Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T04:40:01.339Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 May 2020

S. L. Kochhar
Affiliation:
University of Delhi
Sukhbir Kaur Gujral
Affiliation:
University of Delhi
Get access
Type
Chapter
Information
Plant Physiology
Theory and Applications
, pp. 851 - 855
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, P., Baker, J. J. W., and Allen, G. E.. 1970. The Study of Botany. California. London: Addison Wesley Publishing Company.Google Scholar
Albert, B. et al. 2019. Essential Cell Biology. 5th ed. W. W. Norton.Google Scholar
Arnon, Daniel. I. 1966. ‘The Role of Light in Photosynthesis’. Sci. Am. 203 (5): 10418.Google Scholar
Bajracharya, D. 1999. Experiments in Plant Physiology – A Laboratory Manual. New Delhi: Narosa Publishing House.Google Scholar
Bandurski, R. S. 1965. ‘Biological Reduction of Sulfate and Nitrate’. In Plant Biochemistry Bonner, J. and Varner, J. E., (edited) New York: Academic Press, Inc.Google Scholar
Bassham, J. A. 1962. ‘The Path of Carbon in Photosynthesis’. Sci. Am. 206 (6): 88100.Google Scholar
Berg, J. M. et al. 2019. Biochemistry. 9th ed. Macmillan.Google Scholar
Bhaskar, A., and Vidhya, V. G.. 2009. Enzyme Technology. Chennai, India: MJP Publishers.Google Scholar
Bhatla, S. C. and Lal, M. A.. 2018. Plant Physiology, Development and Metabolism. Singapore: Springer.Google Scholar
Bidlack, J. E., and Jansky, S. H.. 2011. Stern's Introductory Plant Biology. 12th ed. New York: McGraw- Hill Companies, Inc.Google Scholar
Bidwell, R. G. S. 1979. Plant Physiology. 2nd ed. New York: Macmillan Publishing Co., Inc.Google Scholar
Blackman, F. F. 1905. ‘Optima and Limiting Factors’. Ann. Bot. 19: 28195.Google Scholar
Buchanan, B., Gruissem, W., and Jones, R.. 2015. Biochemistry and Molecular Biology of Plants. 12th ed. John Wiley & Sons. Ltd.Google Scholar
Calvin, M. 1956. ‘The Photosynthetic Carbon Cycle’. J. Am. Chem. Soc. 78: 1895.Google Scholar
Calvin, M., and Benson, A. A.. 1948. ‘The Path of Carbon in Photosynthesis’. Science 107: 47680.Google Scholar
Campbell, N. A. et al. 2018. Biology. 11th ed. Francisco: Pearson Benjamin Cummings.Google Scholar
Cech, T. R. 1986. ‘RNA as an Enzyme’. Sci. Am. 255 (5): 7684.Google Scholar
Cooper, G. M. 2019. The Cell: A Moleculer Approach. 8th ed. Sinauer/OUP.Google Scholar
Curtis, O. F., and Clark, D. G.. 1950. An Introduction to Plant Physiology. New York: McGraw-Hill Book Company, Inc.Google Scholar
Dennis, D. T. et al. 1997. Plant Metabolism. New York: Addison Wesley/Longman.Google Scholar
Devlin, R. M. 2017. Outline of Plant Physiology. India: MedTech.Google Scholar
Devlin, R. M., Witham, F. H., and Blaydes, D. F.. 2017. Exercises in Plant Physiology. 2nd ed. India: MedTech.Google Scholar
Duysens, L. N. M., Amesz, J., and Kemp, B. M.. 1961. ‘Two Photochemical Systems in Photosynthesis’. Nature 190: 51011.Google Scholar
Elliot, W. Y. 2009. Biochemistry and Molecular Biology. 4th ed. London: Oxford Publishers.Google Scholar
Fischer, R. A. 1968. ‘Stomatal Opening-Role of Potassium Uptake by Guard Cells’. Science 160: 78485.Google Scholar
Fischer, R. A., and Hsiao, T. C.. 1968. ‘Stomatal Opening in Isolated Epidermal Strips of Vicia faba II. Response to KCl Concentration and Role of Potassium Absorption’. Plant Physiol 43: 195358.Google Scholar
