Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T23:49:39.140Z Has data issue: false hasContentIssue false

9 - Climate Change and Impacts on Variability and Interactions

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

Climate change induced by human activity will impact the oceans in unprecedented ways. Interactions among ocean basins are also expected to change, and much effort will be required to better understand and predict these changes. This chapter starts by an overview about projected changes in processes participating in ocean interactions and mentioned in previous chapters. The overview starts with the intensity and frequency of the Pacific and Atlantic Niños. This is followed by a review of decadal climate modes in the Pacific and other basins, as well as past climate shifts in the Pacific. The following two sections discuss the ocean’s thermohaline circulation, its projected changes, and its potential collapse. The last section addresses present-day and future global mean sea level rise and its geographical variations due to ocean warming and land ice loss (from glaciers, Greenland, and Antarctica).

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 293 - 337
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, N., Köhl, A., Mechoso, C. R., Stammer, D. (2014). On the early response of the climate system to a meltwater input from Greenland. Journal of Climate, 27, 82768296.Google Scholar
Agarwal, N., Jungclaus, J. H., Köhl, A., Mechoso, C. R., Stammer, D. (2015). Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss. Environmental Research Letters, 10, 074008Google Scholar
Alvarez-Solas, J., Robinson, A., Montoya, M., Ritz, C. (2013). Iceberg discharges of the last glacial period driven by oceanic circulation changes. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1306622110.Google Scholar
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007.Google Scholar
Bakker, P., Schmittner, A., Lenaerts, Abe-Ouchi, Bi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A. Saenko, , Swingedouw, D., Sullivan, A., Yin, J. (2016). Fate of the Atlantic Meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43(23), 1225212260.Google Scholar
Bamber, J. L., Westaway, R. M., Marzeion, B., Wouters, B. (2018) The land ice contribution to sea level during the satellite era, Environment Research Letters, 13, 063008, doi:10.1088/1748-9326/aac2f0.Google Scholar
Bayr, T., Wengel, C., Latif, M., Dommenget, D., Lübbecke, J., Park, W. (2018). Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dynamics, 53(2019), 155172, doi:10.1007/s00382-018-4575-7 (published online).Google Scholar
Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Debret, M., Delmonte, B., Dick, D., Falourd, S., Faria, S., Federer, U., Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gabrielli, P., Gaspari, V., Gersonde, R., Graf, W., Grigoriev, D., Hamann, I., Hansson, M., Hoffmann, G., Hutterli, M.A., Huybrechts, P., Isaksson, E., Johnsen, S., Jouzel, J., Kaczmarska, M., Karlin, T., Kaufmann, P., Kipfstuhl, S., Kohno, M., Lambert, F., Lambrecht, A., Lambrecht, A., Landais, A., Lawer, G., Leuenberger, M., Littot, G., Loulergue, L., Lüthi, D., Maggi, V., Marino, F., Masson-Delmotte, V., Meyer, H., Miller, H., Mulvaney, R., Narcisi, B., Oerlemans, J., Oerter, H., Parrenin, F., Petit, J.-R., Raisbeck, G., Raynaud, D., Rothlisberger, R., Ruth, U., Rybak, O., Severi, M., Schmitt, J., Schwander, J., Siegenthaler, U., Siggaard-Andersen, M.-L., Spahni, R., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J.-L., Traversi, R., Udisti, R., ValeroDelgado, F., van den Broeke, M. R., van de Wal, R. S. W., Wagenbach, D., Wegner, A., Weiler, K., Wilhelms, F., Winther, J.-G., Wolff, E. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198, doi:10.1038/nature05301.Google Scholar
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dynamics, 42, 19992018.Google Scholar
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J. M., Madec, G. (2008). Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. Journal of Climate, 21, 65996615.Google Scholar
Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., Fasullo, J. (2012). The 2011 La Niña: So strong, the oceans fell. Geophysical Research Letters, 39(19), doi:10.1029/2012GL053055.Google Scholar
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., Deininger, M. (2014). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 517, 7376.Google Scholar
Boyle, E. A. (1997). Characteristics of the deep ocean carbon system during the past 150,000 years: ΣCO2 distributions, deep water flow patterns, and abrupt climate change. Proceedings of the National Academy of Sciences, 94(16), 83008307.Google Scholar
Broecker, W. S. (2000). Was a change in thermohaline circulation responsible for the little ice age? Proceedings of the National Academy of Sciences, 97(4):13391342.Google Scholar
Bryan, F.O. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301303.Google Scholar
Bryden, H. L., King, B. A., McCarthy, G. D. (2011). South Atlantic overturning circulations at 24S, Journal of Marine Research, 69(1), 3956.Google Scholar
Buckley, M. W., Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Review of Geophysics, 54, 563.Google Scholar
Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J., McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K., Fujita, S., Motoyama, H., Hirabayashi, M., Uemura, R., Stenni, B., Parrenin, F. He, F., Fudge, T. J., Steig, E. J. (2018). Abrupt ice-age shifts in southern westerly winds and Antarctic climate change forced from the north. Nature, 563, 681685.Google Scholar
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., Saba, V. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556 (7700), 191.Google Scholar
Cai, W., Borlace, S.,  Lengaigne, M.,  van Rensch, P.,  Collins, M.,  Vecchi, G.,  Timmermann, A.,  Santoso, A.,  McPhaden, M. J.,  Wu, L., England, M. H.,  Wang, G.,  Guilyardi, E., Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming, Nature Climate Change, 4, 111116.Google Scholar
Cai, W., Borlace, S. Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., Jin, F.-F. (2015a). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5, 111116.Google Scholar
