Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-08T22:53:10.406Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 May 2020

Mikhail I. Katsnelson
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanin, D. A., Lee, P. A., & Levitov, L. S. (2006). Phys. Rev. Lett. 96, 176803Google Scholar
Abanin, D. A., Morozov, S. V., Ponomarenko, L. A., et al. (2011). Science 332, 328CrossRefGoogle Scholar
Abanin, D. A., Shytov, A. V., Levitov, L. S., & Halperin, B. I. (2009). Phys. Rev. B 79, 035304Google Scholar
Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Adv. Phys. 59, 261CrossRefGoogle Scholar
Abergel, D. S. L., Russel, A., & Fal’ko, V. I. (2007). Appl. Phys. Lett. 91, 063125Google Scholar
Abraham, F. F., & Nelson, D. R. (1990). Science 249, 393Google Scholar
Abramowitz, M., & Stegun, L. A. (1964). Handbook of Mathematical Functions. New York: DoverGoogle Scholar
Abrikosov, A. A. (1988). Fundamentals of the Theory of Metals. Amsterdam: North HollandGoogle Scholar
Abrikosov, A. A. (1998). Phys. Rev. B 58, 2788CrossRefGoogle Scholar
Acun, A., Zhang, L., Bampoulis, P., et al. (2015). J. Phys.: Condens. Matter 27, 443002Google Scholar
Adam, S., Hwang, E., Galitski, V. M., & Das Sarma, S. (2007). Proc. Natl. Acad. Sci. USA 104, 18392Google Scholar
Adhikari, S. K. (1986). Am. J. Phys. 54, 362Google Scholar
Aharonov, Y., & Bohm, D. (1959). Phys. Rev. 115, 485Google Scholar
Aharonov, Y., & Casher, A. (1979). Phys. Rev. A 19, 2461CrossRefGoogle Scholar
Ahn, S. J., Moon, P., Kim, T.-H., et al. (2018). Science 361, 782Google Scholar
Akhiezer, A. I., & Peletminskii, S. V. (1981). Methods of Statistical Physics. Oxford: PergamonGoogle Scholar
Akhmerov, A. R., & Beenakker, C. W. J. (2008). Phys. Rev. B 11, 085423CrossRefGoogle Scholar
Aleiner, I. L., & Efetov, K. B. (2006). Phys. Rev. Lett. 97, 236801Google Scholar
Alonso-Gonzáles, P., Nikitin, A. Y., Gao, Y., et al. (2017). Nature Nanotech. 12, 31Google Scholar
Altland, A. (2002). Phys. Rev. B 65, 104525CrossRefGoogle Scholar
Altshuler, B. L., Khmelnitskii, D., Larkin, A. I., & Lee, P. A. (1980). Phys. Rev. B 22, 5142Google Scholar
Amet, F., Williams, J. R., Watanabe, K., Taniguchi, T., & Goldhaber-Gordon, D. (2013). Phys. Rev. Lett. 110, 216601Google Scholar
Amorim, B., & Guinea, F. (2013). Phys. Rev. B 88, 115418Google Scholar
Anderson, P. W. (1958). Phys. Rev. 112, 900Google Scholar
Anderson, P. W. (1970). J. Phys. C 3, 2346Google Scholar
Ando, T. (2006). J. Phys. Soc. Japan 75, 074716Google Scholar
Ando, T., Fowler, A. B., & Stern, F. (1982). Rev. Mod. Phys. 54, 437Google Scholar
Ando, T., Nakanishi, T., & Saito, R. (1998). J. Phys. Soc. Japan 67, 2857Google Scholar
Ando, T., Zheng, Y., & Suzuura, H. (2002). J. Phys. Soc. Japan 71, 1318CrossRefGoogle Scholar
Aronovitz, J. A., & Lubensky, T. C. (1988). Phys. Rev. Lett. 60, 2634Google Scholar
Aryasetiawan, F., Imada, M., Georges, A., et al. (2004). Phys. Rev. B 70, 195104Google Scholar
Astrakhantsev, N. Yu., Braguta, V. V., & Katsnelson, M. I. (2015). Phys. Rev. B 92, 245105CrossRefGoogle Scholar
Astrakhantsev, N. Yu., Braguta, V. V., Katsnelson, M. I., Nikolaev, A. A., & Ulybyshev, M. V. (2018). Phys. Rev. B 97, 035102Google Scholar
Atiyah, M. F., Patodi, V. K., & Singer, I. M. (1976). Math. Proc. Cambridge Philos. Soc. 79, 71Google Scholar
Atiyah, M. F., & Singer, I. M. (1968). Ann. Math. 87, 484Google Scholar
Atiyah, M. F., & Singer, I. M. (1984). Proc. Natl. Acad. Sci. USA 81, 2597Google Scholar
Auslender, M. I., & Katsnelson, M. I. (1982). Teor. Mat. Fiz. 51, 436Google Scholar
Auslender, M. I., & Katsnelson, M. I. (2007). Phys. Rev. B 76, 235425Google Scholar
Balandin, A. A. (2011). Nature Mater. 10, 569Google Scholar
Balandin, A. A., Chosh, S., Bao, W., et al. (2008). Nano Lett. 8, 902Google Scholar
Balatsky, A. V., Vekhter, I., & Zhu, J.-X. (2006). Rev. Mod. Phys. 78, 373Google Scholar
Balescu, R. (1975). Equilibrium and Nonequilibrium Statistical Mechanics. New York: WileyGoogle Scholar
Bandurin, D. A., Shytov, A. V., Levitov, L. S., et al. (2018). Nature Commun. 9, 4533Google Scholar
Bandurin, D. A., Torre, I., Kumar, R. K., et al. (2016). Science 351, 1055Google Scholar
Bao, W., Miao, F., Chen, Z., et al. (2009). Nature Nanotech. 4, 562Google Scholar
Bardarson, J. H., Medvedeva, M. V., Tworzydlo, J., Akhmerov, A. R., & Beenakker, C. W. J. (2010). Phys. Rev. B 81, 121414Google Scholar
Bardarson, J. H., Tworzydlo, J., Brower, P. W., & Beenakker, C. W. J. (2007). Phys. Rev. Lett. 99, 106801Google Scholar
Basko, D. M. (2008). Phys. Rev. 78, 115432Google Scholar
Basov, D. N., Fogler, M. M., & García de Abajo, F. J. (2016). Science 354, 195Google Scholar
Bassani, F., & Pastori Parravicini, G. (1975). Electronic States and Optical Transitions in Solids. Oxford: PergamonGoogle Scholar
Beenakker, C. W. J. (2008). Rev. Mod. Phys. 80, 1337Google Scholar
Beenakker, C. W. J., & Büttiker, M. (1992). Phys. Rev. B 46, 1889Google Scholar
Beenakker, C. W. J., & van Houten, H. (1991). Solid State Phys. 44, 1Google Scholar
Beffara, V. (2004). Ann. Probab. 32, 2606Google Scholar
Belenkii, G. L., Salaev, E. Yu., & Suleimanov, R. A. (1988). Usp. Fiz. Nauk. 155, 89Google Scholar
Bellissard, J., van Elst, A., & Schulz-Baldes, H. (1994). J. Math. Phys. 35, 5373Google Scholar
Bena, C., & Kivelson, S. A. (2005). Phys. Rev. B 72, 125432Google Scholar
Berestetskii, V. B., Lifshitz, E. M., & Pitaevskii, L. P. (1971). Relativistic Quantum Theory, vol. 1. Oxford: PergamonGoogle Scholar
Berry, M. V. (1984). Proc. R. Soc. (London) A 392, 45Google Scholar
Berry, M. V., & Mondragon, R. J. (1987). Proc. R. Soc. (London) A 412, 53Google Scholar
Bhandary, S., Eriksson, O., Sanyal, B., & Katsnelson, M. I. (2010). Phys. Rev. B 82, 165405Google Scholar
Binnig, G., & Rohrer, H. (1987). Rev. Mod. Phys. 59, 615Google Scholar
Bistritzer, R., & MacDonald, A. H. (2011). Proc. Natl. Acad. Sci. USA 108, 12233Google Scholar
Biswas, R. R., Sachdev, S., & Son, D. T. (2007). Phys. Rev. B 76, 205122Google Scholar
Bjorken, J. D., & Drell, S. D. (1964). Relativistic Quantum Mechanics. New York: McGraw-HillGoogle Scholar
Blake, P., Hill, E. W., Castro Neto, A. H., et al. (2007). Appl. Phys. Lett. 91, 063124Google Scholar
Blanter, Ya. M., & Büttiker, M. (2000). Phys. Rep. 336, 1Google Scholar
Blees, M. K., Barnard, A. W., Rose, P. A., et al. (2015). Nature 524, 204Google Scholar
Blount, E. I. (1962). Phys. Rev. 126, 1636Google Scholar
Bocquet, L., & Barrat, J.-L. (2007). Soft Matter 3, 685Google Scholar
Bøggild, P., Caridad, J. M., Stampfer, C., et al. (2017). Nature Commun. 8, 15783Google Scholar
Bogolyubov, N. N. (1958). Doklady AN SSSR 119, 244Google Scholar
Bokdam, M., Amlaki, T., Brocks, G., & Kelly, P. J. (2014). Phys. Rev. B 89, 201404(R)Google Scholar
Bohr, A., & Mottelson, B. R. (1969). Nuclear Structure, vol. 1. New York: BenjaminGoogle Scholar
Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L., & Kim, P. (2009). Nature 462, 196Google Scholar
Bolotin, K. I., Sikes, K. J., Jiang, Z., et al. (2008). Solid State Commun. 146, 351Google Scholar
Booth, T. J., Blake, P., Nair, R. R., et al. (2008). Nano Lett. 8, 2442Google Scholar
Born, M., & Wolf, E. (1980). Principles of Optics. Oxford: PergamonGoogle Scholar
Boukhvalov, D. W., & Katsnelson, M. I. (2008). Nano Lett. 8, 4373Google Scholar
Boukhvalov, D. W., & Katsnelson, M. I. (2009a). J. Phys.: Condens. Matter 21, 344205Google Scholar
Boukhvalov, D. W., & Katsnelson, M. I. (2009b). J. Phys. Chem. C 113, 14176Google Scholar
Boukhvalov, D. W., & Katsnelson, M. I. (2009c). Eur. Phys. J. B 68, 529Google Scholar
Boukhvalov, D. W., & Katsnelson, M. I. (2011). ACS Nano. 5, 2440Google Scholar
Boukhvalov, D. W., Katsnelson, M. I., & Lichtenstein, A. I. (2008). Phys. Rev. B 77, 035427Google Scholar
Bowick, M. J., Košmrlj, A., Nelson, D. R., & Sknepnek, R. (2017). Phys. Rev. B 95, 104109Google Scholar
Boyda, D. L., Braguta, V. V., Katsnelson, M. I., & Ulybyshev, M. V. (2016). Phys. Rev. B 94, 085421Google Scholar
Brandt, N. B., Chudinov, S. M., & Ponomarev, Ya. G. (1988). Semimetals: Graphite and Its Compounds. Amsterdam: North HollandGoogle Scholar
Brar, V. W., Decker, R., Solowan, H.-M., et al. (2011). Nature Phys. 1, 43Google Scholar
Brau, F., Vandeparre, H., Sabbah, A., et al. (2011). Nature Phys. 1, 56Google Scholar
Braun, O. M., & Kivshar, Y. S. (2004). The Frenkel-Kontorova Model: Concepts, Methods and Applications. Berlin: SpringerGoogle Scholar
Bray, A. J. (1974). Phys. Rev. Lett. 32, 1413Google Scholar
Brey, L., & Fertig, H. A. (2006). Phys. Rev. B 73, 235411Google Scholar
Brey, L., & Fertig, H. A. (2009). Phys. Rev. B 80, 035406Google Scholar
Briassoulis, D. (1986). Computers Structures 23, 129Google Scholar
Briskot, U., Schütt, M., Gornyi, I. V., et al. (2015). Phys. Rev. B 92, 115426Google Scholar
