Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-04T12:36:28.728Z Has data issue: false hasContentIssue false

7 - Geomorphic and Chronological Assessment of Aggradation Patterns on the Río Grande (Guapay) Megafan, Eastern Bolivia

from Part II - Regional Studies

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

A fan-wide assessment of modern depositional processes on the Río Grande (Guapay) megafan, coupled with the analysis of its Holocene evolution, reveals that most of the 36,000 km2 megafan surface has been subject to sedimentation processes and/or reworking in the last 6–7 ka. Today, depositional dynamics as inferred from multi-date satellite imagery are mostly restricted to a ~ 2,000 km2 depozone on the distal megafan, and are characterised by avulsive fluvial environments. Combining remote sensing with field observations and geochronology at key locations has allowed to capture links between the dynamics of depositional processes and larger-scale landforms, documenting significant changes in the location of the depozone since ~ 4 ka. On shorter time scales, the human impact on these dynamic sedimentary processes is expressed by artificial levees and re-channelisation following crevasse splays. This is likely to have prevented a number of channel avulsions over the last decades and implies that the use of modern avulsion frequencies and depositional rates alone as analogues for understanding Holocene megafan evolution is of limited use. Instead, our observations emphasise the increasing vulnerability to future avulsion events within an intrinsically unstable fluvial environment that has seen rapid deforestation and population growth in recent time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, R., Maurice-Bourgoin, L., Dunne, T., et al. (2003). Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern Oscillation. Nature, 425, 493497.CrossRefGoogle ScholarPubMed
Agrar- und Hydrotechnik GmbH (1973). Proyecto de desarrollo agroindustrial Abapo-Izozog – Perforación de Pozos. Essen: AHT GROUP AG.Google Scholar
Agrar- und Hydrotechnik GmbH (1974a). Proyecto de desarrollo agroindustrial Abapo-Izozog – Hidrología. Essen: AHT GROUP AG.Google Scholar
Agrar- und Hydrotechnik GmbH (1974b). Proyecto de desarrollo agroindustrial Abapo-Izozog – Pedología. Tomo I - Sector Oeste. Essen: AHT GROUP AG.Google Scholar
Ashworth, P. J., Best, J. L. and Jones, M. A. (2007). The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology, 54, 497513.CrossRefGoogle Scholar
Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70, 357371.CrossRefGoogle Scholar
Assine, M. L., Macedo, H. A., Stevaux, J. C., et al. (2016). Avulsive rivers in the hydrology of the Pantanal wetland. In Bergier, I. and Assine, L. M., eds., Dynamics of the Pantanal Wetland in South America. Springer International Publishing, Cham, 83110.Google Scholar
Baby, P., Herail, G., Salinas, R. and Sempere, T. (1992). Geometric and kinematic evolution of passive roof duplexes deduced from cross section balancing: example from the foreland thrust system of the southern Bolivian subandean zon. Tectonics, 11, 523536.Google Scholar
Barboza, F., Geyh, M. A., Hoffmann, R., et al. (2000). Soil formation and Quaternary geology of the Paraguayan Chaco - Thematic mapping. Zeitschrift für angewandte Geologie, Sonderheft 1, 4953.Google Scholar
Barnes, J. B. and Heins, W. A. (2009). Plio-Quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Research, 21, 91109.Google Scholar
Bernal, C., Christophoul, F., Darrozes, J., et al. (2013). Crevassing and capture by floodplain drains as a cause of partial avulsion and anastomosis (lower Rio Pastaza, Peru). Journal of South American Earth Sciences, 44, 6374.Google Scholar
Bernal, C., Christophoul, F., Darrozes, J., et al. (2010). Late Glacial and Holocene avulsions of the Rio Pastaza Megafan (Ecuador–Peru): frequency and controlling factors. International Journal of Earth Sciences, 100, 17591782.Google Scholar
Berri, G. J. and Inzunza, J. B. (1993). The effect of the low-level jet on the poleward water vapour transport in the central region of South America. Atmospheric Environment, 27 A, 335341.Google Scholar