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins, M., Guilyardi, E., Jin, F. F., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., Wu, L. (2015b). ENSO and global warming. Nature Climate Change, 5, 849859.Google Scholar
Cassou, C., Kushnir, Y., Hawkins, E., Pirani, A., Kucharski, F., Kang, I.-S., Caltabiano, N. (2018). Decadal climate variability and predictability: Challenges and opportunities. Bulletin of the American Meteorological Society, 99, 479490, doi:10.1175/BAMS-D-16-0286.1.Google Scholar
Cazenave, A., Palanisamy, H., Ablain, M. (2018). Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Advances in Space Research, doi:10.1016/j.asr.2018.07.017, published online July 27, 2018.Google Scholar
Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., Decharme, B., Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4 (5), 358361, doi:10.1038/nclimate2159.Google Scholar
Cazenave, A., Henry, O., Munier, S., Meyssignac, B., Delcroix, T., Llovel, W., Palanisamy, H., Becker, M. (2012). ENSO influence on the global mean sea level over 1993–2010. Marine Geodesy, 35(S1), 8297.Google Scholar
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., von Schuckmann, K., Wada, Y. (2017). Evaluation of the global mean sea level budget between 1993 and 2014. Surveys in Geophysics, 38, 309327, doi:10.1007/s10712-016-9381-3.Google Scholar
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B., Harig, C. (2017). The increasing rate of global mean sea-level rise during 1993–2014. Nature Climate Change, 7(7), 492495, doi:10.1038/nclimate3325.Google Scholar
Cheng, W., Chiang, J. C., Zhang, D. (2013). Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. Journal of Climate, 26(18), 71877197.Google Scholar
Chikamoto, Y., Timmermann, A., Luo, J.-J., Mochizuki, T., Kimoto, M., Watanabe, M., Ishii, M., Xie, S.-P., Jin, F.-F. (2015). Skillful multi-year predictions of tropical trans-basin climate variability. Nature Communications, 6, 6869, doi:10.1038/ncomms7869.Google Scholar
Chikamoto, Y., Timmermann, A., Widlansky, M. J., Balmaseda, M. A., Stott, L. (2017). Multi-year predictability of climate, drought, and wildfire in southwestern North America. Science Reports, doi:10.1038/s41598-017-06869-7.Google Scholar
Church, J. A., et al. (2013). Sea Level Change. In Stocker, T. F., et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Church, J. A., White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585602.Google Scholar
Ciasto, L. M., Simpkins, G. R., England, M. H. (2015). Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. Journal of Climate, 28, 5665, doi:10.1175/JCLI-D-14-00438.1.Google Scholar
Collins, M., Soon-Il, A., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., Wittenberg, A. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3, 391397Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L, Fichefet, T., Friedlingstein, P., Gao, S., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M. (2013). Long-term climate change: Projection, commitments and irreversibility. In Stocker, T. F., et al. (eds.),Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 10291136, www.ipcc.ch/report/ar5/wg1/.Google Scholar
Collins, J. A., Govin, A., Mulitza, S., Heslop, D., Zabel, M., Hartmann, J., Röhl, U., Wefer, G. (2013). Abrupt shifts of the Sahara–Sahel boundary during Heinrich stadials. Climate of the Past, 9(3), 11811191.Google Scholar
Dai, A., Wigley, T. M. L., (2000). Global patterns of ENSO-induced precipitation. Geophysical Research Letters, 27 (9), 12831286.Google Scholar
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23): 59465951, doi:10.1073/pnas.1616007114.CrossRefGoogle ScholarPubMed
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., Bond, G (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218220.Google Scholar
De Conto, R. M., Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.CrossRefGoogle ScholarPubMed
de Vries, P., Weber, S. L. (2005). The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophysical Research Letters, 32, L09606, doi:10.1029/2004GL021450.Google Scholar
Delworth, T. L., Clark, P. U., Holland, M., Johns, T., Kuhlbrodt, T., Lynch-Stieglitz, C., Seager, R., Weaver, A. J., Zhang, R. (2008). The potential for abrupt change in the Atlantic Meridional Overturning Circulation. In Abrupt Climate Change: A report by the US Climate Change Science Program and the Subcommittee on Global Change Research. Reston, VA: US Geological Survey, 258359.Google Scholar
den Toom, M. D., Dijkstra, H. A., Weijer, W., Hecht, M. W., Maltrud, M. E., Van Sebille, E. (2014). Response of a strongly eddying global ocean to North Atlantic freshwater perturbations. Journal of Physical Oceanography, 44(2), 464481.CrossRefGoogle Scholar
Desbruyeres, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., King, B. A. (2016). Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophysical Research Letters, 43, 1035610365, doi:10.1002/2016GL070413.Google Scholar
Dieng, H. B., Cazenave, A., Meyssignac, B., Ablain, M. (2017). New estimate of the current rate of sea level rise from a sea level budget approach. Geophysical Research Letters, 44, doi:10.1002/ 2017GL073308.Google Scholar
Dima, M., Lohmann, G. (2010). Evidence for two distinct modes of large-scale ocean circulation changes over the last century. Journal of Climate, 23, 516.Google Scholar
DiNezio, P., Kirtman, B. P., Clement, A. C., Lee, S. K., Vecchi, G. A., Wittenberg, A. (2012). Mean Climate controls on the simulated response of ENSO to increasing greenhouse gases. Journal of Climate, 25, 73997420, doi:10.1175/JCLI-D-11-00494.1.Google Scholar
Ding, H., Greatbatch, R. J., Latif, M., Park, W., Gerdes, R. (2013). Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. Journal of Climate, 26, 76507661.Google Scholar
Ding, Q., Steig, E. J. (2013). Temperature change on the Antarctic Peninsula linked to tropical Pacific. Journal of Climate, 26, 75707585. doi:10.1175/JCLI-D-12-00729.1.CrossRefGoogle Scholar
Ding, Q., Wallace, J. M., Battisti, D. S., Steig, E., Gallant, J., Kim, A. J., Geng, H. J., L. (2014). Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, doi:10.1038/nature13260.Google Scholar