Brouwer, P. W. (1998). Phys. Rev. B 58, R10135Google Scholar
Brown, E. (1964). Phys. Rev. 133, A1038Google Scholar
Burmistrov, I. S., Gornyi, I. V., Kachorovskii, V. Yu., Katsnelson, M. I., & Mirlin, A. D. (2016). Phys. Rev. B 94, 195430Google Scholar
Burmistrov, I. S., Gornyi, I. V., Kachorovskii, V. Yu., Katsnelson, M. I., Los, J. H., & Mirlin, A. D. (2018a). Phys. Rev. B 97, 125402Google Scholar
Burmistrov, I. S., Kachorovskii, V. Yu., Gornyi, I. V., & Mirlin, A. D. (2018b). Ann. Phys. (NY) 396, 119Google Scholar
Caldeira, A. O., & Leggett, A. J. (1983). Ann. Phys. (NY) 149, 374CrossRefGoogle Scholar
Calogeracos, A., & Dombey, N. (1999). Contemp. Phys. 40, 313Google Scholar
Cangemi, D., & Dunne, G. (1996). Ann. Phys. (NY) 249, 582Google Scholar
Cao, Y., Fatemi, V., Demir, A., et al. (2018a). Nature 556, 80Google Scholar
Cao, Y., Fatemi, V., Fang, S., et al. (2018b). Nature 556, 43Google Scholar
Cardy, J. (2000). Phys. Rev. Lett. 84, 3507Google Scholar
Castro, E. V., Novoselov, K. S., Morozov, S. V., et al. (2007). Phys. Rev. Lett. 99, 216802Google Scholar
Castro, E. V., Novoselov, K. S., Morozov, S. V., et al. (2010a). J. Phys.: Condens. Matter 22, 175503Google Scholar
Castro, E. V., Ochoa, H., Katsnelson, M. I., et al. (2010b). Phys. Rev. Lett. 105, 266601Google Scholar
Castro Neto, A. H., & Guinea, F. (2009). Phys. Rev. Lett. 103, 026804Google Scholar
Castro Neto, A. H., Guinea, F., & Peres, N. M. R. (2006). Phys. Rev. B 73, 205408Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). Rev. Mod. Phys. 81, 109Google Scholar
Cerda, E., & Mahadevan, L. (2003). Phys. Rev. Lett. 90, 074302Google Scholar
Chang, M.-C., & Niu, Q. (2008). J. Phys.: Condens. Matter 20, 193202Google Scholar
Checkelsky, J. G., Li, L., & Ong, N. P. (2008). Phys. Rev. Lett. 100, 20680Google Scholar
Cheianov, V. V., & Fal’ko, V. I. (2006). Phys. Rev. B 74, 041403Google Scholar
Cheianov, V. V., Fal’ko, V., & Altshuler, B. L. (2007). Science 315, 1252Google Scholar
Cheianov, V. V., Fal’ko, V. I., Altshuler, B. L., & Aleiner, I. L. (2007). Phys. Rev. Lett. 99, 176801Google Scholar
Cheianov, V. V., Syljuasen, O., Altshuler, B. L., & Fal’ko, V. (2009). Phys. Rev. B 80, 233409Google Scholar
Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S., & Williams, E. D. (2009). Phys. Rev. Lett. 102, 236805Google Scholar
Chen, J.-H., Jang, C., Adam, S., et al. (2008). Nature Phys. 4, 377Google Scholar
Chen, S., Han, Z., Elahi, M. M., et al. (2016). Science 353, 1522Google Scholar
Chico, L., Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996). Phys. Rev. B 54, 2600Google Scholar
Chizhova, L. A., Libisch, F., & Burgdörfer, J. (2014). Phys. Rev. B 90, 165404Google Scholar
Choi, S.-M., Jhi, S.-H., & Son, Y.-W. (2010). Phys. Rev. B 81, 081407Google Scholar
Cocco, G., Cadelano, E., & Colombo, L. (2010). Phys. Rev. B 81, 241412Google Scholar
Couto, N. J. G., Costanzo, D., Engels, S., et al. (2014). Phys. Rev. B 4, 041019Google Scholar
Couto, N. J. G., Sacépé, B., & Morpurgo, A. F. (2011). Phys. Rev. Lett. 107, 225501Google Scholar
Coxeter, H. S. M. (1989). Introduction to Geometry. New York: WileyGoogle Scholar
Crassee, I., Levallois, J., Walter, A. L., et al. (2011). Nature Phys. 7, 48Google Scholar
Creutz, M. (1983). Quarks, Gluons and Lattices. Cambridge: Cambridge University PressGoogle Scholar
Crossno, J., Shi, J. K., Wang, K., Liu, X., et al. (2016). Science 351, 1058Google Scholar
Cserti, J., Csordás, A., & Dávid, G. (2007). Phys. Rev. Lett. 99, 066802Google Scholar
Cserti, J., & Dávid, G. (2006). Phys. Rev. B 74, 125419Google Scholar
Czycholl, G. (2008). Theoretische Festkörperphysik von den klassischen Modellen zu modernen Forschungsthemen. Berlin: SpringerGoogle Scholar
Danneau, R., Wu, F., Craciun, M. F., et al. (2008). Phys. Rev. Lett. 100, 196802Google Scholar
Das Sarma, S., Adam, S., Huang, E. H., & Rossi, E. (2011). Rev. Mod. Phys. 83, 407Google Scholar
Davydov, A. S. (1976). Quantum Mechanics. Oxford: PergamonGoogle Scholar
Dean, C. R., Wang, L., Maher, P., et al. (2013). Nature 497, 598Google Scholar
Dean, C. R., Young, A. F., Meric, I., et al. (2010). Nature Nanotech. 5, 722Google Scholar
de Andres, P. L., Guinea, F., & Katsnelson, M. I. (2012). Phys. Rev. B 86, 144103Google Scholar
de Gennes, P.-G. (1979). Scaling Concepts in Polymer Physics. Ithaca, NY: Cornell University PressGoogle Scholar
de Juan, F., Grushin, A. G., & Vozmediano, M. A. H. (2010). Phys. Rev. B 82, 125409Google Scholar
Delplace, P., & Montambaux, G. (2010). Phys. Rev. B 82, 205412Google Scholar
De Raedt, H., & Katsnelson, M. I. (2008). JETP Lett. 88, 607Google Scholar
De Raedt, H., & Lagendijk, A. (1985). Phys. Rep. 127, 233Google Scholar
Diez, M., Dahlhaus, J. P., Wimmer, M., & Beenakker, C. W. J. (2014). Phys. Rev. Lett. 112, 196602Google Scholar
Di Francesco, P., Mathieu, P., & Sénéchal, D. (1997). Conformal Field Theory. New York: SpringerGoogle Scholar
DoCarmo, M. P. (1976). Differential Geometry of Curves and Surfaces. London: Prentice-HallGoogle Scholar
Dombey, N., & Calogeracos, A. (1999). Phys. Rep. 315, 41Google Scholar
Dresselhaus, G. (1974). Phys. Rev. B 10, 3602Google Scholar
Dresselhaus, M. S., & Dresselhaus, G. (2002). Adv. Phys. 51, 1Google Scholar
Drut, J. E., & Lähde, T. A. (2009a). Phys. Rev. Lett. 102, 026802Google Scholar
Drut, J. E., & Lähde, T. A. (2009b). Phys. Rev. B 79, 165425Google Scholar
Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Nature Nanotech. 3, 491Google Scholar
Du, X., Skachko, I., Duerr, F., Cucian, A., & Andrei, E. Y. (2009). Nature 462, 192Google Scholar
Dugaev, V. K., & Katsnelson, M. I. (2012). Phys. Rev. B 86, 115405Google Scholar
Dugaev, V. K., & Katsnelson, M. I. (2013). Phys. Rev. B 88, 235432Google Scholar
Dugaev, V. K., & Katsnelson, M. I. (2014). Phys. Rev. B 90, 035408Google Scholar
Edwards, D. M. (1967). Phys. Lett. A 24, 350Google Scholar
Edwards, D. M., & Katsnelson, M. I. (2006). J. Phys.: Condens. Matter 18, 7209Google Scholar
Efetov, K. B. (1997). Supersymmetry in Disorder and Chaos. Cambridge: Cambridge University PressGoogle Scholar
Elias, D. C., Gorbachev, R. V., Mayorov, A. S., et al. (2011). Nature Phys. 7, 701Google Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., et al. (2009). Science 323, 610Google Scholar
Elliott, R. J. (1954). Phys. Rev. 96, 266Google Scholar
Emelyanenko, A., & Boinovich, L. (2008). J. Phys.: Condens. Matter 20, 494227Google Scholar
Esaki, L. (1958). Phys. Rev. 109, 603Google Scholar
Esquinazi, P., & Höhne, R. (2005). J. Magn. Magn. Mater. 290 –291, 20Google Scholar
Evers, F., & Mirlin, A. D. (2008). Rev. Mod. Phys. 80, 1355Google Scholar
Eyring, H., Walter, J., & Kimball, G. E. (1946). Quantum Chemistry. Ithaca, NY: Cornell University PressGoogle Scholar
Faddeev, L. D., & Slavnov, A. A. (1980). Gauge Fields: Introduction to a Quantum Theory. Reading, MA: BenjaminGoogle Scholar
Fal’ko, V. I. (2008). Phil. Trans. R. Soc. A 366, 205Google Scholar
Falkovich, G. (2011). Fluid Mechanics: A Short Course for Physicists. Cambridge: Cambridge University PressGoogle Scholar
Falkovsky, L. A. (1983). Adv. Phys. 32, 753Google Scholar
Fang, S., & Kaxiras, E. (2016). Phys. Rev. B 93, 235153Google Scholar
Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). Nature Mater. 6, 858Google Scholar
Fedoryuk, M. V. (1977). Method of Steepest Descent. Moscow: NaukaGoogle Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., et al. (2006). Phys. Rev. Lett. 97, 187401Google Scholar
Feynman, R. P. (1955). Phys. Rev. 97, 660Google Scholar
Feynman, R. P. (1972). Statistical Mechanics. Reading, MA: BenjaminGoogle Scholar
Fialkovsky, I. V., & Vassilevich, D. V. (2009). J. Phys. A 42, 442001Google Scholar
Fisher, M. E. (1964). Am. J. Phys. 32, 343Google Scholar
Fogler, M. M. (2009). Phys. Rev. Lett. 103, 236801Google Scholar
Fogler, M. M., Guinea, F., & Katsnelson, M. I. (2008). Phys. Rev. Lett. 101, 226804Google Scholar
Fogler, M. M., Novikov, D. S., Glazman, L. I., & Shklovskii, B. I. (2008). Phys. Rev. B 77, 075420Google Scholar
Foulkes, W. M. C., Mitas, L., Needs, R. J., & Rajagopal, G. (2001). Rev. Mod. Phys. 73, 33Google Scholar
Fowler, W. A. (1984). Rev. Mod. Phys. 56, 149Google Scholar
Fradkin, E. (1986). Phys. Rev. B 33, 3263Google Scholar
Frank, F. C., & van der Merwe, J. H. (1949). Proc. R. Soc. (London) A 198, 205Google Scholar
Frenkel, J., & Kontorowa, T. (1938). Phys. Z. Sowjet. 13, 1Google Scholar
Friedel, J. (1952). Phil. Mag. 43, 253Google Scholar
Fritz, L., Schmalian, J., Müller, M., & Sachdev, S. (2008). Phys. Rev. B 78, 085416Google Scholar
Fuchs, J. N., Piéchon, F., Goerbig, M. O., & Montambaux, G. (2010). Eur. Phys. J. B 77, 351Google Scholar
Fujita, M., Wakabayashi, K., Nakada, K., & Kusakabe, K. (1996). J. Phys. Soc. Japan 65, 1920Google Scholar
Galitskii, V. M. (1958a). Zh. Eksp. Teor. Fiz. 34, 151Google Scholar
