Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-06T04:27:30.207Z Has data issue: false hasContentIssue false

9 - Bringing It All Together

Published online by Cambridge University Press:  22 June 2020

William J. Manning
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

This chapter provides a review of interactive forest-related factors that influence the temperature of the atmosphere. Factors revisited and expanded from previous chapters include carbon dioxide, carbon accumulation, deforestation and afforestation, evaporation and transpiration, albedo, BVOCs, and ozone (Bonan, 2008; Mackey et al., 2013; Unger, 2014; Ellison et al., 2017). Occurring together, and influenced by many other factors, they constitute the system by which forests cool or warm the atmosphere.

Type
Chapter
Information
Trees and Global Warming
The Role of Forests in Cooling and Warming the Atmosphere
, pp. 303 - 327
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrendts, A., Hollingsworth, P. M., Beckschafer, P. et al. 2016. China’s fight to halt tree cover loss. Proceedings of the Royal Society B 284: 20162559. doi: 10.1098/rspb.2016.2559.Google Scholar
Anderson, R. G., Canadell, J. G., Randerson, J. T. et al. 2011. Biophysical considerations in forestry for climate protection. Frontiers in Ecology and Environment 9: 174182. doi: 10.1890/090179.Google Scholar
Arneth, A., Sitch, S., Pongratz, J. et al. 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience. doi: 10.1038/ngeo2882.Google Scholar
Arora, V. K. and Montenegro, A. 2011. Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience 4. doi: 10.1038/ngeo1182.Google Scholar
Baccini, A., Walker, W., Carvalho, L. et al. 2017 Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science. doi: 10.1126/scienceaam5962.Google Scholar
Bala, G., Caldeira, K., Wickett, M. et al. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences. www.pnas.org.doi10.1073.pnas0608998104.Google Scholar
Ban-Weiss, G. A., Bala, G., Cao, L., Pongrat, J. and Caldeira, K. 2011. Climate forcing and response to idealized changes in surface latent and sensible heat. Environmental Research Letters 6: 034032.Google Scholar
Betts, R. A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187190. doi: 10.1038/350414.Google Scholar
Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441489.Google Scholar
Boysen, L. R., Lucht, W., Gerten, D. et al. 2017. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5. doi: 10.1002/2016EF000469.CrossRefGoogle Scholar
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R. et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519. doi: 10.1038/nature14283.Google Scholar
Cao, L., Bala, G., Caldeira, K., Nemani, R. and Ban-Weiss, G. A. 2010. Importance of carbon dioxide physical forcing to future climate change. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.0913000107.Google Scholar
Craine, J. M., Elmore, A. J., Wang, L. et al. 2018. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology and Evolution: 2: 17351744. doi: 10.1038/s41559–018-0694-0.CrossRefGoogle ScholarPubMed
Crowther, T. W., Glick, H. B. and Bradford, M. A. 2015. Tree mapping density at a global scale. Nature 525: 201205. doi: 10.1038/nature14967.Google Scholar
Doutriaux-Boucher, M., Webb, M. J., Gregory, J. M. and Boucher, O. 2009. Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophysical Research Letters 36: L02703. doi: 10.1029/2008GL036273.2009.Google Scholar
Drake, J. E., Macdonald, C. A., Tjoelker, M. G. et al. 2016. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Global Change Biology 22: 380390. doi: 10.1111/gcb.13109.Google Scholar
Ellison, D., Morris, C. E., Locatelli, B. et al. 2017. Trees, forests and water: cool insights for a hot world. Global Environmental Change 43: 5161. doi: 10.1016/j.glovencha.2017.02.0002.Google Scholar
Ellsworth, D. S., Anderson, I. C., Crous, K. Y. et al. 2017. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change 7. doi: 10.1038/nclimate3235.Google Scholar
Farrior, C. E., Rodriguez-Iturbe, I., Dybzinski, R., Levin, S. A. and Pacala, S. W. 2015. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.150622112.Google Scholar
Fernandez-Martinez, S., Vicca, I. A., Janessens, J. et al. 2015. Nutrient availability as the key regulator of global carbon balance. Nature Climate Change 4: 471478. doi: 10.1038/nclimate2177.CrossRefGoogle Scholar
Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. and Wickett, M. 2005. Climate effects of global land cover change. Geophysical Research Letters 32: L23705. doi: 10.1029/2005GL0245550.2005.Google Scholar
Griffin, K. L. and Prager, K. L. 2017. Where does the carbon go? Thermal acclimation of respiration and increased photosynthesis in trees at the temperate–boreal ecotone. Tree Physiology 37: 281284. doi: 10.1093/treephys/tpw133.Google Scholar
Groenendijk, P., van der Sleen, P., Vlam, V., Bunyavejchewin, S. and Zuidema, P. A. 2015. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis. Global Change Biology 21: 27622776. doi: 10.1111/gcb.12955.CrossRefGoogle ScholarPubMed