Doblas-Reyes, F., Andreu-Burillo, I., Chikamoto, Y., García-Serrano, J., Guemas, V., Kimoto, M. Mochizuki, T., Rodrigues, L. R. L., van Oldenborgh, G. J. (2013). Initialized near-term regional climate change prediction. Nature Communications, 4, 1715, doi:10.1038/ncomms2704.Google Scholar
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., Kissel, C. (2013). Dansgaard–Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography and Paleoclimatology, 28(3), 491502.CrossRefGoogle Scholar
Dong, B. W., Sutton, R. T. (2002). Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophysical Research Letters, 29(15), 1821.Google Scholar
Drijfhout, S. S., Weber, S. L., van der Swaluw, E. (2011). The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dynamics, 37(7–8), 15751586.Google Scholar
Drijfhout, S. (2015). Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proceedings of the National Academy of Sciences, 112(43), E5777E5786.Google Scholar
Eden, C., Willebrand, J. (2001). Mechanism of interannual to decadal variability of the North Atlantic circulation. Journal of Climate, 14(10), 22662280.Google Scholar
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. J., van Angelen, J. H., van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41, 866872, doi:10.1002/2013GL059010.Google Scholar
England, M. H., McGregor, S., Spence, P., Meehl, G. A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222227, doi:10.1038/NCLIMATE2106.Google Scholar
Fasullo, J., Nerem, R. S. (2018). An emergent pattern of forced sea level rise in the satellite altimeter record and implications for the future. Proceedings of the National Academy of Sciences, 115, 201813233, doi:10.1073/pnas.1813233115.Google Scholar
Fasullo, J. T., Boening, C., Landerer, F. W., Nerem, R. S. (2013). Australia's unique influence on global sea level in 2010–2011. Geophysical Research Letters, 40, 43684373, doi:10.1002/grl.50834.Google Scholar
Ferrett, S., Collins, M., Ren, H. L. (2017). Understanding bias in the evaporative damping of El Niño–Southern Oscillation events in CMIP5 models. Journal of Climate, 30(16), 63516370.Google Scholar
Folland, C. K., Parker, D. E., Colman, A. W., Washington, R. (1999). Large scale modes of ocean surface temperature since the late nineteenth century. In Navarra, A., (ed.), Beyond El Niño. Decadal and interdecadal climate variability. London: Springer-Verlag, 73102.Google Scholar
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., Neil, C., Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6, 224228, doi:10.1038/nclimate2938.Google Scholar
Ganopolski, A., Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158.Google Scholar
Gent, P. R. (2017). A commentary on the Atlantic meridional overturning circulation stability in climate models. Ocean Modelling, 122, 5766.Google Scholar
Gierz, P., Lohmann, G., Wei, W. (2015). Response of Atlantic overturning to future warming in a coupled atmosphere-ocean-ice sheet model. Geophysical Research Letters, 42, doi:10.1002/2015GL065276.Google Scholar
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447462.Google Scholar
Gnanadesikan, A. (1999). A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079.Google Scholar
Goodman, P. J. (2001). Thermohaline adjustment and advection in an OGCM. Journal of Physical Oceanography, 31, 14771497.Google Scholar
Gottschalk, J., Skinner, L. C., Misra, S., Waelbroeck, C., Menviel, L., Timmermann, A. (2015). Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nature Geoscience, 8, 950954.Google Scholar
Graham, F. S., Brown, C., Langlais, C., Marsland, S., Wittenbeg, A. T., Holbrook, N. (2014). Effectiveness of the Bjerknes stability index in representing ocean dynamics. Climate Dynamics, 43, doi:10.1007/s00382–014-2062-3.Google Scholar
Gray, A. R., Johnson, K., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D., Wanninkhof, R., Williams, N. L., Sarmiento, J. L. (2018). Autonomous biogeochemical floats detect carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters, 45, 90499057, doi:10.1029/2018GL078013.Google Scholar
Gregory, J. M., Dixon, K. W., Stouffer, R. J., Weaver, A. J., Driesschaert, E., Eby, M., Fichefet, T., Hasumi, H., Hu, Jungclaus, A., Kamenkovich, J. H., Levermann, I. V., Montoya, A., Murakami, M., Nawrath, S., Oka, S., Sokolov, A., Thorpe, A. P., R. B. (2005). A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophysical Research Letters, 32 (12), 15.Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455), 552.Google Scholar
Gu, G., Adler, R. F. (2011). Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions. Journal of Climate, 24, 22582270.Google Scholar
Gutjahr, M., Lippold, J. (2011). Early arrival of Southern Source Water in the deep North Atlantic prior to Heinrich event 2. Paleoceanography, 26, PA2101.Google Scholar
Ham, Y. G., Kug, J. S. (2016). ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophysical Research Letters, 43, 422430CrossRefGoogle Scholar
Hamlington, B. D., Strassburg, M. W., Leben, R. R., Han, W., Nerem, R. S., Kim, K. Y. (2014). Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4(9): 782785. doi:10.1038/ nclimate2307.Google Scholar
Han, W., Meehl, G. A., Hu, A., Alexander, M. A., Yamagata, T., Yuan, D., Ishii, M., Pegion, P., Zheng, J., Hamlington, B. D., Quan, X.-W., Leben, R. R. (2013). Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dynamics, 43, 13571379, doi:10.1007/s00382-013-1951-1.Google Scholar
Hawkins, E., Sutton, R. (2011). The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics, 37(1–2), 407418.Google Scholar
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38(10).Google Scholar
Hay, C., Morrow, E., Kopp, R. E., Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517 (7535): 481484, doi:10.1038/nature14093.Google Scholar
Held, I. M., Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 56865699.Google Scholar
Hemming, S. R. (2004). Heinrich events: Massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42, RG1005.Google Scholar
Henley, B., Gergis, J., Karoly, J., Power, D. J., Kennedy, S., J., Folland, C. K. (2015). A tripole index for the interdecadal pacific oscillation. Climate Dynamics, 45, 30773090.Google Scholar