Galitskii, V. M. (1958b). Zh. Eksp. Teor. Fiz. 34, 1011Google Scholar
Gangadharaiah, S., Farid, A. M., & Mishchenko, E. G. (2008). Phys. Rev. Lett. 100, 166802Google Scholar
Garcia-Pomar, J. L., Cortijo, A., & Nieto-Vesperinas, M. (2008). Phys. Rev. Lett. 100, 236801Google Scholar
Gazit, D. (2009). Phys. Rev. E 80, 041117Google Scholar
Geim, A. K. (2009). Science 324, 1530Google Scholar
Geim, A. K. (2011). Rev. Mod. Phys. 83, 851Google Scholar
Geim, A. K., & Novoselov, K. S. (2007). Nature Mater. 6, 183Google Scholar
Gendenshtein, L. E., & Krive, I. V. (1985). Sov. Phys. Usp. 28, 645Google Scholar
Georgi, A., Nemes-Incze, P., Carrillo-Bastos, R., et al. (2017). Nano Lett. 17, 2240Google Scholar
Geringer, V., Liebmann, M., Echtermeyer, T., et al. (2009). Phys. Rev. Lett. 102, 076102Google Scholar
Gerritsma, R., Kirchmair, G., Zahringer, F., et al. (2010). Nature 463, 38Google Scholar
Ghosh, S., Bao, W., Nika, D. L., et al. (2010). Nature Mater. 9, 555Google Scholar
Gibertini, M., Tomadin, A., Guinea, F., Katsnelson, M. I., & Polini, M. (2012). Phys. Rev. B 85, 201405(R)Google Scholar
Gibertini, M., Tomadin, A., Polini, M., Fasolino, A., & Katsnelson, M. I. (2010). Phys. Rev. B 81, 125437Google Scholar
Giesbers, A. J. M., Ponomarenko, L. A., Novoselov, K. S., et al. (2009). Phys. Rev. B 80, 201403Google Scholar
Giesbers, A. J. M., Zeitler, U., Katsnelson, M. I. (2007). Phys. Rev. Lett. 99, 206803Google Scholar
Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J., & van den Brink, J. (2007). Phys. Rev. B 76, 073103Google Scholar
Giuliani, A., Mastropietro, V., & Porta, M. (2011). Phys. Rev. B 83, 195401Google Scholar
Giuliani, G. F., & Vignale, G. (2005). Quantum Theory of the Electron Liquid. Cambridge: Cambridge University PressGoogle Scholar
Glazman, L. I., Lesovik, G. B., Khmelnitskii, D. E., & Shekhter, R. I. (1988). Pis’ma ZhETF 48, 218Google Scholar
Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., & Fabian, J. (2009). Phys. Rev. B 80, 235431Google Scholar
Goerbig, M. O. (2011). Rev. Mod. Phys. 83, 1193Google Scholar
Goldman, A. I., & Kelton, R. F. (1993). Rev. Mod. Phys. 65, 213Google Scholar
González, J., Guinea, F., & Vozmediano, M. A. H. (1994). Nucl. Phys. B 424, 595Google Scholar
González, J., Guinea, F., & Vozmediano, M. A. H. (1999). Phys. Rev. B 59, 2474Google Scholar
Gonzáles-Herrero, H., Gómez-Rodriguez, J. M., Mallet, P., et al. (2016). Science 352, 437Google Scholar
Gorbachev, R. V., Song, J. C. W., Yu, G. L., et al. (2014). Science 346, 448Google Scholar
Gorbar, E. V., Gusynin, V. P., Miransky, V. A., & Shovkovy, I. A. (2002). Phys. Rev. B 66, 045108Google Scholar
Gornyi, I. V., Kachorovskii, V. Yu., & Mirlin, A. D. (2012). Phys. Rev. B 86, 165413Google Scholar
Greiner, W., Mueller, B., & Rafelski, J. (1985). Quantum Electrodynamics of Strong Fields. Berlin: SpringerGoogle Scholar
Greiner, W., & Schramm, S. (2008). Am. J. Phys. 76, 509Google Scholar
Grib, A. A., Mamaev, S. V., & Mostepanenko, V. M. (1994). Vacuum Effects in Strong Fields. St Petersburg: FriedmannGoogle Scholar
Grigorenko, A. N., Polini, M., & Novoselov, K. S. (2012). Nature Photon. 6, 749Google Scholar
Gubernatis, J., Kawashima, N., & Werner, P. (2016). Quantum Monte Carlo Methods: Algorithms for Lattice Models. Cambridge: Cambridge University PressGoogle Scholar
Guinea, F. (1984). Phys. Rev. Lett. 53, 1268Google Scholar
Guinea, F. (2008). J. Low Temp. Phys. 153, 359Google Scholar
Guinea, F., Castro Neto, A. H., & Peres, N. M. R. (2006). Phys. Rev. B 73, 245426Google Scholar
Guinea, F., Geim, A. K., Katsnelson, M. I., & Novoselov, K. S. (2010). Phys. Rev. B 81, 035408Google Scholar
Guinea, F., Horovitz, B., & Le Doussal, P. (2008). Phys. Rev. B 11, 205421Google Scholar
Guinea, F., & Katsnelson, M. I. (2014). Phys. Rev. Lett. 112, 116604Google Scholar
Guinea, F., Katsnelson, M. I., & Geim, A. K. (2010). Nature Phys. 6, 30Google Scholar
Guinea, F., Katsnelson, M. I., & Vozmediano, M. A. H. (2008). Phys. Rev. B 11, 075422Google Scholar
Güney, D. Ö., & Meyer, D. A. (2009). Phys. Rev. A 19, 063834Google Scholar
Guo, H., Ilseven, E., Falkovich, G., & Levitov, L. S. (2017). Proc. Natl. Acad. Sci. USA 114, 3068Google Scholar
Gurzhi, R. N. (1968). Sov. Phys. Usp. 11, 255Google Scholar
Gusynin, V. P., & Sharapov, S. G. (2005). Phys. Rev. Lett. 95, 146801Google Scholar
Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2006). Phys. Rev. Lett. 96, 256802Google Scholar
Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2007a). J. Phys.: Condens. Matter 19, 026222Google Scholar
Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2007b). Phys. Rev. B 75, 165407Google Scholar
Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2009). New J. Phys. 11, 095407Google Scholar
Güttinger, J., Stampfer, C., Libisch, F., et al. (2009). Phys. Rev. Lett. 103, 046810Google Scholar
Gutzwiller, M. C. (1963). Phys. Rev. Lett. 10, 159Google Scholar
Guyot, P., Kramer, P., & de Boissieu, M. (1991). Rep. Prog. Phys. 54, 1373Google Scholar
Halperin, B. I. (1982). Phys. Rev. B 25, 2185Google Scholar
Halperin, W. (1986). Rev. Mod. Phys. 58, 533Google Scholar
Han, M. Y., Brant, J. C., & Kim, P. (2010). Phys. Rev. Lett. 104, 056801Google Scholar
Han, M. Y., Ozyilmaz, B., Zhang, Y., & Kim, P. (2007). Phys. Rev. Lett. 98, 206805Google Scholar
Han, W., Pi, K., Bao, W., et al. (2009a). Appl. Phys. Lett. 94, 222109Google Scholar
Han, W., Wang, W. H., Pi, K., et al. (2009b). Phys. Rev. Lett. 102, 137205Google Scholar
Hands, S., & Strouthos, C. (2008). Phys. Rev. B 78, 165423Google Scholar
Hasan, M. Z., & Kane, C. L. (2010). Rev. Mod. Phys. 82, 3045Google Scholar
Hasegawa, Y., Konno, R., Nakano, H., & Kohmoto, M. (2006). Phys. Rev. B 74, 033413Google Scholar
Hatsugai, Y. (1993). Phys. Rev. Lett. 71, 3697Google Scholar
Hatsugai, Y. (1997). J. Phys.: Condens. Matter 9, 2507Google Scholar
Hatsugai, Y., Fukui, T., & Aoki, H. (2006). Phys. Rev. B 74, 205414Google Scholar
Heeger, A. J., Kivelson, S., Schrieffer, J. R., & Su, W.-P. (1988). Rev. Mod. Phys. 60, 781Google Scholar
Heikkilä, T. T., Kopnin, N. B., & Volovik, G. E. (2011). JETP Lett. 94, 233Google Scholar
Heine, V. (1960). Group Theory in Quantum Mechanics. Oxford: PergamonGoogle Scholar
Helfrich, W. (1973). Z. Naturforsch. 28C, 693Google Scholar
Hentschel, M., & Guinea, F. (2007). Phys. Rev. B 76, 115407CrossRefGoogle Scholar
Herbut, I. F., Juričič, V., & Vafek, O. (2008). Phys. Rev. Lett. 100, 046403Google Scholar
Hermann, K. (2012). J. Phys.: Condens. Matter 24, 314210Google Scholar
Herring, C. (1966). Exchange Interactions among Itinerant Electrons. New York: Academic PressGoogle Scholar
Hewson, A. C. (1993). The Kondo Problem to Heavy Fermions. Cambridge: Cambridge University PressGoogle Scholar
Hill, A., Mikhailov, S. A., & Ziegler, K. (2009). Europhys. Lett. 87, 27005Google Scholar
Hobson, J. P., & Nierenberg, W. A. (1953). Phys. Rev. 89, 662Google Scholar
Hongler, C., & Smirnov, S. (2011). Probab. Theory Relat. Fields 151, 735Google Scholar
Hostadter, D. R. (1976). Phys. Rev. B 14, 2239Google Scholar
Huang, L., Lai, Y.-C., & Grebogi, C. (2010). Phys. Rev. E 81, 055203Google Scholar
Hubbard, J. (1963). Proc. R. Soc. (London) A 276, 238Google Scholar
Huefner, M., Molitor, F., Jacobsen, A., et al. (2009). Phys. Stat. Sol. (b) 246, 2756Google Scholar
Huertas-Hernando, D., Guinea, F., & Brataas, A. (2006). Phys. Rev. B 74, 155426Google Scholar
Huertas-Hernando, D., Guinea, F., & Brataas, A. (2009). Phys. Rev. Lett. 103, 146801Google Scholar
Hunt, B., Sanchez-Yamagishi, J. D., Young, A. F., et al. (2013). Science 240, 1427Google Scholar
Hwang, E. H., & Das Sarma, S. (2007). Phys. Rev. B 75, 205418Google Scholar
in ‘t Veld, Y., Schüler, M., Wehling, T., Katsnelson, M. I., & van Loon, E. G. C. P. (2019). J. Phys.: Condens. Matter 31, 465603Google Scholar
Inui, M., Trugman, S. A., & Abrahams, E. (1994). Phys. Rev. B 49, 3190Google Scholar
Irkhin, V. Yu., Katanin, A. A., & Katsnelson, M. I. (2001). Phys. Rev. B 64, 165107Google Scholar
Irkhin, V. Yu., Katsnin, A. A., & Katsnelson, M. I. (2002). Phys. Rev. Lett. 89, 076401Google Scholar
Irkhin, V. Yu., & Katsnelson, M. I. (1985a). J. Phys. C 18, 4173Google Scholar
Irkhin, V. Yu., & Katsnelson, M. I. (1985b). Zh. Eksp. Teor. Fiz. 88, 522Google Scholar
Irkhin, V. Yu., & Katsnelson, M. I. (1986). Z. Phys. B 62, 201Google Scholar
Irkhin, V. Yu., Katsnelson, M. I., & Trefilov, A. V. (1992). J. Magn. Magn. Mater. 117, 210Google Scholar
Irkhin, V. Yu., Katsnelson, M. I., & Trefilov, A. V. (1993). J. Phys.: Condens. Matter 5, 8763Google Scholar
Irkhin, V. Yu., & Katsnelson, M. I. (2002). Eur. Phys. J. B 30, 481Google Scholar
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., & Williams, E. D. (2007). Nano. Lett. 1, 1643Google Scholar
