
Tomasello, M., and Carpenter, M. (2007) Shared intentionality. Developmental Science, 10(1): 121125.Google Scholar
Troisi, A., Schino, G., D’Antoni, M., Pandolfi, N., Aureli, F., and D’Amato, F. R. (1991) Scratching as a behavioral index of anxiety in macaque mothers. Behavioral and Neural Biology, 56: 307313.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S. et al. (2015) Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67: 6065.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S., Knafo, A., and Ebstein, R. P. (2012) Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology, 37(4): 576580.Google Scholar
Walum, H., Westberg, L., Henningsson, S. et al. (2008) Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair bonding behavior in humans. Proceedings of the National Academy of Sciences USA, 105(37): 1415314156.Google Scholar
Warneken, F., Chen, F., and Tomasello, M. (2006) Cooperative activities in young children and chimpanzees. Child Development, 77(3): 640663.Google Scholar
Warneken, F., and Tomasello, M. (2009) The roots of human altruism. British Journal of Psychology, 100(Pt 3): 455471.Google Scholar
Weiss, A., King, J. E., and Hopkins, W. D. (2007) A cross-setting study of chimpanzee (Pan troglodytes) personality structure and development: Zoological parks and Yerkes National Primate Research Center. American Journal of Primatology, 69: 12641277.Google Scholar
Weiss, A., King, J. E., and Murray, L. (2011) Personality and Temperament in Nonhuman Primates. New York: Springer.Google Scholar
Weiss, A., King, J. E., and Perkins, L. (2006) Personality and subjective well-being in orangutans (Pongo pygmaeus and Pongo abelii). Journal of Personality and Social Psychology, 90(3): 501511.Google Scholar
Weiss, A., Staes, N., Pereboom, J. J., Inoue-Murayama, M., Stevens, J. M., and Eens, M. (2015) Personality in Bonobos. Psychological Science, 26(9): 14301439.Google Scholar
Wilczynski, W., Quispe, M., Munoz, M. I., and Penna, M. (2017) Arginine vasotocin, the social neuropeptide of amphibians and reptiles. Frontiers in Endocrinology, 8: 186.Google Scholar
Wilson, V. A. D., Inoue-Murayama, M., and Weiss, A. (2018) A comparison of personality in the common and Bolivian squirrel monkey (Saimiri sciureus and Saimiri boliviensis). Journal of Comparative Psychology, 132(1): 2439.Google Scholar
Yirmiya, N., Rosenberg, C., Levi, S. et al. (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: Mediation by socialization skills. Molecular Psychiatry, 11(5): 488494.Google Scholar
Zhang, R., Zhang, H. F., Han, J. S., and Han, S. P. (2017) Genes related to oxytocin and arginine-vasopressin pathways: Associations with autism spectrum disorders. Neuroscience Bulletin, 33(2): 238246.Google Scholar
Ziegler, T. E., and Crockford, C. (2017) Neuroendocrine control in social relationships in non-human primates: Field based evidence. Hormones and Behavior, 91: 107121.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×