Henley, B. J., MeehlG., PowerS. B., Folland, King, C. K.Brown, A. D.Karoly, J. N.Delage, D. J.Gallant, F., Freund, A. J. E., M. (2017). Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environment Research Letters, 12, 044011, doi:10.1088/1748-9326/aa5cc8.Google Scholar
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470474.Google Scholar
Hong, C.-C., Wu, Y.-K, Li, T., Chang, C.-C. (2013). The climate regime shift over the Pacific during 1996/1997. Climate Dynamics, 43, 435446, doi:10.1007/s00382–013-1867-9.Google Scholar
Hu, S., Federov, A. V. (2017). The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophysical Research Letters, doi:10.1002/2017GL072908.Google Scholar
Shepherd, A., Ivins, E., Rignot, E., et al., (2018). Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558, 219222, doi:10.1038/s41586-018-0179-y.Google Scholar
Jackson, L. C., Wood, R. A. (2018). Hysteresis and resilience of the AMOC in an eddy‐permitting GCM. Geophysical Research Letters, 45(16), 85478556.Google Scholar
Jackson, L. C., Peterson, K. A., Roberts, C. D., Wood, R. A. (2016). Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nature Geoscience, 9, 518522, doi:10.1038/ngeo2715.Google Scholar
Jackson, L. C., Smith, R. S., Wood, R. A. (2017). Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Climate Dynamics, 49, 173191, doi:10.1007/s00382-016-3336-8.Google Scholar
Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113: 1122, doi:10.1016/j.gloplacha.2013.12.004.Google Scholar
Johnson, H., Marshall, D. (2002). A theory for the surface Atlantic response to thermohaline variability. Journal of Physical Oceanography, 32(4): 11211132.Google Scholar
Johnson, Z. F., Chikamoto, Y., Luo, J.-J., Mochizuki, T. (2018). Ocean impacts on Australian interannual to decadal precipitation variability. Climate, 6, 61, doi:10.3390/cli6030061.Google Scholar
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., Zorita, E. (2017). The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev., 10, 40054033, doi:10.5194/gmd-10-4005-2017.Google Scholar
Kawase, M. (1987). Establishment of deep ocean circulation driven by deep-water production. Journal of Physical Oceanography, 17(12): 22942317.Google Scholar
Kemp, A. C., Horton, B., Donnelly, J. P., Mann, M. E., Vermeer, M., Rahmstorf, S. (2011). Climate related sea level variations over the past two millennia. Proceedings of the National Academy of Sciences, 108, 27, 1101711022.Google Scholar
Kim, S. T., Cai., W., Jin., F.-F., Yu, J.-Y. (2014). ENSO stability in coupled climate models and its association with mean state. Climate Dynamics, 42, 33133321.Google Scholar
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., Leuenberger, M. (2014). Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climates of the Past, 10(2), 887902.Google Scholar
Kissel, C., Laj, C., Labeyrie, L., Dokken, T., Voelker, A., Blamart, D. (1999). Rapid climatic variations during marine isotopic stage 3: Magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth and Planetary Sciences Letters, 17, 489502.Google Scholar
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23, 27392758.Google Scholar
Kosaka, Y., Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407.Google Scholar
Kosaka, Y., Xie, S.-P. (2016). The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geoscience, doi:10.1038/NGEO2770.Google Scholar
Kumar, A., Jha, B., L’Hereux, M. (2010). Are tropical SST trends changing the global teleconnection during La Niña? Geophysical Research Letters, 37, L12702.Google Scholar
Latif, M., Sperber, K., Arblaster, J. M., Braconnot, P., Chen, D., Colman, A., Cubasch, U., Cooper, C., Delecluse, P., DeWitt, D., Fairhead, L., Flato, G., Hogan, T., Ji, M., Kimoto, M., Kitoh, A., Knutson, T., Le Treut, H., Li, T., Manabe, S., Marti, O., Mechoso, C. R., Meehl, G., Power, S., Roeckner, E., Sirven, J., Terray, L., Vintzileos, A., Voss, R., Wang, B., Washington, W., Yoshikawa, I., Yu, J.-Y., Zebiak, S. (2001). ENSIP: The El Niño simulation intercomparison project. Climate Dynamics, 18, 255276.Google Scholar
Lenaerts, J. T. M., Le Bars, D., van Kampenhout, L., Vizcaino, M., Enderlin, E. M., van den Broeke, M. R. (2015). Representing Greenland ice sheet freshwater fluxes in climate models. Geophysical Research Letters, 42, doi:10.1002/2015GL064738.Google Scholar
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., Schellnhuber, H. J. (2008). Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences USA, 105, 17861793.Google Scholar
Levermann, A., Clark, P., Marzeion, B., Milne, G., Polllard, D., Radic, V., Robinson, A. (2013). The multimillenial sea level commitment of global warming. Proceedings of the National Academy of Sciences USA, 110, 3, 1374513750.Google Scholar
Levine, A. F. Z., McPhaden, M. J., Frierson, D. M. W. (2017) The impact of the AMO on multidecadal ENSO variability. Geophysical Research Letters, doi:10.1002/2017GL072524.Google Scholar
Li, G., Xie, S.-P. (2014), Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. Journal of Climate, 27, 17651780.Google Scholar
Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., Christl, M. (2009). Does sedimentary231Pa/230Th from the Bermuda rise monitor past Atlantic meridional overturning circulation? Geophysical Research Letters, 36, L12601.Google Scholar
Liu, W., Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27(2), 969975.Google Scholar
Liu, Y., Hallberg, R., Sergienko, O., Samuels, B. L., Harrison, M., Oppenheimer, M. (2018). Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations. Climate Dynamics, doi:10.1007/s00382–017-3980-7.Google Scholar
Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M., Stammer, D. (2012). Rapid barotropic sea level rise from ice sheet melting. Journal of Geophysical Research, 117, C06003, doi:10.1029/2011JC007733.Google Scholar
Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., Femke de Jong, M., De Steur, L., DeYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Heimbach, P., Holliday, N. P., Houpert, L., Inall, M. E., Johns, W. E., Johnson, H. L., Karstensen, J., Li, F., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Myers, P. G., Pickart, R. S., Pillar, H. R., Straneo, F., Thierry, V., Weller, R. A., Williams, R. G., Wilson, C., Yang, J., Zhao, J., Zika, J. D. (2017). Overturning in the Subpolar North Atlantic program: A new international ocean observing system. Bulletin of the American Meteorological Society, 98(4), 737752.Google Scholar