Fitter, A., and Hay, R.. 2012. Environmental Physiology of Plants. 3rd ed. Academic Press.Google Scholar
Flint, L. H., and McAlister, E. D.. 1935. ‘Wavelength of Radiation in the Visible Spectrum Inhibiting the Germination of Light Sensitive Lettuce Seed’. Smithsonian Inst. Misc. Coll. 96: 18.Google Scholar
Fujino, M. 1959. ‘Stomatal Movement and Active Migration of Potassium Translated’. Kagaku 29: 660.Google Scholar
Galston, A. W. 1981. Green Wisdom. New York: Basic Books, Inc., Publishers.Google Scholar
Galston, A. W., Davies, P. I., and Satter, R. L.. 1980. The Life of the Green Plant. 3rd ed. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar
Gane, R. 1934. ‘Production of Ethylene by Some Ripening Fruits’. Nature 134: 1008.Google Scholar
Garner, W. W., and Allard, H. A.. 1920. ‘Effect of the Relative Length of the Day and Night and Other Factors of the Environment on Growth and Reproduction in Plants.J. Agric. Res. 18: 553603.Google Scholar
Govindjee, R. G., and Rabinowitch, E. I.. 1960. ‘Two Forms of Chlorophyll a In Vivo with Two Distinct Photochemical Functions’. Science 132: 355.Google Scholar
Govindjee, R. G., and Govindjee, R.. 1974. ‘The Absorption of Light in Photosynthesis’. Scientific American 231: 6882.Google Scholar
Greulach, V. A. 1973. Plant Function and Structure. New York: Macmillan Publishing Co., Inc.Google Scholar
Greulach, V. A., and Adams, J. E.. 1967. Plants – An Introduction to Modern Botany. New York. London: John Wiley and Sons, Inc.Google Scholar
Guha, S., and Maheshwari, S. C.. 1966. ‘Cell Division and Differentiation of Embryos in the Pollen Grains of Datura In Vitro. Nature (London), 212: 978.Google Scholar
Guha, S., and Maheshwari, S. C.. 1967. ‘Development of Embryoids from Pollen Grains of Datura In Vitro’. Phytomorphology 17: 45461.Google Scholar
Hardin, J. and Beotoni, G.. 2018. Becker's World of the Cell. Pearson.Google Scholar
Hartmann, H. T., Flocker, W. J., and Kofranek, A. M.. 1981. Plant Science-Growth, Development and Utilization of Cultivated Plants. New Jersey: Prentice-Hall, Inc.Google Scholar
Hatch, M. D., and Slack, C. R.. 1966. ‘Photosynthesis by Sugarcane Leaves. A New Carboxylation Reaction and Pathway of Sugar Formation’. Biochem. J. 101: 10311.Google Scholar
Haupt, W. 1982 ‘Light-Mediated Movement of Chloroplasts’. Annu. Rev. Plant Physiol. 33: 20533.Google Scholar
Heath, O. V. S., and Orchard, B.. 1957. ‘Midday Closure of Stomata’. Nature (London), 180: 181.Google Scholar
Hess, D. 1975. Plant Physiology. New York: Springer–Verlag.Google Scholar
Hill, R. 1937. ‘Oxygen Evolved by Isolated Chloroplasts’. Nature 139: 88182.Google Scholar
Hill, R., and Bendall, F.. 1960. ‘Function of the Two Cytochrome Components in Chloroplasts – A Working Hypothesis’. Nature 186: 13637.Google Scholar
Hopkins, W. G., and Hüner, N. P. A.. 2009. Introduction to Plant Physiology. 4th ed. London. Ontario: John Wiley and Sons, Inc.Google Scholar
Humble, G. D., and Raschke, K.. 1971. ‘Stomatal Opening Quantitatively Related to Potassium Transport’. Evidence from Electron Probe Analysis. Plant Physiol. 48: 44753.Google Scholar
Jagendorf, A. T. 1967. ‘Acid–Base Transitions and Phosphorylation by Chloroplasts.Fed. Proc. Am. Soc. Exp. Biol. 26: 136169.Google Scholar