Ishihara, A. (1971). Statistical Physics. New York: Academic PressGoogle Scholar
Isichenko, M. B. (1992). Rev. Mod. Phys. 64, 961Google Scholar
Jackiw, R., Milstein, A. L., Pi, S.-Y., & Terekhov, I. S. (2009). Phys. Rev. B 80, 033413Google Scholar
Jackson, J. D. (1962). Classical Electrodynamics. New York: WileyGoogle Scholar
Jiang, J., Saito, R., Samsonidge, G., et al. (2005). Phys. Rev. B 72, 235408Google Scholar
Jiang, Y., Low, T., Chang, K., Katsnelson, M. I., & Guinea, F. (2013). Phys. Rev. Lett. 110, 046601Google Scholar
Jiang, Z., Henriksen, E. A., Tung, L. C., et al. (2007a). Phys. Rev. Lett. 98, 197403Google Scholar
Jiang, Z., Zhang, Y., Stormer, H. L., & Kim, P. (2007b). Phys. Rev. Lett. 99, 106802Google Scholar
Jo, S., Ki, D.-K., Jeong, D., Lee, H.-J., & Kettermann, S. (2011). Phys. Rev. B 84, 075453Google Scholar
John, D. L., Castro, L. C., & Pulfrey, D. L. (2004). J. Appl. Phys. 96, 5180Google Scholar
Jones, R. A. (2002). Soft Condensed Matter. Oxford: Oxford University PressGoogle Scholar
Kadanoff, L. P., & Baym, G. (1962). Quantum Statistical Mechanics. New York: BenjaminGoogle Scholar
Kager, W., & Nienhuis, B. (2004). J. Stat. Phys. 115, 1149Google Scholar
Kailasvuori, J. (2009). Europhys. Lett. 87, 47008Google Scholar
Kailasvuori, J., & Lüffe, M. C. (2010). J. Statist. Mech.: Theory Exp. P06024Google Scholar
Kaku, M. (1988). Introduction to Superstrings. Berlin: SpringerGoogle Scholar
Kalashnikov, V. P., & Auslender, M. (1979). Fortschr. Phys. 27, 355Google Scholar
Kamenev, A. (2011). Field Theory of Non-Equilibrium Systems. Cambridge: Cambridge University PressGoogle Scholar
Kamenev, A., & Levchenko, A. (2009). Adv. Phys. 58, 197Google Scholar
Kanamori, J. (1963). Prog. Theor. Phys. 30, 276Google Scholar
Kane, C. L., & Mele, E. J. (1997). Phys. Rev. Lett. 78, 1932Google Scholar
Kane, C. L., & Mele, E. J. (2005a). Phys. Rev. Lett. 95, 146802Google Scholar
Kane, C. L., & Mele, E. J. (2005b). Phys. Rev. Lett. 95, 226801Google Scholar
Karssemeijer, L. J., & Fasolino, A. (2011). Surface Sci. 605, 1611Google Scholar
Kashuba, A. B. (2008). Phys. Rev. B 78, 085415Google Scholar
Katanin, A. A., & Kampf, A. P. (2003). Phys. Rev. B 68, 195101Google Scholar
Katsnelson, M. I. (1981). Fiz. Met. Metalloved. 52, 436Google Scholar
Katsnelson, M. I. (2006a). Eur. Phys. J. B 51, 157Google Scholar
Katsnelson, M. I. (2006b). Eur. Phys. J. B 52, 151Google Scholar
Katsnelson, M. I. (2006c). Phys. Rev. B 74, 201401Google Scholar
Katsnelson, M. I. (2007a). Mater. Today 10, 20Google Scholar
Katsnelson, M. I. (2007b). Eur. Phys. J. B 57, 225Google Scholar
Katsnelson, M. I. (2007c). Phys. Rev. B 76, 073411Google Scholar
Katsnelson, M. I. (2008). Europhys. Lett. 84, 37001Google Scholar
Katsnelson, M. I. (2010a). Europhys. Lett. 89, 17001Google Scholar
Katsnelson, M. I. (2010b). Phys. Rev. B 82, 205433Google Scholar
Katsnelson, M. I., & Fasolino, A. (2013). Accounts Chem. Research 46, 97Google Scholar
Katsnelson, M. I., & Geim, A. K. (2008). Phil. Trans. R. Soc. A 366, 195Google Scholar
Katsnelson, M. I., & Guinea, F. (2008). Phys. Rev. B 78, 075417Google Scholar
Katsnelson, M. I., Guinea, F., & Geim, A. K. (2009). Phys. Rev. B 79, 195426Google Scholar
Katsnelson, M. I., Irkhin, V. Yu., Chioncel, L., Lichtenstein, A. I., & de Groot, R. A. (2008). Rev. Mod. Phys. 80, 315Google Scholar
Katsnelson, M. I., Naumov, I. I., & Trefilov, A. V. (1994). Phase Transitions 49, 143Google Scholar
Katsnelson, M. I., & Nazaikinskii, V. E. (2012). Theor. Math. Phys. 172, 1263Google Scholar
Katsnelson, M. I., & Novoselov, K. S. (2007). Solid State Commun. 143, 3Google Scholar
Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006). Nature Phys. 2, 620Google Scholar
Katsnelson, M. I., & Prokhorova, M. F. (2008). Phys. Rev. B 77, 205424Google Scholar
Katsnelson, M. I., & Trefilov, A. V. (2002). Dynamics and Thermodynamics of Crystal Lattices. Moscow: AtomizdatGoogle Scholar
Keldysh, L. V. (1964). Zh. Eksp. Teor. Fiz. 47, 1515Google Scholar
Kellendonk, J., & Schulz-Baldes, H. (2004). J. Fund. Anal. 209, 388Google Scholar
Kelliher, J. P. (2006). SIAM J. Math. Anal. 38, 210Google Scholar
Kemppainen, A. (2017). Schramm-Loewner Evolution. Berlin: SpringerGoogle Scholar
Khodel, V. A., & Shaginyan, V. R. (1990). JETP Lett. 51, 553Google Scholar
Kim, K., DaSilva, A., Huang, S., et al. (2017). Proc. Natl. Acad. Sci. USA 114, 3364Google Scholar
Kim, K. S., Zhao, Y., Jang, H., et al. (2009). Nature 457, 706Google Scholar
Kim, W. Y., & Kim, K. S. (2008). Nature Nanotech. 3, 408Google Scholar
Kindermann, M., & First, P. N. (2011). Phys. Rev. B 83, 045425Google Scholar
Kindermann, M., Uchoa, B., & Miller, D. L. (2012). Phys. Rev. B 86, 115415Google Scholar
Kiselev, E. I., & Schmalian, J. (2019). Phys. Rev. B 99, 035430Google Scholar
Klein, O. (1929). Z. Phys. 53, 157Google Scholar
Kleptsyn, V., Okunev, A., Schurov, I., Zubov, D., & Katsnelson, M. I. (2015). Phys. Rev. B 92, 165407Google Scholar
Kochan, S., Gmitra, M., & Fabian, J. (2014). Phys. Rev. Lett. 112, 116602Google Scholar
Kochan, S., Irmer, S., & Fabian, J. (2017). Phys. Rev. B 95, 165415Google Scholar
Kogan, E. (2011). Phys. Rev. B 84, 115119Google Scholar
Kohmoto, M. (1985). Ann. Phys. (NY) 160, 343Google Scholar
Kohmoto, M. (1989). Phys. Rev. B 39, 11943Google Scholar
Kohn, W. (1959). Phys. Rev. 115, 1460Google Scholar
Kohn, W., & Luttinger, J. M. (1957). Phys. Rev. 108, 590Google Scholar
Kondo, J. (1964). Prog. Theor. Phys. 32, 37Google Scholar
Konschuh, S., Gmitra, M., & Fabian, J. (2010). Phys. Rev. B 82, 245412Google Scholar
Kopnin, N. B. (2002). Rep. Prog. Phys. 65, 1633Google Scholar
Kosevich, A. M. (1999). Theory of Crystal Lattices. New York: WileyGoogle Scholar
Koshino, M., & Ando, T. (2006). Phys. Rev. B 73, 245403Google Scholar
Koshino, M., & Ando, T. (2007). Phys. Rev. B 76, 085425Google Scholar
Koshino, M., & Ando, T. (2010). Phys. Rev. B 81, 195431Google Scholar
Koshino, M., & McCann, E. (2010). Phys. Rev. B 81, 115315Google Scholar
Koskinen, P., Malola, S., & Häkkinen, H. (2008). Phys. Rev. Lett. 101, 115502Google Scholar
Kotakoski, J., Krasheninnikov, A. V., & Nordlund, K. (2006). Phys. Rev. B 74, 245420Google Scholar
Kotov, V. N., Uchoa, B., Pereira, V. M., Castro Neto, A. H., & Guinea, F. (2012). Rev. Mod. Phys. 84, 1067Google Scholar
Kouwenhoven, L. P., Marcus, C. M., & McEuen, P. L. (1997). Electron transport in quantum dots. In Mesoscopic Electron Transport (Sohn, L. L., Kouwenhoven, L. P., & Schon, G., eds.). Dordrecht: KluwerGoogle Scholar
Kownacki, J.-P., & Mouhanna, D. (2009). Phys. Rev. E 79, 040101Google Scholar
Košmrlj, A., & Nelson, D. R. (2016). Phys. Rev. B 93, 125431Google Scholar
Krekora, P., Su, Q., & Grobe, R. (2005). Phys. Rev. A 72, 064103Google Scholar
Kretinin, A., Yu, G. L., Jalil, R., et al. (2013). Phys. Rev. B 88, 165427Google Scholar
Krishna Kumar, R., Chen, X., Auton, G. H., et al. (2017). Science 357, 181Google Scholar
Krishna Kumar, R., Mischenko, A., Chen, X., et al. (2018). Proc. Natl. Acad. Sci. USA 115, 5135Google Scholar
Kroes, J. M. H., Akhukov, M. A., Los, J. H., Pineau, N., & Fasolino, A. (2011). Phys. Rev. B 83, 165411Google Scholar
Kubo, R. (1957). J. Phys. Soc. Japan 12, 570Google Scholar
Kubo, R., Hasegawa, H., & Hashitsume, N. (1959). J. Phys. Soc. Japan 14, 56Google Scholar
Kumar, R. K., Bandurin, D. A., Pellegrino, F. M. D., et al. (2017). Nature Phys. 13, 1182Google Scholar
Kuratsuji, H., & Iida, S. (1985). Prog. Theor. Phys. 74, 439Google Scholar
Kuzemsky, A. L. (2005). Int. J. Mod. Phys. B 19, 1029Google Scholar
Kuzmenko, A. B., van Heumen, E., Carbone, F., & van der Marel, D. (2008). Phys. Rev. Lett. 100, 117401Google Scholar
Kuzmenko, A. B., van Heumen, E., van der Marel, D., et al. (2009). Phys. Rev. B 79, 115441Google Scholar
Landau, L. D. (1930). Z. Phys. 64, 629Google Scholar
Landau, L. D. (1937). Phys. Z. Sowjetunion 11, 26Google Scholar
Landau, L. D. (1956). Zh. Eksp. Teor. Fiz. 30, 1058Google Scholar
Landau, L. D., Abrikosov, A. A., & Khalatnikov, I. M. (1956). Nuovo Cimento Suppl. 3, 80Google Scholar
Landau, L. D., & Lifshitz, E. M. (1970). Theory of Elasticity. Oxford: PergamonGoogle Scholar
Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics. Oxford: PergamonGoogle Scholar
Landau, L. D., & Lifshitz, E. M. (1980). Statistical Physics. Oxford: PergamonGoogle Scholar
Landau, L. D., & Lifshitz, E. M. (1984). Electrodynamics of Continuous Media. Oxford: PergamonGoogle Scholar
Landau, L. D., & Lifshitz, E. M. (1987). Fluid Mechanics. Amsterdam: ElsevierGoogle Scholar
Landau, L. D., & Peierls, R. (1931). Z. Phys. 69, 56Google Scholar
Landau, L. D., & Pomeranchuk, I. Y. (1955). Dokl. AN SSSR 102, 489Google Scholar
Landsberg, G., & Mandelstam, L. (1928). Naturwissenschaften 16, 557Google Scholar
Le Doussal, P., & Radzihovsky, L. (1992). Phys. Rev. Lett. 69, 1209Google Scholar