Lu, Z., Liu, Z., Zhu, J., Cobb, K. M. (2018). A review of paleo El Niño-Southern Oscillation. Atmosphere, 9, 130, doi:10.3390/atmos9040130.Google Scholar
Lumpkin, R., Speer, K. (2007). Global ocean meridional overturning. Journal of Physical Oceanography, 37, 25502562.Google Scholar
Lund, D., Lynch-Stieglitz, J., Curry, W. (2006). Gulf Stream density structure and transport during the past millennium. Nature, 444(7119), 601604Google Scholar
Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83104.CrossRefGoogle ScholarPubMed
Llovel, W., Becker, M., Cazenave, A., Crétaux, J. F., Ramillien, G. (2010). Global land water storage from GRACE over 2002–2009; Inference on sea level. Comptes Rendues Geosciences, 342, 179188, doi:10.1016/j.crte.2009.12.004.Google Scholar
McGregor, S., Timmermann, A.,  Stuecker, M. F., England, M. H.Merrifield, M., Jin, F.-F.,  Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888892.Google Scholar
Maier, E., Zhang, X., Abelmann, A., Gersonde, R., Mulitza, S., Werner, M., Méheust, M., Ren, J., Chapiglin, B., Meyer, H., Stein, R., Tiedemann, R., Lohmann, G. (2018). North Pacific freshwater events linked to changes in glacial ocean circulation. Nature, 559(7713), 241245.CrossRefGoogle ScholarPubMed
Manabe, S., Stouffer, R. J. (1993). Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system, Nature, 364, 215218.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 10691079.Google Scholar
Mantua, N. J., Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58, 3544.Google Scholar
Marcos, M., Marzeion, B., Dangendorf, S., Slangen, A., Palanisaly, H., Fenoglio-Marc, L. (2017). Internal variability versus anthropogenic forcing on sea level and components. Surveys in Geophysics, 28, 329348, doi:10.1007/s10712–016-9373-3.Google Scholar
Marshall, J., Speer, K. (2012). Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5, 171180.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, J., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., Timmermann, A. (2013). Information from paleoclimate archives. In Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 383464.Google Scholar
McCarthy, G. D., Haigh, I. D., Hirschi, J. J. M., Grist, J. P., Smeed, D. A. (2015). Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521(7553), 508510.Google Scholar
McManus, J., Francois, R., Gherardi, J., Keigwin, L., Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate change. Nature, 428, 834837.Google Scholar
Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., Latif, M., Le Treut, L., Nagai, T. Neelin, J. D., Philander, S. G. H., Polcher, J., Schopf, P. S., Stockdale, T., Suarez, M. J., Terray, L., Thual, O., Tribbia, J. J. (1995). The seasonal cycle over the Tropical Pacific in General Circulation Models. Monthly Weather Review, 123, 28252838.Google Scholar
Mecking, J., Drijfhout, S., Jackson, L., Graham, T. (2016). Stable AMOC off state in an eddy-permitting coupled climate model. Climate Dynamics, 47, 7-8, 24552470.Google Scholar
Meehl, G. A., Washington, W. M. (1996). El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 5660.Google Scholar
Meehl, G. A., Hu, A. (2006). Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. Journal of Climate, 19, 16051623.Google Scholar
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., Zhao, Z.-C. (2007). Global climate projections. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 747846.Google Scholar
Meehl, G. A., Arblaster, J. M., Strand, W. G. (1998). Global scale decadal climate variability. Geophysical Research Letters, 25, 39833986.Google Scholar
Meehl, G. A., Hu, A., Santer, B. D. (2009). The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. Journal of Climate, 22, 780792.Google Scholar
Meehl, G. A., Arblaster, J. M., Fasullo, G. T., Hu, A., Trenberth, K. E. (2011). Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360364.Google Scholar
Meehl, G. A., Teng, H. (2012). Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophysical Research Letters, 39, doi:10.1029/2012GL053423.Google Scholar
Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J., Trenberth, K. E. (2013). Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. Journal of Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.Google Scholar
Meehl, G. A., Teng, H., Arblaster, J. M. (2014). Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, doi:10.1038/NCLIMATE2357.Google Scholar
Meehl, G. A., Teng, H. (2014a). CMIP5 multi‐model hindcasts for the mid‐1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophysical Research Letters, 39, doi:10.1029/2012GL053423.Google Scholar
Meehl, G. A., Teng, H. (2014b). Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophysical Research Letters, 41, doi:10.1002/2014GL061778.Google Scholar
Meehl, G. A., Hu, A., Santer, B. D., Xie, S.-P. (2016a). Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Climate Change, 6, doi:10.1038/nclimate3107.Google Scholar
Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. Y., Teng, H. (2016b). Antarctic sea ice expansion between 2000–2014 driven by tropical Pacific decadal climate variability. Nature Geoscience, doi:10.1038/NGEO2751.CrossRefGoogle Scholar
Meehl, G. A., Hu, A., Teng, H. (2016c). Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nature Communications, 7, doi:10.1038/NCOMMS11718.Google Scholar
Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M., Bitz, C. M. (2018). Tropical decadal variability and the rate of Arctic sea ice retreat. Geophysical Research Letters, doi:10.1029/2018GL079989.Google Scholar
Meehl, G. A., Arblaster, J. M., Chung, C. T. Y., Holland, M. M., DuVivier, A., Thompson, L., Yang, D., Bitz, C. M. (2019). Recent sudden Antarctic sea ice retreat caused by connections to the tropics and sustained ocean changes around Antarctica. Nature Communications, doi:10.1038/s41467–018-07865-9.Google Scholar
Meinen, C. S., Speich, S., Perez, R. C., Dong, S., Piola, A. R., Garzoli, S. L., Baringer, M. O., Gladyshev, S., Campos, E. J. D. (2013). Temporal variability of the meridional overturning circulation at 34.5 S: Results from two pilot boundary arrays in the South Atlantic. Journal of Geophysical Research: Oceans, 118(12), 64616478.Google Scholar