Kochhar, P. L., and Krishnamoorthy, H. N.. 1989. A Text Book of Plant Physiology. Delhi, Lucknow: Atma Ram and Sons.Google Scholar
Kochhar, S. L., and Sukhbir Kaur, Gujral, 2012. Comprehensive Practical Plant Physiology. Delhi: Macmillian Publishers India Ltd.Google Scholar
Kornberg, H. L., and Krebs, H. A.. 1957. ‘Synthesis of Cell Constituents from C2-Units by a Modified Tricarboxylic Acid Cycle’. Nature 179: 988.Google Scholar
Kortschak, H. P., Hartt, C. E., and Burr, G. O.. 1965. ‘Carbon dioxide Fixation in Sugarcane Leaves.Plant. Physiol. 40: 20913.Google Scholar
Kramer, P. J. 1937. ‘The Relation Between Rate of Transpiration and Rate of Absorption of Water in Plants.Am. J. Bot. 24: 10.Google Scholar
Krebs, H. A. 1970. ‘The History of the Tricarboxylic Acid Cycle’. Perspect. Biol. Med. 14: 15470.Google Scholar
Levitt, J. 1956. The Hardiness of Plants. New York: Academic Press, Inc.Google Scholar
Levitt, J. 1967. ‘The Mechanism of Stomatal Action’. Planta 74: 1018. (It gives an account of Levitt’s modified classical theory).Google Scholar
Levitt, J. 1969. Introduction of Plant Physiology. Saint Louis: The C.V. Mosby Company.Google Scholar
Levitt, J. 1974. ‘Mechanism of Stomatal Movements – Once More’. Protoplasma 82 (1–2): 117.Google Scholar
Machlis, L., and Torrey, J. G.. 1956. Plants in Action. San Francisco: W.H. Freeman and Company.Google Scholar
Maheshwari, S. C. 2003. ‘A Rise of Experimental Plant Physiology in India–A Personal View’. Souvenir: 2nd International Congress of Plant Physiology, New Delhi, India. 113.Google Scholar
Mauseth, J. D. 2019. Botany–An Introduction to plant Biology. 6th ed. Boston: Jones and Bartlett Publishers.Google Scholar
Meidner, H. 1984. Class Experiments in Plant Physiology. London: George Allen and Unwin.Google Scholar
Meyer, B. S., Anderson, D. B., and Böhning, R. H.. 1960. Introduction to Plant Physiology. Princeton, N.J.: D. Van Nostrand Company, Inc.Google Scholar
Mitchell, P. 1961. ‘Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemiosmotic Type of Mechanism. Nature 191: 14448.Google Scholar
Mothes, K., and Engelbrecht, L.. 1961. ‘Kinetin and Its Role in Nitrogen Metabolism’. In Proc. Int. Bot. Cong., 9th Cong., Montreal, Canada 2: 996. Toronto: University of Toronto Press.Google Scholar
Narwal, S. S. et al. 2009. Plant Biochemistry. Studium Press, LLC.Google Scholar
Nelson, D. L., and Cox, M. M.. 2017. Lehninger Principles of Biochemistry. 7th ed. Machmillan Higher Education.Google Scholar
Kärin, Nickelsen, and Govindjee, . 2011. The Maximum Quantum Yield Controversy: Otto Warburg and the ‘Midwest-Gang’. Bern Studies in the History and Philosophy of Science, University of Bern. Switzerland: Institut für Philoshie.Google Scholar
Noggle, G. R., and Fritz, G. J.. 1986. Introductory Plant Physiology. 2nd ed. New Delhi: Prentice-Hall of India.Google Scholar
Northington, D. K., and Goodin, J. R.. 1984. The Botanical World. St. Louis. Toronto: Times Mirror/ Mosby College Publishing.Google Scholar
Ochoa, S., and Vishniac, W.. 1952. ‘Carboxylation Reactions and Photosynthesis’. Science 115: 297.Google Scholar
Ochs, R. S. 2014. Biochemistry. Jones and Bartlett Learning.Google Scholar