Le Doussal, P., & Radzihovsky, L. (2018). Ann. Phys. (NY) 392, 340Google Scholar
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Science 321, 385Google Scholar
Lee, G.-H., Park, G.-H., & Lee, H.-J. (2015). Nature Phys. 11, 925Google Scholar
Lee, P. A. (1993). Phys. Rev. Lett. 71, 1887Google Scholar
Le Lay, G., Salomon, E., & Angot, T. (2017). Silicene, germanene, and stanene. In 2D Materials: Properties and Devices (Avouris, P., Heinz, T. F., & Low, T., eds.). Cambridge: Cambridge University Press, 458471Google Scholar
Levitov, L., & Falkovich, G. (2016). Nature Phys. 12, 672Google Scholar
Levy, N., Burke, S. A., Meaker, K. L., et al. (2010). Science 329, 544Google Scholar
Li, J., Schneider, W.-D., Berndt, R., & Delley, D. (1998). Phys. Rev. Lett. 80, 2893Google Scholar
Libisch, F., Stampfer, C., & Burgdörfer, J. (2009). Phys. Rev. B 79, 115423Google Scholar
Lieb, E. H. (1981). Rev. Mod. Phys. 53, 603Google Scholar
Lieb, E. H. (1989). Phys. Rev. Leu. 62, 1201Google Scholar
Lieb, E., & Mattis, D. (1962). J. Math. Phys. 3, 749Google Scholar
Liechtenstein, A. I., Katsnelson, M. I., & Gubanov, V. A. (1985). Solid State Commun. 54, 327Google Scholar
Lifshitz, I. M. (1952). Zh. Eksp. Teor. Fiz. 22, 475Google Scholar
Lifshitz, I. M., Azbel, M. Ya., & Kaganov, M. I. (1973). Electron Theory of Metals. New York: PlenumGoogle Scholar
Lifshitz, I. M., Gredeskul, S. A., & Pastur, L. A. (1988). Introduction to the Theory of Disordered Systems. New York: WileyGoogle Scholar
Lifshitz, R. (1997). Rev. Mod. Phys. 69, 1181Google Scholar
Lin, D.-H. (2005). Phys. Rev. A 72, 012701Google Scholar
Lin, D.-H. (2006). Phys. Rev. A 73, 044701Google Scholar
Link, J. M., Orth, P. P., Sheehy, D. E., & Schmalian, J. (2016). Phys. Rev. B 93, 235447Google Scholar
Liu, C.-C., Jiang, H., & Yao, Y. (2011). Phys. Rev. B 84, 195430Google Scholar
Logemann, R., Reijnders, K. J. A., Tudorovskiy, T., Katsnelson, M. I., & Yuan, S. (2015). Phys. Rev. B 91, 045420Google Scholar
Lopes dos Santos, J. M. B., Peres, N. M. R., & Castro Neto, A. H. (2007). Phys. Rev. Lett. 99, 56802Google Scholar
López-Polín, G., Gómez-Navarro, C., Parente, V., et al. (2015). Nature Phys. 11, 26Google Scholar
Los, J. H., & Fasolino, A. (2003). Phys. Rev. B 68, 024107Google Scholar
Los, J. H., Fasolino, A., & Katsnelson, M. I. (2016). Phys. Rev. Lett. 116, 015901Google Scholar
Los, J. H., Fasolino, A., & Katsnelson, M. I. (2017). NPJ 2D Mater. Appl. 1, 9Google Scholar
Los, J. H., Ghiringhelli, L. M., Meijer, E. J., & Fasolino, A. (2005). Phys. Rev. B 72, 214102Google Scholar
Los, J. H., Katsnelson, M. I., Yazyev, O. V., Zakharchenko, K. V., & Fasolino, A. (2009). Phys. Rev. B 80, 121405Google Scholar
Los, J. H., Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A. (2015). Phys. Rev. B 91, 045415Google Scholar
Low, T., Chaves, A., Caldwell, J. D., et al. (2017). Nature Mater. 16, 182Google Scholar
Low, T., Guinea, F., & Katsnelson, M. I. (2011). Phys. Rev. B 83, 195436Google Scholar
Low, T., Jiang, Y., Katsnelson, M. I., & Guinea, F. (2012). Nano Lett. 12, 850Google Scholar
Lucas, A., Crossno, J., Fong, K. C., Kim, P., & Sachdev, S. (2016). Phys. Rev. B 93, 075426Google Scholar
Lucas, A., & Fong, K. C. (2018). J. Phys.: Condens. Matter 30, 053001Google Scholar
Ludwig, A. W. W., Fisher, M. P. A., Shankar, R., & Grinstein, G. (1994). Phys. Rev. B 50, 7526Google Scholar
Lukose, V., Shankar, R., & Baskaran, G. (2007). Phys. Rev. Lett. 98, 116802Google Scholar
Lundeberg, M. B., Gao, Y., Asgari, R., et al. (2017). Science 357, 187Google Scholar
Luttinger, J. M., & Kohn, W. (1958). Phys. Rev. 109, 1892Google Scholar
Luzzi, R., Vasconcellos, A. R., & Ramos, J. G. (2000). Int. J. Mod. Phys. B 14, 3189Google Scholar
Ma, S. K. (1976). Modern Theory of Critical Phenomena. Reading, MA: BenjaminGoogle Scholar
MacDonald, A. H., & Středa, P. (1984). Phys. Rev. B 29, 1616Google Scholar
Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F., & Wingreen, N. S. (1998). Science 280, 567Google Scholar
Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F., & Wingreen, N. S. (2001). Phys. Rev. B 64, 165412Google Scholar
Mafra, D. L., Samsonidze, G., Malard, L. M., et al. (2007). Phys. Rev. B 76, 233407Google Scholar
Mahan, G. (1990). Many-Particle Physics. New York: PlenumGoogle Scholar
Makarova, T., & Palacio, F. (eds.). (2006). Carbon Based Magnetism: An Overview of the Metal Free Carbon-Based Compounds and Materials. Amsterdam: ElsevierGoogle Scholar
Makhlin, Y., & Mirlin, A. D. (2001). Phys. Rev. Lett. 87, 276803Google Scholar
Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Phys. Rep. 473, 51Google Scholar
Mañes, J. L. (2007). Phys. Rev. B 76, 045430Google Scholar
Mañes, J. L., Guinea, F., & Vozmediano, M. A. H. (2007). Phys. Rev. B 75, 155424Google Scholar
Manyuhina, O. V., Hertzel, J. J., Katsnelson, M. I., & Fasolino, A. (2010). Eur. Phys. J. E 32, 223Google Scholar
Mariani, E., & von Oppen, F. (2008). Phys. Rev. Lett. 100, 076801Google Scholar
Mariani, E., & von Oppen, F. (2010). Phys. Rev. B 82, 195403Google Scholar
Martin, I., & Blanter, Ya. M. (2009). Phys. Rev. B 79, 235132Google Scholar
Martin, J., Akerman, N., Ulbricht, G., et al. (2008). Nature Phys. 4, 144Google Scholar
Maultzsch, J., Reich, S., & Thomsen, C. (2004). Phys. Rev. B 70, 155403Google Scholar
Mayorov, A. S., Elias, D. C., Mucha-Kruczynski, M., et al. (2011a). Science 333, 860Google Scholar
Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., et al. (2011b). Nano Lett. 11, 2396Google Scholar
Mazurenko, V. V., Rudenko, A. N., Nikolaev, S. A., et al. (2016). Phys. Rev. B 94, 214411Google Scholar
McCann, E., Abergel, D. S. L., & Fal’ko, V. I. (2007). Solid State Commun. 143, 110Google Scholar
McCann, E., & Fal’ko, V. I. (2004). J. Phys.: Condens. Matter 16, 2371Google Scholar
McCann, E., & Fal’ko, V. I. (2006). Phys. Rev. Leu. 96, 086805Google Scholar
McCann, E., Kechedzhi, K., Fal’ko, V. I., et al. (2006). Phys. Rev. Lett. 97, 146805Google Scholar
McClure, J. W. (1956). Phys. Rev. 104, 666Google Scholar
McClure, J. W. (1957). Phys. Rev. 108, 612Google Scholar
McCreary, K. M., Pi, K., Swartz, A. G., et al. (2010). Phys. Rev. B 81, 115453Google Scholar
Mele, E. J. (2011). Phys. Rev. B 84, 235439Google Scholar
Meric, I., Dean, C. R., Young, A. F., et al. (2010). IEEE IEDM Tech. Dig. 556.Google Scholar
Mermin, N. D. (1968). Phys. Rev. 176, 250Google Scholar
Mermin, N. D. (1992). Rev. Mod. Phys. 64, 3Google Scholar
Mermin, N. D., & Wagner, H. (1966). Phys. Rev. Lett. 17, 22Google Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. (2007a). Nature 446, 60Google Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. (2007b). Solid State Commun. 143, 101Google Scholar
Meyer, J. R., Hoffman, C. A., Bartoli, F. J., & Rammohan, L. R. (1995). Appl. Phys. Lett. 67, 757Google Scholar
Miao, F., Wijeratne, S., Zhang, Y., et al. (2007). Science 317, 1530Google Scholar
Migdal, A. B. (1977). Qualitative Methods in Quantum Theory. Reading, MA: BenjaminGoogle Scholar
Mikitik, G. P., & Sharlai, Yu. V. (1999). Phys. Rev. Lett. 82, 2147Google Scholar
Mikitik, G. P., & Sharlai, Yu. V. (2008). Phys. Rev. B 77, 113407Google Scholar
Min, H., Hill, J. E., Sinitsyn, N. A., et al. (2006). Phys. Rev. B 74, 165310Google Scholar
Mishchenko, E. G. (2008). Europhys. Lett. 83, 17005Google Scholar
Moldovan, D., & Golubovic, L. (1999). Phys. Rev. E 60, 4377Google Scholar
Molitor, F., Knowles, H., Droscher, S., et al. (2010). Europhys. Lett. 89, 67005Google Scholar
Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B., & Mackenzie, A. P. (2016). Science 351, 1061Google Scholar
Moon, P., Koshino, M., & Son, Y.-W. (2019). arXiv:1901.04701Google Scholar
Moore, J. (2009). Nature Phys. 5, 378Google Scholar
Mori, H. (1965). Prog. Theor. Phys. 34, 399Google Scholar
Moriya, T. (1985). Spin Fluctuations in Itinerant Electron Magnetism. Berlin: SpringerGoogle Scholar
Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., et al. (2008). Phys. Rev. Lett. 100, 016602Google Scholar
Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., et al. (2006). Phys. Rev. Lett. 91, 016801Google Scholar
Morpurgo, A. F., & Guinea, F. (2006). Phys. Rev. Lett. 91, 196804Google Scholar
Mott, N. F. (1974). Metal-Insulator Transitions. London: Taylor & FrancisGoogle Scholar
Mott, N. F., & Davis, E. A. (1979). Electron Processes in Non-Crystalline Materials. Oxford: ClarendonGoogle Scholar
Mounet, N., & Marzari, N. (2005). Phys. Rev. B 71, 205214Google Scholar
Muñoz-Rojas, F., Fernandez-Rossier, J., Brey, L., & Palacios, J. J. (2008). Phys. Rev. B 77, 045301Google Scholar
Nagaev, E. L. (1983). Physics of Magnetic Semiconductors. Moscow: MirGoogle Scholar
Nagaev, E. L. (2001). Phys. Rep. 346, 387Google Scholar