Mochizuki, T., et al. (2010). Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proceedings of the National Academy of Sciences, 107, 18331837.Google Scholar
Moffa-Sanchez, P., Hall, I. R., Thornalley, D. J., Barker, S., Stewart, C. (2015). Changes in the strength of the Nordic Seas Overflows over the past 3000 years. Quaternary Science Reviews, 123, 134143.Google Scholar
Mohino, E., Losada, T. (2015). Impacts of the Atlantic equatorial mode in a warmer climate. Climate Dynamics, 45, 22552271.Google Scholar
Munk, W., Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research I, 1977–2010.Google Scholar
Nerem, R. S., Beckley, B. D., Fasullo, J., Hamlington, B. D., Masters, D., Mitchum, G. T. (2018a). Climate change driven accelerated sea level rise detected in The Altimeter Era. Proceedings of the National Academy of Sciences, 115, 20222025, doi:10.1073/pnas.1717312115.Google Scholar
Nerem, R. S., Chambers, D. P., Choe, C., Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33 (Suppl. 1): 435446, doi:10.1080/01490419.2010.491031.Google Scholar
Nerem, S., Ablain, M., Cazenave, A., Church, J., Leuliette, E. (2018b). A 25-year long satellite altimetry-based global mean sea level record; Closure of the sea level budget & missing components. In Stammer, D. and Cazenave, A. (eds.), Satellite Altimetry over Oceans and Land Surfaces. New York, NY: CRC Press.Google Scholar
Newell, R. E., Weare, B. C. (1976). Factors governing tropospheric mean temperatures, Science, 194, 14131414.Google Scholar
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., Scott, J. D., Smith, , C. A. (2016). The Pacific decadal oscillation, revisited. Journal of Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1Google Scholar
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T. L., Pattyn, F., van de Wal, R. S. W. (2013). Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497(7448), 235238.Google Scholar
Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W., Gregory, J., Abe-Ouchi, A., Shepherd, A. (2016). Ice sheet model intercomparison project (ISMIP6) contribution to CMIP6. Geosciences Model Development, 9(12), 45214545.Google Scholar
Olson, R., An, S. I., Fan, Y., Evans, J. P., Caesar, L. (2018). North Atlantic observations sharpen meridional overturning projections. Climate Dynamics, 50(11–12), 41714188.Google Scholar
Ortega, P., Robson, J., Moffa-Sanchez, P., Thornalley, D., Swingedouw, D. (2017). A last millennium perspective on North Atlantic variability: Exploiting synergies between models and proxy data. Past Global Changes Magazine, 25(1), 6167.Google Scholar
Palanisamy, H., Meyssignac, B., Cazenave, A., Delcroix, T. (2015b). Is the anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environmental Research Letters, 10, 124010, doi:10.1088/1748-9326/10/12/124010.Google Scholar
Palanisamy, H., Cazenave, A., Delcroix, T., Meyssignac, B. (2015a). Spatial trend patterns in Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability. Ocean Dynamics, doi:10.1007/s10236–014-0805-7.Google Scholar
Peltier, W. R., Vettoretti, G. (2014). Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41(20), 73067313.Google Scholar
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111149.Google Scholar
Peterson, L. C., Haug, G. H., Hughen, K. A., Röhl, U. (2000). Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290(5498), 19471951.Google Scholar
Philip, S, van Oldenburg, G. J. (2006). Shifts in ENSO coupling processes under global warming. Geophysical Research Letters, 33, L11704.Google Scholar
Piecuch, C. G., Ponte, R. M. (2014). Mechanisms of global mean steric sea level change. Journal of Climate, doi:10.1175/JCLI-D-13-00373.1.Google Scholar
Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., Fairbanks, R. G., Zylberberg, D. R. (2008). Oscillating glacial northern and southern deep water formation from combined neodymium and carbon isotopes. Earth and Planetary Sciences Letters, 272, 394405.Google Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R., Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396.Google Scholar
Power, S., Casey, , Folland, T., Colman, C., Mehta, A., V. (1999). Interdecadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15(5), 319324.Google Scholar
Purich, A., England, M. H., Cai, W., Chikamoto, Y., Timmermann, A., Fyfe, J. C., Frankcombe, L., Meehl, G. A., Arblaster, J. M. (2016). Tropical Pacific SST drivers of recent Antarctic sea ice trends. Journal of Climate, 29, 89318948, doi:10.1175/JCLI-D-0440.1.Google Scholar
Purkey, S. G., Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate, 23, 63366351.Google Scholar
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475480.CrossRefGoogle Scholar
Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12(12), 799811.Google Scholar
Rahmstorf, S. (2000). The thermohaline ocean circulation: A system with dangerous thresholds? Climatic Change, 46, 247256.Google Scholar
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, doi:10.1029/2005GL023655.Google Scholar
Reintges, A., Martin, T., Latif, M., Keenlyside, N. S. (2017). Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49(5–6), 14951511.Google Scholar
Richter, I., Xie, S.-P., Behera, S. K., Doi, T., Masumoto, Y. (2014). Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dynamics, 42, 171188Google Scholar
Roberts, N., Piotrowski, A., McManus, J., Keigwin, L. (2010). Synchronous deglacial overturning and water mass source changes. Science, 327, 7578.Google Scholar
Robson, J., Ortega, P., Sutton, R. (2016). A reversal of climatic trends in the North Atlantic since 2005. Nature Geosciences, 9, 513517.Google Scholar
Roemmich, D., Church, J., Gilson, J., Monselesan, D., Wutton, P., Wijffels, S. (2015). Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5, 240245, doi:10.1038/nclimate2513.Google Scholar
Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S., Delworth, T., Danabasoglu, G. (2017). Assessing the climate impacts of the observed Atlantic Multidecadal Variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. Journal of Climate, 30, 27852810, doi:10.1175/JCLI-D-16-0127.1.Google Scholar