Pandey, S. N., and Sinha, B. K.. 2006. Plant Physiology. 4th ed. New Delhi: Vikas Publishing House Pvt. Ltd.Google Scholar
Park, R. B., and Biggins, . 1964. ‘Quantasome: Size and Composition’. Science 144: 100911.Google Scholar
Plummer, D. T. 1990. An Introduction to Practical Biochemistry. 3rd ed. New Delhi. New York: Tata McGraw-Hill Publishing Company Limited.Google Scholar
Rabinowitch, E. I. 1948. ‘Photosynthesis’. Sci. Am. 179 (2): 2435.Google Scholar
Rabinowitch, E. I., and Govindjee, R. G.. 1965. ‘The Role of Chlorophyll in Photosynthesis’. Sci. Am. 213 (1): 7483.Google Scholar
Raven, P. H., Evert, R. F., and Eichhorn, S. E.. 2019. Biology of Plants. 12th ed. McGraw-Hill.Google Scholar
Richmond, A., and Lang, A.. 1957. ‘Effect of Kinetin on Protein Content and Survival of Detached Xanthium Leaves’. Science 125: 65051.Google Scholar
Ridge, I. 1991. Plant Physiology. Milton Keynes: Hodder and Stoughton.Google Scholar
Ruben, S., and Kamen, M.D.. 1940a. ‘Photosynthesis with Radioactive Carbon. IV. Molecular Weight of the Intermediate Products and a Tentative Theory of Photosynthesis’. J. Am. Chem. Soc. 62: 3451.Google Scholar
Ruben, S., and Kamen, M.D.. 1940b. ‘Radioactive Carbon in the Study of Respiration in Heterotrophic Systems’. Proc. Natl. Acad. Sci. USA. 26: 418.Google Scholar
Russell, J., Oughan, H., Thomas, H., and Waaland, S.. 2013. The Molecular Life of Plants: John Wiley & Sons Ltd.Google Scholar
Sadasivam, S. and Manikam, A.. 1992. Biochemical Methods for Agricultural Sciences. India: Wiley Eastern Limited.Google Scholar
Salisbury, F. B., and Ross, C. W.. 1992. Plant Physiology. 4th ed. California: Wadsworth Publishing Co. Ltd.Google Scholar
Sawada, K. 1912. ‘Disease of Agricultural Products in Japan’. Formosan. Agr. Rev. 36: 10.Google Scholar
Sawada, K., and Kurosawa, . 1924. ‘On the Prevention of the Bakanae Disease of Rice’. Exp. Sta. Bull. Formosa. 21: 1.Google Scholar
Sawhney, S. K., and Singh, R.. 2009. Introductory Practical Biochemistry. India: Narosa Publishing House.Google Scholar
Sayre, J. D. 1926. ‘Physiology of the Stomata of Rumex patientia’. Ohio. J. Sci. 26: 233.Google Scholar
Scarth, G. W. 1932. ‘Mechanism of Action of Light and Other Factors on Stomatal Movement’. Plant Physiol. 7: 481504.Google Scholar
Scholander, P. F., Hammel, H. T., and Bradstreet, E. D.. 1965. ‘Sap Pressure in Vascular Plants’. Science 148: 33946.Google Scholar
Scientific American-Resource Library Readings in the Life Sciences. Vols. 1–7. San Francisco, California: W. H. Freeman and Company.Google Scholar
Scott, P. 2008. Physiology and Behaviour of Plants. London: John Wiley and Sons, Ltd.Google Scholar
Sengar, , Gupta, R. S. S., and Sharma, A. K.. 2011. Laboratory Manual on Biotechnology. India. N. R. Book Distributor.Google Scholar
Sheeler, P., and Bianchi, D. E.. 1987. Cell and Molecular Biology. 3rd ed. New York: John Wiley and Sons, Inc.Google Scholar
Siegelman, H. W., and Firir, E. M.. 1964. ‘Purification of Phytochrome from Oat Seedlings’. Biochemistry 3: 418.Google Scholar
Siegelman, H. W., and Butler, W. L.. 1965. ‘Properties of Phytochrome’. Ann. Rev. Plant Physiol. 16: 383.Google Scholar
Singer, S. J., and Nicolson, G. L.. 1972. ‘The Fluid Mosaic Model of the Structure of Cell Membranes’. Science 175: 72031.Google Scholar