Jasechko, S., Sharp, Z. D., Gibson, J. L. et al. 2013. Terrestrial water fluxes dominated by transpiration. Nature 496. doi: 10.1038/nature11983.CrossRefGoogle ScholarPubMed
Kirschbaum, M. U. F. and McMillan, A. M. S. 2018. Warming and elevated CO2 have opposing influences on transpiration. Which is more important? Current Forestry Reports 4: 5171. doi: 10.1007/s40725–018-0073-8.Google Scholar
Korner, C. 2017. A matter of tree longevity. Science 355: 130131. doi: 10.1126/science.aaa/2449.CrossRefGoogle ScholarPubMed
Lee, X., Goulden, M. L., Hollinger, D. Y. et al. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479: 384387. doi: 10.1038/nature10588.Google Scholar
Leggett, L. M. W. and Ball, D. A. 2018. Evidence that the global transpiration makes a substantial contribution to the global atmospheric temperature slowdown. Theoretical and Applied Climatology doi: 10.1007/s00704–018-2387-7.Google Scholar
Li, Y., Zhao, M., Motesharrei, S. et al. 2015. Local cooling and warming effects on forests based on satellite observations. Nature Communications. doi: 10.1038/ncomms7603.Google Scholar
Liu, Z., Ballantyne, A. P. and Cooper, A. 2018. Increases in land surface temperature in response to fire in Siberian boreal forests and their attribution to biophysical processes. Geophysical Research Letters. doi: 10.1029/2018GL078283.Google Scholar
Long, S. P. 2012. Virtual special issue (VSI) on mechanisms of plant response to global atmospheric change. Plant, Cell and Environment 35: 17051706. doi: 10.1111/j.1365-3040.2012.0258.x.Google Scholar
Mackey, B., Prentice, I. C., Steffen, W. et al. 2013. Untangling the confusion around land carbon science and climate mitigation policy. Nature Climate Change 3: 552557. doi: 10.1038/nclimate1804.Google Scholar
Mitchard, E. T. A. 2018. The tropical forest carbon cycle and climate change. Nature 559: 527534. doi: 10.1038/s41586–018-0300-2.CrossRefGoogle Scholar
Mykleby, P. M., Snyder, P. K. and Twine, T. E. 2017. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American Forests. Geophysical Research Letters 44: 24932501. doi: 10.1002/2016GL071459.Google Scholar
Nabuurs, G.-J., Lindner, M., Verkerk, P. J. et al. 2013. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3. doi: 10.1038/nclimate1853.Google Scholar
Naudts, K., Chen, Y., McGrath, M. J. et al. 2016. Europe’s forest management did not mitigate climate warming. Science 351: 597600.Google Scholar
Paasonen, P., Asmi, A., Petaja, T. et al. 2013. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience. doi: 10.1038/ngeo1800.Google Scholar
Pau, S., Detto, M., Kim, Y. and Still, C. J. 2018. Tropical forest temperature thresholds for gross primary productivity. Ecosphere 9: e02311. doi: 10.1002/ecs2.2311.Google Scholar
Peng, S.-S., Piao, S., Zeng, Z. et al. 2014. Afforestation in China cools land surface temperature. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1315126111.Google Scholar
Rahman, M. A., Moser, A., Gold, A., Rotzer, T. and Paulet, S. 2018. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Science of the Total Environment 633: 1001111. doi: 10.1016/j.scitoenv.2018.03.168.Google Scholar
Schimel, D., Stephens, B. B. and Fisher, J. B. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences 112: 436441. doi: 10.1073/pnas.1407302112.Google Scholar
Schultz, N. M., Lawrence, P. J. and Lee, X. 2017. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research: Biogeosciences 122: 903917. doi: 10.1002/2016JG003653.CrossRefGoogle Scholar
Shen, M., Piao, S., Jeong, S.-J. et al. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.15044418112.Google Scholar
Spracklen, D. V., Bonn, B. and Carslaw, K. S. 2008. Boreal forests, aerosols and the impact on clouds and climate. Philosophical Transactions of the Royal Society A 366: 46134626.Google Scholar
Swann, A., Fung, I. Y., Levis, S., Bonan, G. B. and Doney, S. C. 2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences 107: 12951300. doi: 10.1073/pnas.0913846107.Google Scholar
Tang, B., Zhao, X. and Zhao, W. 2018. Local effects of forests on temperatures across Europe. Remote Sensing 10: 529533. doi: 10.103390/rs10040529.Google Scholar
The Bonn Challenge. 2011. www.bonnchallenge.org.Google Scholar
Unger, N. 2014. Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change 4: 907910. doi: 10.1038/nclimate2347.Google Scholar
van der Sleen, P., Groenendijk, P., Viam, M. et al. 2014. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience 8: 2428. doi: 10.1038/ngeo2313.Google Scholar
van der Werf, G. R., Morton, D. C., DeFries, R. S. et al. 2009. CO2 emissions from forest loss. Nature Geoscience 2: 737738.Google Scholar
Wieder, W. R., Cleveland, C. C., Kolby Smith, W. and Todd-Brown, K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience 8: 441444. doi: 10.1038/ngeo2413.Google Scholar
Zeng, Z., Piao, S., Laurent, Z. X. et al. 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change. doi: 10.1038/nclimate3299.CrossRefGoogle Scholar
Zhu, K., Zhang, J., Niu, S., Chu, C. and Luo, Y. 2018. Limits to growth of forest biomass carbon sink under climate change. Nature Communications 9. doi: 10. 1038.s41467–018-05132-5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×