Saba, V. S., Griffies, S. M., Anderson, W. G., Winton, M., Alexander, M. A., Delworth, T. L., Hare, J. A., Harrison, M. J., Rosati, A., Vecchi, G. A, Zhang, R. (2016). Enhanced warming of the Northwest Atlantic Ocean under climate change. Journal of Geophysical Research: Oceans, 121(1), 118132.CrossRefGoogle Scholar
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A., Fyfe, J. C., Jason, N. S., Cole, N. S., Nazarenko, L., Taylor, K. E., Wentz, F. J. (2014). Volcanic contributions to decadal changes in tropospheric temperature. Nature Geoscience, 7, 185189.Google Scholar
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low-latitude biological productivity, Nature, 427, 5660.Google Scholar
Schleussner, C. F., Levermann, A., Meinshausen, M. (2014). Probabilistic projections of the Atlantic overturning. Climatic Change, 127(3–4), 579586.Google Scholar
Schmittner, A., Latif, M., Schneider, B. (2005). Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophysical Research Letters, 32(23), L23710, doi:10.1029/2005GL024368.Google Scholar
Schmitz, W. J. (1995). On the interbasin-scale thermohaline circulation. Reviews of Geophysics, 33, 151173, doi:10.1029/95RG00879.Google Scholar
Seager, R., Murtugudde, R. (1997). Ocean dynamics, thermocline adjustment, and regulation of tropical SST. Journal of Climate, 10, 521534.Google Scholar
Slangen, A. B. A., Adloff, F., Jevreheva, S., Leclercq, P. W., Marzeion, B., Wada, Y., Winkelman, R. (2017). A review of recent updates of sea level projections at global and regional scales. Surveys in Geophysics, 28, 393414, doi:10.1007/s10712–016-9374-2.Google Scholar
Sloyan, B. M., Rintoul, S. R. (2001). Circulation, renewal, and modification of Antarctic mode and intermediate water. Journal of Physical Oceanography, 31, 10051030.Google Scholar
Sloyan, B. M., Johnson, G. C., Kessler, W. S. (2003). The Pacific cold tongue: A pathway for interhemispheric exchange. Journal of Physical Oceanography, 33, 10271043.Google Scholar
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., McCarthy, , G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45(3), 15271533.Google Scholar
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., Bryden, H. L. (2014). Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Science, 10, 2938.Google Scholar
Spada, G. (2017). Glacial isostatic adjustment and contemporary sea level rise: An overview. Surveys in Geophysics 38(1), 153185.Google Scholar
Speer, K., Rintoul, S. R., Sloyan, B. (2000). The diabatic Deacon cell. Journal of Physical Oceanography, 30, 32123222.Google Scholar
Spence, P., Saenko, O. A., Sijp, W., England, M. H. (2012) North Atlantic climate response to Lake Agassiz drainage at coarse and ocean Eddy-permitting resolutions. Journal of Climate, 26(8), 26512667. doi:10.1175/jcli-d-11-00683.1.Google Scholar
Srokosz, M. A., Bryden, H. L. (2015). Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science, 348, 1255575.Google Scholar
Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. Journal of Geophysical Research, 113, C06022, doi:10.1029/2006JC004079.Google Scholar
Stammer, D., Agarwal, N., Hermann, P., Köhl, A., Mechoso, C. (2011) Response of a coupled ocean-atmosphere model to Greenland ice melting. Surveys of Geophysics, 32, 621642, doi:10.1007/s10712-011-9142-2.Google Scholar
Stammer, D., Cazenave, A., Ponte, R., Tamisiea, M. (2013). Contemporary regional sea level changes. Annual Review Marine Sciences, 5, 2146.Google Scholar
Stammer, D., Cazenave, A. (eds.) (2018). Satellite Altimetry Over Oceans and Land Surfaces. New York: CRC Press.Google Scholar
Stevenson, S. L. (2012). Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophysical Research Letters, 39, L17703.Google Scholar
Stocker, T. F., Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18(4), doi:10.1029/2003PA000920.Google Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13(2), 224230.Google Scholar
Stouffer, R., Yin, J., Gregory, , , J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J, Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G., Weber, S. L. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19(8), 13651387Google Scholar
Su, J., Zhang, R., Wang, H. (2017). Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Science Reports, 7, 43735, doi:10.1038/srep43735.Google Scholar
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Roethlisberger, R. (2008). A 60,000-year Greenland stratigraphic ice core chronology. Climate of the Past, 4(1), 4757.Google Scholar
Swingedouw, D., Rodehacke, C. B., Olsen, S. M., Menary, M., Gao, Y. Q., Mikolajewicz, U., Mignot, J. (2015). On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: A multi-model assessment. Climate Dynamics, 44(11–12), 32613279, doi:10.1007/s00382-014-2270-x.Google Scholar
Swingedouw, D. (2013). Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Climate Dynamics, 41(3–4), 695720.Google Scholar
Talley, L. D. (2008). Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography, 78, 257303.Google Scholar
Talley, L. D. (2013). Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26(1), 8097, doi:10.5670/oceanog.2013.07.Google Scholar
Tamisiea, M. E., Mitrovica, J. X. (2011). The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography, 24, 2, 2439.Google Scholar
Taschetto, A. S., Rodríguez, R., Meehl, R., Mcgregor, G. A., England, S., M. H. (2015). How sensitive are the Pacific-North Atlantic teleconnections to the position and intensity of El Niño-related warming. Climate Dynamics, doi:10.1007/s00382–015-2679-x.Google Scholar
Thoma, M., Greatbatch, R. J., Kadow, C., Gerdes, R. (2015). Decadal hindcasts initialized using observed surface wind stress: Evaluation and prediction out to 2024. Geophysical Research Letters, 42, 64546461, doi:10.1002/2015GL064833.Google Scholar
Thompson, P. R., Merrifield, M. A. (2014). A unique asymmetry in the pattern of recent sea level change. Geophysical Research Letters, 41, 76757683.Google Scholar
Thornalley, D. J., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T., Yashayaev, I., Keigwin, L. D. (2018). Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700), 227232.Google Scholar
Timmermann, A., McGregor, S., Jin, F.-F. (2010). Wind effects on past and future regional sea level trends in the southern Indo-Pacific. Journal of Climate, 23(16), 44294437, doi:10.1175/2010JCLI3519.1.Google Scholar