Sinha, R. K. 2007. Modern Plant Physiology. New Delhi: Narosa Publishing House.Google Scholar
Skoog, F., and Miller, C. O.. 1957. ‘Chemical Regulation of Growth and Organ Formation in Plant Tissues Cultured In vivo’. Symp. Soc. Exp. Biol. 11: 118.Google Scholar
Slatyer, R. O., and Taylor, S. A.. 1960. ‘Terminology in Plant and Soil Water Relations’. Nature. 187: 92224.Google Scholar
Smith, A. M. et al. 2010. Plant Biology. New York: Garland Science.Google Scholar
Srivastava, H. N. 2000. Plant Physiology. New Delhi: Pradeep Publications.Google Scholar
Steward, F. C. 1967. Plants At Work. New York: Addison–Wesley Publishing Company.Google Scholar
Stryer, L. 1995. Biochemistry, 3rd ed. San Francisco: W. H. Freeman and Company.Google Scholar
Sumner, J. B. 1926. ‘The Isolation and Crystallization of the Enzyme Urease’. J. Biol. Chem. 69: 435.Google Scholar
Taiz, L., Zeiger, E., Moller, I. M., and Murphy, A.. 2015. Plant Physiology and Development. 6th ed. USA: Sinauer Associates Inc. Publishers.Google Scholar
Tanada, T. 1968. ‘A Rapid Photoreversible Response of Barley Root Tips in the Presence of 3-Indole Acetic Acid’. Proc. Natl. Acad. Sci. USA. 59: 37679.Google Scholar
Thaine, R. 1961. ‘Transcellular Strands and Particle Movement in Mature Sieve Tubes’. Nature 192: 72.Google Scholar
Thimmaiah, S. K. 2009. Standard Methods of Biochemical Analysis. New Delhi: Kalyani Publishers.Google Scholar
Thut, H. F. 1932. ‘Demonstrating the Lifting Power of Transpiration’. Am. J. Bot. 19: 358.Google Scholar
Ting, I. P. 1982. Plant Physiology. California, U.S.A.: Addison-Wesley Publishing Company.Google Scholar
Ting, I., and Loomis, W.. 1963. ‘Diffusion Through Stomates’. Am. J. Bot. 50: 866.Google Scholar
Tolbert, N. E. 1981. ‘Metabolic Pathways in Peroxisomes and Glyoxysomes’. Ann. Rev. Biochem. 50: 13357.Google Scholar
Tyree, M. T. 1997. ‘The Cohesion-Tension Theory of Sap Ascent: Current Controversies’. J. Exp. Bot. 175356.Google Scholar
Van Niel, C. B. 1931. ‘On the Morphology and Physiology of the Purple and Green Sulphur Bacteria’. Arch. Mikrobiol. 3: 1.Google Scholar
Verma, V. 2007. Textbook of Plant Physiology. New Delhi: Ane Books India.Google Scholar
Voet, D., and Voet, J. G.. 2019. Fundamentals of Biochemistry. 5th ed. New York: John Wiley Sons Inc.Google Scholar
Wareing, P. F., and Philips, I. D. J.. 1978. The Control of Growth and Differentiation in Plants. 2nd ed. New York: Pergamon Press.Google Scholar
Watson, J. D., and Crick, F. H. C.. 1953. ‘Molecular Structure of Nucleic Acids’. Nature 171: 73738.Google Scholar
Weier, T. E., Stocking, C. R., Barbour, M. G., and Rost, T. L.. 1970. Botany. 6th ed. New York: John Wiley and Sons.Google Scholar
Wilkins, M. 1963. ‘Molecular Configuration of Nucleic Acids’. Science 140: 194163.Google Scholar
Wilkins, M. 1988. Plant Watching. London: Macmillan.Google Scholar
Wilkins, , Malcolm, B. ed. 1984. Advanced Plant Physiology. London: ELBS, Longman.Google Scholar
Yin, H. C., and Tung, Y. T.. 1948. ‘Phosphorylase in Guard Cells’. Science 108: 87.Google Scholar
Zelitch, I. 1963. ‘The Control and Mechanism of Stomata and Water Relations in Plants’. Conn. Agric. Expt. Sta. Bull. 664: 1842.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×