Nagaev, K. E. (1992). Phys. Lett. A 169, 103Google Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., et al. (2008). Science 320, 1308Google Scholar
Nair, R. R., Ren, W., Jalil, R., et al. (2010). Small 6, 2877Google Scholar
Nair, R. R., Sepioni, M., Tsai, I.-L., et al. (2012). Nature Phys. 8, 199Google Scholar
Nair, R. R., Tsai, I.-L., Sepioni, M., et al. (2013). Nature Commun. 4, 2010Google Scholar
Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Phys. Rev. B 54, 17954Google Scholar
Nakahara, N. (1990). Geometry, Topology and Physics. Bristol: IOPGoogle Scholar
Nakano, H. (1957). Prog. Theor. Phys. 17, 145Google Scholar
Narozhny, B. N., Gornyi, I. V., Titov, M., Schütt, M., & Mirlin, A. D. (2015). Phys. Rev. B 91, 035414Google Scholar
Nelson, D. R., & Peliti, L. (1987). J. Physique 48, 1085Google Scholar
Nelson, D. R., Piran, T., & Weinberg, S. (eds.). (2004). Statistical Mechanics of Membranes and Surfaces. Singapore: World ScientificGoogle Scholar
Nemanich, R. J., & Solin, S. A. (1977). Solid State Commun. 23, 417Google Scholar
Nemanich, R. J., & Solin, S. A. (1979). Phys. Rev. B 20, 392Google Scholar
Nersesyan, A. A., Tsvelik, A. M., & Wenger, F. (1994). Phys. Rev. Lett. 72, 2628Google Scholar
Neto, C., Evans, D. R., Bonaccurso, E., Butt, H.-J., & Craig, V. S. J. (2005). Rep. Prog. Phys. 68, 2859Google Scholar
Newton, R. G. (1966). Scattering Theory of Waves and Particles. New York: McGraw-HillGoogle Scholar
Ni, Z. H., Ponomarenko, L. A., Nair, R. R., et al. (2010). Nano Lett. 10, 3868Google Scholar
Nicholl, R. J. T., Conley, H. J., Lavrik, N. V., et al. (2015). Nature Commun. 6, 8789Google Scholar
Nomura, K., & MacDonald, A. H. (2006). Phys. Rev. Lett. 96, 256602Google Scholar
Novikov, D. S. (2007). Phys. Rev. B 76, 245435Google Scholar
Novoselov, K. S. (2011). Rev. Mod. Phys. 83, 837Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Science 306, 666Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005a). Nature 438, 197Google Scholar
Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005b). Proc. Natl. Acad. Sci. USA 102, 10451Google Scholar
Novoselov, K. S., Jiang, Z., Zhang, Y., et al. (2007). Science 315, 1379Google Scholar
Novoselov, K. S., McCann, E., Morozov, S. V., et al. (2006). Nature Phys. 2, 177Google Scholar
Nozieres, P. (1992). J. Phys. I (France) 2, 443Google Scholar
Ochoa, H., Castro, E. V., Katsnelson, M. I., & Guinea, F. (2011). Phys. Rev. B 83,235416Google Scholar
Okulov, V. I., & Ustinov, V. V. (1979). Sov. J. Low Temp. Phys. 5, 101Google Scholar
Olariu, S., & Popescu, I. (1985). Rev. Mod. Phys. 57, 339Google Scholar
Ono, S., & Sugihara, K. (1966). J. Phys. Soc. Japan 21, 861Google Scholar
Oostinga, K. B., Heersche, H. B., Liu, X., Morpurgo, A. F., & Vandersypen, L. M. K. (2008). Nature Mater. 7, 151Google Scholar
Ostrovsky, P. M., Gornyi, I. V., & Mirlin, A. D. (2006). Phys. Rev. B 74, 235443Google Scholar
Ostrovsky, P. M., Gornyi, I. V., & Mirlin, A. D. (2008). Phys. Rev. B 77, 195430Google Scholar
Ostrovsky, P. M., Titov, M., Bera, S., Gornyi, I. V., & Mirlin, A. D. (2010). Phys. Rev. Lett. 105, 266803Google Scholar
Park, C.-H., Giustino, F., Cohen, M. L., & Louie, S. G. (2008). Nano Lett. 8, 4229Google Scholar
Park, C.-H., & Marzari, N. (2011). Phys. Rev. B 84, 205440Google Scholar
Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2008). Phys. Rev. Lett. 101, 126804Google Scholar
Partoens, B., & Peeters, F. M. (2006). Phys. Rev. B 74, 075404Google Scholar
Patashinskii, A. Z., & Pokrovskii, V. L. (1979). Fluctuation Theory of Phase Transitions. New York: PergamonGoogle Scholar
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca, NY: Cornell University PressGoogle Scholar
Peierls, R. E. (1933). Z. Phys. 80, 763Google Scholar
Peierls, R. E. (1934). Helv. Phys. Acta 7, 81Google Scholar
Peierls, R. E. (1935). Ann. Inst. Henri Poincare 5, 177Google Scholar
Peierls, R. E. (1938). Phys. Rev. 54, 918Google Scholar
Peliti, L., & Leibler, S. (1985). Phys. Rev. Lett. 54, 1690Google Scholar
Pellegrino, F. M. D., Angilella, G. G. N., & Pucci, R. (2010). Phys. Rev. B 81, 035411Google Scholar
Pellegrino, F. M. D., Torre, I., Geim, A. K., & Polini, M. (2016). Phys. Rev. B 94, 155414Google Scholar
Pellegrino, F. M. D., Torre, I., & Polini, M. (2017). Phys. Rev. B 96, 195401Google Scholar
Pendry, J. B. (2004). Contemp. Phys. 45, 191Google Scholar
Peng, L. X., Liew, K. M., & Kitipornchai, S. (2007). Int. J. Mech. Science 49, 364Google Scholar
Pereira, J. M., Peeters, F. M., & Vasilopoulos, P. (2007). Phys. Rev. B 76, 115419Google Scholar
Pereira, V. M., & Castro Neto, A. H. (2009). Phys. Rev. Lett. 103, 046801Google Scholar
Pereira, V. M., Castro Neto, A. H., & Peres, N. M. R. (2009). Phys. Rev. B 80, 045401Google Scholar
Pereira, V. M., Guinea, F., Lopes dos Santos, J. M. B., Peres, N. M. R., & Castro Neto, A. H. (2006). Phys. Rev. Lett. 96, 036801Google Scholar
Pereira, V. M., Nilsson, J., & Castro Neto, A. H. (2007). Phys. Rev. Lett. 99, 166802Google Scholar
Perenboom, J. A. A. J., Wyder, P., & Meier, F. (1981). Phys. Rep. 78, 173Google Scholar
Peres, N. M. R. (2010). Rev. Mod. Phys. 82, 2673Google Scholar
Peres, N. M. R., Castro Neto, A. H., & Guinea, F. (2006). Phys. Rev. B 73, 195411Google Scholar
Peres, N. M. R., Guinea, F., & Castro Neto, A. H. (2006). Phys. Rev. B 73, 125411Google Scholar
Platzman, P. M., & Wolf, P. A. (1973). Waves and Interactions in Solid State Plasmas. New York: Academic PressGoogle Scholar
Polini, M., Tomadin, A., Asgari, R., & MacDonald, A. H. (2008). Phys. Rev. B 78,115426Google Scholar
Pomeranchuk, I., & Smorodinsky, Y. (1945). J. Phys. (USSR) 9, 97Google Scholar
Ponomarenko, L. A., Gorbachev, R. V., Yu, G. L., et al. (2013). Nature 497, 594Google Scholar
Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., et al. (2008). Science 320, 356Google Scholar
Ponomarenko, L. A., Yang, R., Gorbachev, R. V., et al. (2010). Phys. Rev. Lett. 105, 136801Google Scholar
Ponomarenko, L. A., Yang, R., Mohiuddin, T. M., et al. (2009). Phys. Rev. Lett. 102, 206603Google Scholar
Prada, E., San-Jose, P., Wunsch, B., & Guinea, F. (2007). Phys. Rev. B 75, 113407Google Scholar
Prange, R. E., & Girvin, S. M. (eds.). (1987). The Quantum Hall Effect. Berlin: SpringerGoogle Scholar
Principi, A., Polini, M., & Vignale, G. (2009). Phys. Rev. B 80, 075418Google Scholar
Principi, A., Polini, M., Vignale, G., & Katsnelson, M. I. (2010). Phys. Rev. Lett. 104, 225503Google Scholar
Principi, A., van Loon, E., Polini, M., & Katsnelson, M. I. (2018). Phys. Rev. B 98, 035427Google Scholar
Principi, A., Vignale, G., Carrega, M., & Polini, M. (2016). Phys. Rev. B 93, 125410Google Scholar
Prodan, E. (2009). J. Math. Phys. 50, 083517Google Scholar
Prokhorova, M. (2013). Comm. Math. Phys. 322, 385Google Scholar
Pyatkovskiy, P. K. (2009). J. Phys.: Condens. Matter 21, 025506Google Scholar
Qi, X., & Zhang, S. (2010). Phys. Today 1, 33Google Scholar
Qi, X., & Zhang, S. (2011). Rev. Mod. Phys. 83, 1057Google Scholar
Quilichini, M. (1997). Rev. Mod. Phys. 69, 277Google Scholar
Radzig, A. A., & Smirnov, B. M. (1985). Reference Data on Atoms, Molecules and Ions. Berlin: SpringerGoogle Scholar
Raman, C. V. (1928). Nature 121, 619Google Scholar
Raman, C. V., & Krishnan, K. S. (1928). Nature 121, 501Google Scholar
Rammer, J., & Smith, H. (1986). Rev. Mod. Phys. 58, 323Google Scholar
Rashba, E. I. (2009). Phys. Rev. B 19, 161409Google Scholar
Recher, P., Trauzettel, B., Rycerz, A., et al. (2007). Phys. Rev. B 76, 235404Google Scholar
Reich, S., Maultzsch, J., Thomsen, C., & Ordejon, P. (2002). Phys. Rev. B 66, 035412Google Scholar
Reijnders, K. J. A., & Katsnelson, M. I. (2017a). Phys. Rev. B 95, 115310Google Scholar
Reijnders, K. J. A., & Katsnelson, M. I. (2017b). Phys. Rev. B 96, 045305Google Scholar
Reijnders, K. J. A., Tudorovskiy, T., & Katsnelson, M. I. (2013). Ann. Phys. (NY) 333, 155Google Scholar
Robinson, J. R., Schomerus, H., Oroszlány, L., & Fal’ko, V. I. (2008). Phys. Rev. Lett. 101, 196803Google Scholar
Roldán, R., Fasolino, A., Zakharchenko, K. V., & Katsnelson, M. I. (2011). Phys. Rev. B 83, 174104Google Scholar
Rossi, E., & Das Sarma, S. (2008). Phys. Rev. Lett. 101, 166803Google Scholar
Rudenko, A. N., Brener, S., & Katsnelson, M. I. (2016). Phys. Rev. Lett. 116, 246401Google Scholar
Rudenko, A. N., Keil, F. J., Katsnelson, M. I., & Lichtenstein, A. I. (2013). Phys. Rev. B 88, 081405(R)Google Scholar
Rudenko, A. N., Lugovskoi, A. V., Mauri, A., et al. (2019). Phys. Rev. B 100, 075417Google Scholar
Ruelle, D. (1999). Statistical Mechanics: Rigorous Results. London: Imperial College Press/Singapore: World ScientificGoogle Scholar
Rusin, T. M., & Zawadzki, W. (2008). Phys. Rev. B 78, 125419Google Scholar
Rusin, T. M., & Zawadzki, W. (2009). Phys. Rev. B 80, 045416Google Scholar
Russo, S., Oostinga, J. B., Wehenkel, D., et al. Phys. Rev. B 11, 085413Google Scholar