Toggweiler, J. R., Samuels, B. (1995). Effect of Drake Passage on the global thermohaline circulation. Deep Sea Research I, 42(4), 477500.Google Scholar
Toggweiler, J. R., Russell, J. L. (2008). Ocean circulation in a warming climate. Nature, 451, 286288, doi:10.1038/nature06590.Google Scholar
Toggweiler, J. R., Samuels, B. (1998). On the ocean’s large-scale circulation near the limit of no vertical mixing. Journal of Physical Oceanography, 28, 18321852.Google Scholar
Toggweiler, J. R., Dixon, K., Broecker, W. S. (1991). The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research, 96, 2046720497.Google Scholar
Trenberth, K. E., Hurrell, J. W. (1994). Decadal atmosphere–ocean variations in the Pacific. Climate Dynamics, 9, 303319.Google Scholar
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., Worley, S. (2002). Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research, 107, 40654081, doi:10.1029/2000JD000298.Google Scholar
Trimble, S. W. (1997). Streambank fish–shelter structures help stabilize tributary streams in Wisconsin. Environmental Geology, 32(3), 230234.Google Scholar
Valdes, P. (2011). Built for stability. Nature Geoscience, 4(7), 414416.Google Scholar
van den Berk, J., Drijfhout, S. S. (2014). A realistic freshwater forcing protocol for ocean-coupled climate models. Ocean Modeling, 81, 3648, doi:10.1016/j.ocemod.2014.07.003.Google Scholar
van den Berk, J., Drijfhout, S. S., Hazeleger, W. (2018). Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge. Climate Dynamics, 52, 52495267.Google Scholar
Van den Broeke, M. R., Enderlin, E. M., Howat, I. Munneke, M., Noël, P. K., van de Berg, B. P. Y., van Meijgaard, W. J., Wouters, E., B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5), 19331946.Google Scholar
Vellinga, M., Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54(3), 251267.Google Scholar
Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., van den Broeke, M. R. (2015). Coupled simulations of Greenland Ice Sheet and climate change up to AD 2300. Geophysical Research Letters, 42(10), 39273935.Google Scholar
Voelker, A. H. L., Participants, Workshop. (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: A database. Quaternary Science Review, 21, 11851212Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., Labracherie, M. (2002). Sea level and deepwater temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Review, 21, 295305.Google Scholar
Wanamaker, A. D. Jr, Butler, P. G., Course, J. D., Heinemeier, J., Eiríksson, J., Knudsen, K. L., Richardson, C. A. (2012) Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Communications, 3, 899.Google Scholar
Wang, Y., Luo, Y., Lu, J., Liu, F. (2019). Changes in ENSO amplitude under climate warming and cooling. Climate Dynamics, 52, 18711882.Google Scholar
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E.-P., Abhik, S., Van Rensch, P. (2019). Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communications, doi:10.1038/s41467-018-07689-7.Google Scholar
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., Dorale, J. A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 23452348.Google Scholar
Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon‐Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709, doi:10.1029/2012GL053763.Google Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U., Mitrovica, J. X. (2003). Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science, 299(5613), 17091713.Google Scholar
Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A., Kliphuis, M. A. (2012). Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophysical Research Letters, 39(9), L09606. doi:10.1029/2012gl051611.Google Scholar
Wiegand, K. N., Brune, S., Baehr, J. (2019). Predictability of multiyear trends of the Pacific Decadal Oscillation in an MPI-ESM hindcast ensemble. Geophysical Research Letters, 46, 318325. doi:10.1029/2018GL080661.Google Scholar
Wieners, C. E., de Ruijter, W. P. M., Dijkstra, H. A. (2017). The influence of the Indian Ocean on ENSO stability and flavor. Journal of Climate, 30, 26012620.Google Scholar
Winton, M., Anderson, W. G., Delworth, T. L., Griffies, S. M., Rosati, A. (2014). Has coarse ocean resolution biased simulations of transient climate sensitivity? Geophysical Research Letters, 41, 85228529.Google Scholar
Wittenberg, A. T. (2009). Are historical records sufficient to constrain ENSO simulations? Geophysical Research Letters, 36, L14709, doi:10.1029/ 2009GL038710.Google Scholar
World Climate Research Programme/WCRP Sea Level Budget Group. (2018). Global sea level budget (1993-present). Earth System Science Data, 10, 15511590, doi:10.5194/essd-10-1551-2018.Google Scholar
Xie, S.-P., Kosaka, Y. (2017). What caused the global surface warming hiatus of 1998–2013? Current Climate Change Reports, 3, 128140, doi:10.1007/s40641–017-0063-0.Google Scholar
Yeager, S. G., Robson, J. J. (2017). Recent progress in understanding and predicting decadal climate variability. Current Climate Change Reports, 3, 112127, doi:10.1007/s40641–017-0064-z.Google Scholar
Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C., Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., Lovenduski, N. S. (2018). Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the community Earth system model. Bulletin of the American Meteorological Society, 99, 18671886, doi:10.1175/BAMS-D-17-0098.1.Google Scholar
Zhang, Q., Guan, Y., Yang, H. (2008). ENSO amplitude change in observation and coupled models. Advances in Atmospheric Sciences, 25(3), 361366.Google Scholar
Zhang, X., Church, J. A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophysical Research Letters, 39, doi:10.1029/2012GL053240.Google Scholar
Zhang, L., Delworth, T. L. (2016). Simulated response of the Pacific Decadal Oscillation to climate change. Journal of Climate, 29, 59996018, doi:10.1175/JCLI-D-15-0690.1.Google Scholar
Zhang, Y., Wallace, J. M., Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10, 10041020.Google Scholar
Zhen, X. T., Xie, S.-P., Lv, L.-H., Zhou, Z. Q. (2016). Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate, 29, 72567269.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×