Rycerz, A. (2010). Phys. Rev. B 81, 121404Google Scholar
Rycerz, A., Recher, P., & Wimmer, M. (2009). Phys. Rev. B 80, 125417Google Scholar
Ryu, S., Mudry, C., Furusaki, A., & Ludwig, A. W. W. (2007). Phys. Rev. B 75, 205344Google Scholar
Sachs, B., Wehling, T. O., Katsnelson, M. I., & Lichtenstein, A. I. (2011). Phys. Rev. B 84, 195444Google Scholar
Sadowski, M. L., Martinez, G., Potemski, M., Berger, C., & de Heer, W. A. (2006). Phys. Rev. Lett. 91, 266405Google Scholar
Safran, S. A., & DiSalvo, F. J. (1979). Phys. Rev. B 20, 4889Google Scholar
Saha, K., Paul, I., & Sengupta, K. (2010). Phys. Rev. B 81, 165446Google Scholar
Saleur, H., & Duplantier, B. (1987). Phys. Rev. Lett. 58, 2325Google Scholar
San-José, P., González, J., & Guinea, F. (2011). Phys. Rev. Lett. 106, 045502Google Scholar
Sasaki, K., Kawazoe, Y., & Saito, R. (2005). Prog. Theor. Phys. 113, 463Google Scholar
Savini, G., Dappe, Y. J., Oberg, S., et al. (2011). Carbon 49, 62Google Scholar
Schakel, A. M. J. (1991). Phys. Rev. D 43, 1428Google Scholar
Schapere, A., & Wilczek, F. (eds.). (1989). Geometric Phases in Physics. Singapore: World ScientificGoogle Scholar
Schedin, F., Geim, A. K., Morozov, S. V., et al. (2007). Nature Mater. 6, 652Google Scholar
Schoenberg, D. (1984). Magnetic Oscillations in Metals. Cambridge: Cambridge University PressGoogle Scholar
Schrödinger, E. (1930). Sitz. Preufi. Akad. Wiss. Phys.-Math. 24, 418Google Scholar
Schubin, S., & Wonsowski, S. (1934). Proc. R. Soc. (London) A 145, 159Google Scholar
Schuessler, A., Ostrovsky, P. M., Gornyi, I. V., & Mirlin, A. D. (2009). Phys. Rev. B 79, 075405Google Scholar
Schüler, M., Rösner, M., Wehling, T. O., Lichtenstein, A. I., & Katsnelson, M. I. (2013). Phys. Rev. Lett. 111, 036601Google Scholar
Schulman, L. S. (1981). Techniques and Applications of Path Integration. New York: WileyGoogle Scholar
Sepioni, M., Nair, R. R., Rablen, S., et al. (2010). Phys. Rev. Lett. 105, 207205Google Scholar
Shallcross, S., Sharma, S., Kandelaki, E., & Pankratov, O. A. (2010). Phys. Rev. B 81, 165105Google Scholar
Sharapov, S. G., Gusynin, V. P., & Beck, H. (2004). Phys. Rev. B 69, 075104Google Scholar
Sharma, M. P., Johnson, L. G., & McClure, J. W. (1974). Phys. Rev. B 9, 2467Google Scholar
Sharon, E., Roman, B., Marder, M., Shin, G.-S., & Swinney, H. L. (2002). Nature 419, 579Google Scholar
Shechtman, D., Blech, I., Gratias, D., & Cahn, J. W. (1984). Phys. Rev. Lett. 53, 1951Google Scholar
Sheehy, D. E., & Schmalian, J. (2009). Phys. Rev. B 80, 193411Google Scholar
Shklovskii, B. I., & Efros, A. L. (1984). Electronic Properties of Doped Semiconductors. Berlin: SpringerGoogle Scholar
Shon, N. H., & Ando, T. (1998). J. Phys. Soc. Japan 67, 2421Google Scholar
Shytov, A. V., Abanin, D. A., & Levitov, L. S. (2009). Phys. Rev. Lett. 103, 016806Google Scholar
Shytov, A. V., Gu, N., & Levitov, L. S. (2007). arXiv:0708.3081 (unpublished)Google Scholar
Shytov, A. V., Katsnelson, M. I., & Levitov, L. S. (2007a). Phys. Rev. Lett. 99, 236801Google Scholar
Shytov, A. V., Katsnelson, M. I., & Levitov, L. S. (2007b). Phys. Rev. Lett. 99, 246802Google Scholar
Shytov, A., Rudner, M., Gu, N., Katsnelson, M., & Levitov, L. (2009). Solid State Commun. 149, 1087Google Scholar
Shytov, A. V., Rudner, M. S., & Levitov, L. S. (2008). Phys. Rev. Lett. 101, 156804Google Scholar
Simon, B. (1983). Phys. Rev. Lett. 51, 2167Google Scholar
Slonczewski, J. S., & Weiss, P. R. (1958). Phys. Rev. 109, 272Google Scholar
Slotman, G. J., van Wijk, M. M., Zhao, P.-L., et al. (2015). Phys. Rev. Lett. 115, 186801Google Scholar
Smirnov, S. (2001). C. R. Acad. Sci. Paris Sér. I Math. 333, 239Google Scholar
Snyman, I., & Beenakker, C. W. J. (2007). Phys. Rev. B 75, 045322Google Scholar
Sodemann, I., & Fogler, M. M. (2012). Phys. Rev. B 86, 115408Google Scholar
Son, Y.-W., Cohen, M. L., & Louie, S. (2006a). Nature 444, 347Google Scholar
Son, Y.-W., Cohen, M. L., & Louie, S. (2006b). Phys. Rev. Lett. 97, 216803Google Scholar
Song, J. C. W., Shytov, A. V., & Levitov, L. S. (2013). Phys. Rev. Lett. 111, 266801Google Scholar
Stampfer, C., Schurtenberger, E., Molitor, F., et al. (2008). Nano Lett. 8, 2378Google Scholar
Stander, N., Huard, B., & Goldhaber-Gordon, D. (2009). Phys. Rev. Lett. 102, 026807Google Scholar
Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Phys. Rev. B 78, 085432Google Scholar
Stauber, T., Peres, N. M. R., & Guinea, F. (2007). Phys. Rev. B 76, 205423Google Scholar
Stauber, T., & Schliemann, J. (2009). New J. Phys. 11, 115003Google Scholar
Stauber, T., Schliemann, J., & Peres, N. M. R. (2010). Phys. Rev. B 81, 085409Google Scholar
Stefanucci, G., & van Leeuwen, R. (2013) Nonequilibrium Many-Body Theory of Quantum Systems. Cambridge: Cambridge University PressGoogle Scholar
Stern, F. (1967). Phys. Rev. Lett. 18, 546Google Scholar
Steward, E. G., Cook, B. P., & Kellert, E. A. (1960). Nature 187, 1015Google Scholar
Stöckmann, H.-J. (2000). Quantum Chaos: An Introduction. Cambridge: Cambridge University PressGoogle Scholar
Stolyarova, E., Rim, K. T., Ryu, S., et al. G. W. (2007). Proc. Natl. Acad. Sci. USA 104, 9209Google Scholar
Stoner, E. C. (1936). Proc. R. Soc. (London) A 154, 656Google Scholar
Su, R.-K., Siu, G. G., & Chou, X. (1993). J. Phys. A 26, 1001Google Scholar
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M., & Barticevic, Z. (2010). Phys. Rev. B 82, 121407(R)Google Scholar
Sugihara, K. (1983). Phys. Rev. B 28, 2157Google Scholar
Suzuura, H., & Ando, T. (2002). Phys. Rev. B 65, 235412Google Scholar
Taimanov, I. A. (2006). Russ. Math. Surveys 61, 79Google Scholar
Tan, L. Z., Park, C.-H., & Louie, S. G. (2010). Phys. Rev. B 81, 195426Google Scholar
Tang, S., Wang, H., Zhang, Y., et al. (2013). Sci. Rep. 3, 2666Google Scholar
Tao, C., Jiao, L., Yazyev, O. V., et al. (2011). Nature Phys. 7, 616Google Scholar
Teber, S., & Kotikov, A. V. (2014). Europhys. Lett. 107, 57001Google Scholar
Teissier, R., Finley, J. J., Skolnick, M. S., et al. (1996). Phys. Rev. B 54, 8329Google Scholar
Tenjinbayashi, Y., Igarashi, H., & Fujiwara, T. (2007). Ann. Phys. (NY) 322, 460Google Scholar
Tersoff, J., & Hamann, D. R. (1985). Phys. Rev. B 31, 805Google Scholar
Thomsen, C., & Reich, S. (2000). Phys. Rev. Lett. 85, 5214Google Scholar
Thouless, D. J. (1983). Phys. Rev. B 27, 6083Google Scholar
Thouless, D. J., Kohmoto, M., Nightingale, M. P., & den Nijs, M. (1982). Phys. Rev. Lett. 49, 405Google Scholar
Tian, W., & Datta, S. (1994). Phys. Rev. B 49, 5097Google Scholar
Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V., & Savchenko, A. K. (2008). Phys. Rev. Lett. 100, 056802Google Scholar
Tikhonenko, F. V., Kozikov, A. A., Savchenko, A. K., & Gorbachev, R. V. (2009). Phys. Rev. Lett. 103, 226801Google Scholar
Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of Plates and Shells. New York: McGraw-HillGoogle Scholar
Titov, M., & Katsnelson, M. I. (2014). Phys. Rev. Lett. 113, 096801Google Scholar
Titov, M., Ostrovsky, P. M., Gornyi, I. V., Schuessler, A., & Mirlin, A. D. (2010). Phys. Rev. Lett. 104, 076802Google Scholar
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T., & van Wees, B. J. (2007). Nature 448, 571Google Scholar
Tombros, N., Tanabe, S., Veligura, A., et al. (2008). Phys. Rev. Lett. 101, 046601Google Scholar
Torre, I., Tomadin, A., Geim, A. K., & Polini, M. (2015). Phys. Rev. B 92, 165433Google Scholar
Trushin, M., Kailasvuori, J., Schliemann, J., & MacDonald, A. H. (2010). Phys. Rev. B 82, 155308Google Scholar
Tsidilkovskii, I. M. (1982). Band Structure of Semiconductors. Oxford: PergamonGoogle Scholar
Tsidilkovskii, I. M. (1996). Electron Spectrum of Gapless Semiconductors. Berlin: SpringerGoogle Scholar
Tudorovskiy, T., & Katsnelson, M. I. (2012). Phys. Rev. B 86, 045419Google Scholar
Tudorovskiy, T., & Mikhailov, S. A. (2010). Phys. Rev. B 82, 073411Google Scholar
Tudorovskiy, T., Reijnders, K. J. A., & Katsnelson, M. I. (2012). Phys Scr. T146, 014010.Google Scholar
Tuinstra, F., & Koenig, J. L. (1970). J. Chem. Phys. 53, 1126Google Scholar
Tworzydlo, J., Trouzettel, B., Titov, M., Rycerz, A., & Beenakker, C. W. J. (2006). Phys. Rev. Lett. 96, 246802Google Scholar
Uchoa, B., Yang, L., Tsai, S.-W., Peres, N. M. R., & Castro Neto, A. H. (2009). Phys. Rev. Lett. 103, 206804Google Scholar
Ugeda, M. M., Brihuega, I., Guinea, F., & Gómez-Rodríguez, J. M. (2010). Phys. Rev. Lett. 104, 096804Google Scholar
Ukraintsev, V. A. (1996). Phys. Rev. B 53, 11176Google Scholar
Ulybyshev, M. V., Buividovich, P. V., Katsnelson, M. I., & Polikarpov, M. I. (2013). Phys. Rev. Lett. 111, 056801Google Scholar
Ulybyshev, M. V., & Katsnelson, M. I. (2015). Phys. Rev. Lett. 114, 246801Google Scholar
Ustinov, V. V. (1980). Theor. Math. Phys. 44, 814Google Scholar
Vandelli, M., Katsnelson, M. I., & Stepanov, E. A. (2019). Phys. Rev. B 99, 165432Google Scholar
van Schilfgaarde, M., & Katsnelson, M. I. (2011). Phys. Rev. B 83, 081409(R)Google Scholar
van Wijk, M. M., Schuring, A., Katsnelson, M. I., & Fasolino, A. (2014). Phys. Rev. Lett. 113, 135504Google Scholar
van Wijk, M. M., Schuring, A., Katsnelson, M. I., & Fasolino, A. (2015). 2D Mater. 2, 034010Google Scholar
Veselago, V. S. (1968). Sov. Phys. Usp. 10, 509Google Scholar
Vlasov, K. B., & Ishmukhametov, B. Kh. (1964). Zh. Eksp. Teor. Fiz. 46, 201Google Scholar
Volkov, B. A., & Pankratov, O. A. (1986). Pis’ma Zh. Eksp. Teor. Fiz. 43, 99Google Scholar
Volovik, G. E. (1991). JETP Lett. 53, 222Google Scholar
Volovik, G. E. (2003). The Universe in a Helium Droplet. Oxford: Clarendon PressGoogle Scholar
Volovik, G. E. (2018). JETP Lett. 107, 516Google Scholar
Vonsovsky, S. V. (1946). Zh. Eksp. Teor. Fiz. 16, 981Google Scholar
Vonsovsky, S. V. (1974). Magnetism. New York: WileyGoogle Scholar
Vonsovsky, S. V., & Katsnelson, M. I. (1979). J. Phys. C 12, 2043Google Scholar
Vonsovsky, S. V., & Katsnelson, M. I. (1989). Quantum Solid State Physics. Berlin: SpringerGoogle Scholar
Vonsovsky, S. V., & Svirsky, M. S. (1993). Usp. Fiz. Nauk 163, 5, 115Google Scholar
Vonsovsky, S. V., & Turov, E. A. (1953). Zh. Eksp. Teor. Fiz. 24, 419Google Scholar
Vozmediano, M. A. H., Katsnelson, M. I., & Guinea, F. (2010). Phys. Rep. 496, 109Google Scholar
Wagner, M. (1991). Phys. Rev. B 44, 6104Google Scholar
Wallace, P. R. (1947). Phys. Rev. 71, 622Google Scholar
Wallbank, J. R., Ghazaryan, D., Misra, A., et al. (2016). Science 353, 575Google Scholar
Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. K., & Fal’ko, V. I. (2013). Phys. Rev. B 87, 245408Google Scholar
Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, H. (2008). Phys. Rev. Lett. 100, 206803Google Scholar
Wang, Y., Wong, D., Shytov, A. V., et al. (2013). Science 340, 734Google Scholar
Wassmann, T., Seitsonen, A. P., Saitta, M., Lazzeri, M., & Mauri, F. (2008). Phys. Rev. Lett. 101, 096402Google Scholar
Watanabe, H., Hatsugai, Y., & Aoki, H. (2010). Phys. Rev. B 82, 241403Google Scholar
Watanabe, K., Taniguchi, T., & Kanda, H. (2004). Nature Mater. 3, 404Google Scholar
Wehling, T. O., Balatsky, A. V., Katsnelson, M. I., et al. (2007). Phys. Rev. B 75, 125425Google Scholar
Wehling, T. O., Balatsky, A. V., Tsvelik, A. M., Katsnelson, M. I., & Lichtenstein, A. I. (2008a). Europhys. Lett. 84, 17003Google Scholar
Wehling, T. O., Dahal, H. P., Lichtenstein, A. I., et al. (2010b). Phys. Rev. B 81, 085413Google Scholar
Wehling, T. O., Katsnelson, M. I., & Lichtenstein, A. I. (2009a). Chem. Phys. Lett. 476, 125Google Scholar
Wehling, T. O., Katsnelson, M. I., & Lichtenstein, A. I. (2009b). Phys. Rev. B 80, 085428Google Scholar
Wehling, T. O., Novoselov, K. S., Morozov, S. V., et al. (2008b). Nano Lett. 8, 173Google Scholar
Wehling, T. O., Şaşioğlu, E., Friedrich, C., Lichtenstein, A. I., Katsnelson, M. I., & Blügel, S. (2011). Phys. Rev. Lett. 106, 236805Google Scholar
Wehling, T. O., Yuan, S., Lichtenstein, A. I., Geim, A. K., & Katsnelson, M. I. (2010a). Phys. Rev. Lett. 105, 056802Google Scholar
Whittaker, E. T., & Watson, G. N. (1927). A Course of Modern Analysis. Cambridge: Cambridge University PressGoogle Scholar
Wilson, A. H. (1965). Theory of Metals. Cambridge: Cambridge University PressGoogle Scholar
Wilson, K. G., & Kogut, J. (1974). Phys. Rep. 12, 75Google Scholar
Wimmer, M., Adagideli, I., Berber, S., Tomanek, D., & Richter, K. (2008). Phys. Rev. Lett. 100, 177207Google Scholar
Wimmer, M., Akhmerov, A. R., & Guinea, F. (2010). Phys. Rev. B 82, 045409Google Scholar
Witowski, A. M., Orlita, M., Stepniewski, R., et al. (2010). Phys. Rev. B 82,165305Google Scholar
Woessner, A., Lundeberg, M. B., Gao, Y., et al. (2015). Nature Mater. 14, 421Google Scholar
Woods, C. R., Britnell, L., Eckmann, A., et al. (2014). Nature Phys. 10, 451Google Scholar
Woods, C. R., Withers, F., Zhu, M. J., et al. (2016). Nature Commun. 7, 10800Google Scholar
Wunsch, B., Stauber, T., Sols, F., & Guinea, F. (2006). New J. Phys. 8, 318Google Scholar
Wurm, J., Rycerz, A., Adagideli, I., et al. (2009). Phys. Rev. Lett. 102, 056806Google Scholar
Wurm, J., Wimmer, M., Baranger, H. U., & Richter, K. (2010). Semicond. Sci. Technol. 25, 034003Google Scholar
Xiao, D., Chang, M.-C., & Niu, Q. (2010). Rev. Mod. Phys. 82, 1959Google Scholar
Xing, X., Mukhopadhyay, R., Lubensky, T. C., & Radzihovsky, L. (2003). Phys. Rev. E 68, 021108Google Scholar
Xu, Y., Yan, B., Zhang, H.-J., et al. (2013). Phys. Rev. Lett. 111, 136804Google Scholar
Xue, J., Sanchez-Yamagishi, J., Bulmash, D., et al. (2011). Nature Mater. 10, 282Google Scholar
Yacoby, A., & Imry, Y. (1990). Phys. Rev. B 41, 5341Google Scholar
Yang, L., Deslippe, J., Park, C.-H., Cohen, M. L., & Louie, S. G. (2009). Phys. Rev. Lett. 103, 186802Google Scholar
Yang, W., Chen, G., Shi, Z., et al. (2013). Nature Mater. 12, 792Google Scholar
Yang, X., & Nayak, C. (2002). Phys. Rev. B 65, 064523Google Scholar
Yao, W., Wang, E., Bao, C., et al. (2018). Proc. Natl. Acad. Sci. USA 115, 6928Google Scholar
Yao, Y., Ye, F., Qi, X.-L., Zhang, S. C., & Fang, Z. (2007). Phys. Rev. B 75, 041401Google Scholar
Yazyev, O. V. (2010). Rep. Prog. Phys. 73, 056501Google Scholar
Yazyev, O. V., & Helm, L. (2007). Phys. Rev. B 75, 125408Google Scholar
Yazyev, O. V., & Katsnelson, M. I. (2008). Phys. Rev. Lett. 100, 047209Google Scholar
Yennie, D. R., Ravenhall, D. G., & Wilson, R. N. (1954). Phys. Rev. 95, 500Google Scholar
Yoon, D., Son, Y.-W., & Cheong, H. (2011). Nano Lett. 11, 3227Google Scholar
Yosida, K. (1996). Theory of Magnetism. Berlin: SpringerGoogle Scholar
Young, A. F., & Kim, P. (2009). Nature Phys. 5, 222Google Scholar
Yu, G. L., Jalil, R., Belle, B., et al. (2013). Proc. Natl. Acad. Sci. USA 110, 3282Google Scholar
Yu, G., Wu, Z., Zhan, Z., Katsnelson, M. I., & Yuan, S. (2019). NPJ Comput. Mater. 5, 122Google Scholar
Yuan, S., De Raedt, H., & Katsnelson, M. I. (2010a). Phys. Rev. B 82, 115448Google Scholar
Yuan, S., De Raedt, H., & Katsnelson, M. I. (2010b). Phys. Rev. B 82, 235409Google Scholar
Yuan, S. Roldán, R., & Katsnelson, M. I. (2011). Phys. Rev. B 84, 035439Google Scholar
Yudin, D., Hirschmeier, D., Hafermann, H., et al. (2014). Phys. Rev. Lett. 112, 070403Google Scholar
Zak, J. (1964). Phys. Rev. 134, A1602Google Scholar
Zak, J. (1989). Phys. Rev. Lett. 62, 2747Google Scholar
Zakharchenko, K. V., Fasolino, A., Los, J. H., & Katsnelson, M. I. (2011). J. Phys.: Condens. Matter 23, 202202Google Scholar
Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A. (2009). Phys. Rev. Lett. 102, 046808Google Scholar
Zakharchenko, K. V., Los, J. H., Katsnelson, M. I., & Fasolino, A. (2010a). Phys. Rev. B 81, 235439Google Scholar
Zakharchenko, K. V., Roldan, R., Fasolino, A., & Katsnelson, M. I. (2010b). Phys. Rev. B 82, 125435Google Scholar
Zarea, M., & Sandler, N. (2009). Phys. Rev. B 79, 165442Google Scholar
Zel’dovich, Y. B., & Popov, V. S. (1972). Sov. Phys. Usp. 14, 673Google Scholar
Zener, C. (1951a). Phys. Rev. 81, 440Google Scholar
Zener, C. (1951b). Phys. Rev. 82, 403Google Scholar
Zener, C. (1951c). Phys. Rev. 83, 299Google Scholar
Zhang, H. G., Hu, H., Pan, Y., et al. (2010). J. Phys.: Condens. Matter 22, 302001Google Scholar
Zhang, L., Bampoulis, P., Rudenko, A. N., et al. (2016). Phys. Rev. Lett. 116, 256804Google Scholar
Zhang, Y., Jiang, Z., Small, J. P., et al. (2006). Phys. Rev. Lett. 96, 136806Google Scholar
Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Nature 438, 201Google Scholar
Zhao, P.-L., Yuan, S., Katsnelson, M. I., & De Raedt, H. (2015). Phys. Rev. B 92, 045437 (2015).Google Scholar
Ziegler, K. (1998). Phys. Rev. Lett. 80, 3113Google Scholar
Ziman, J. M. (2001). Electrons and Phonons. The Theory of Transport Phenomena in Solids. Oxford: Oxford University PressGoogle Scholar
Zubarev, D. N. (1974). Nonequilibrium Statistical Thermodynamics. New York: Consultants BureauGoogle Scholar
Žutić, I., Fabian, J., & Das Sarma, S. (2004). Rev. Mod. Phys. 76, 323Google Scholar
Zverev, M. V., & Baldo, M. (1999). J. Phys.: Condens. Matter 11, 2059Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mikhail I. Katsnelson, Radboud Universiteit Nijmegen
  • Book: The Physics of Graphene
  • Online publication: 24 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108617567.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mikhail I. Katsnelson, Radboud Universiteit Nijmegen
  • Book: The Physics of Graphene
  • Online publication: 24 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108617567.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mikhail I. Katsnelson, Radboud Universiteit Nijmegen
  • Book: The Physics of Graphene
  • Online publication: 24 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108617567.018
Available formats
×