Bridge, J. (2006). Fluvial facies models: recent developments. In Posamentier, H. W. and Walker, R. G., eds., Facies Models Revisited. SEPM Society for Sedimentary Geology, Tulsa, 85170.Google Scholar
Bridge, J. S. (2003). Rivers and Floodplains: Forms, Processes, and Sedimentary Record, Blackwell Publishing, Hoboken (NJ).Google Scholar
Brierley, G. J. (1997). What is a fluvial levee? Sedimentary Geology, 114, 19.Google Scholar
Bristow, C. S. (1999). Gradual avulsion, river metamorphosis and reworking by underfit streams: a modern example from the Brahmaputra River in Bangladesh and a possible ancient example in the Spanish Pyrenees. In Smith, N. D and Rogers, J, eds., Fluvial Sedimentology IV. Blackwell, Oxford, 221230.CrossRefGoogle Scholar
Buehler, H. A., Weissmann, G. S., Scuderi, L. A., and Hartley, A. J. (2011). Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81, 630640.CrossRefGoogle Scholar
Caglar, B., Becek, K., Mekik, C., and Ozendi, M. (2018). On the vertical accuracy of the ALOS World 3D-30 m digital elevation model. Remote sensing letters, 9, 607615.CrossRefGoogle Scholar
CaryGlobal SRL (2008). Estudio Hidrologico-Hidraulico de la Cuenca Baja del Río Grande. CaryGlobal SRL, Santa Cruz.Google Scholar
Chakraborty, T. and Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: implications for megafan building processes. Geomorphology, 115, 252266.CrossRefGoogle Scholar
Chakraborty, T., Kar, R., Ghosh, P., and Basu, S. (2010). Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227, 143160.Google Scholar
Church, M. and Mark, D. M. (1980). On size and scale in geomorphology. Progress in Physical Geography, 4, 342390.CrossRefGoogle Scholar
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., and Eli, D. (2014). Sediment supply as a driver of river evolution in the Amazon Basin. Nature Geoscience, 7, 899903.CrossRefGoogle Scholar
Corz, C. (2015). La Unesco declara Reserva de la Biosfera al Río Grande. La Razón, 10. 07. 2015.Google Scholar
Davidson, S. K., Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Scuderi, L. A. (2013). Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180–181, 8295.CrossRefGoogle Scholar
Decelles, P. G. and Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105123.Google Scholar
Diaz, J. (2010). Caracterización de la Cuenca Alta del Río Grande y Sequía en el Chaco Cruceño. Santa Cruz: Acción Contra el Hambre and Centro Andino Para La Gestión y Uso Del Agua.Google Scholar
Farr, T. G., Rosen, P. A., Caro, E., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004.CrossRefGoogle Scholar
Forsberg, B. R., Melack, J. M., Dunne, T., et al. (2017). The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 12, e0182254.CrossRefGoogle ScholarPubMed
Gerold, G. (1985). Untersuchungen zur Badlandentwicklung in den wechselfeuchten Waldgebieten Südboliviens. Geoökodynamik, 6, 3570.Google Scholar
Gerold, G. (1988). Die Bedeutung von Ariditätswandel und Vegetationsdegradation für die fluviale Morphodynamik in den Äusseren Tropen Boliviens. In Hagedorn, J. and Mensching, H. G, eds., Aktuelle Morphodynamik und Morphogenese in den semiariden Randtropen und Subtropen. Vandenhoeck and Ruprecht, Göttingen, 277306.Google Scholar
Görsdorf, J. (2002). Radiocarbon datings from excavations near Pailón, Bolivia. Beiträge zur Allgemeinen und Vergleichenden Archäologie, 22, 227229.Google Scholar
Gerold, G. (2004). Soil: The foundation of biodiversity. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Santa Cruz: Editorial FAN, 1731.Google Scholar
Guyot, J. L., Bourges, J., and Cortez, J. (1994). Sediment transport in the Río Grande, an Andean river of the Bolivian Amazon drainage basin. Variability in Stream Erosion and Sediment Transport. IAHS Publications, 223231.Google Scholar
Hanagarth, W. (1993). Acerca de la geoecología de las sabanas del Beni en el noreste de Bolivia, Instituto de Ecología, La Paz.Google Scholar
Hansen, M., Defries, R., Townshend, J. R., and Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 13311364.CrossRefGoogle Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Heyvaert, V. M. A. and Walstra, J. (2016). The role of long-term human impact on avulsion and fan development. Earth Surface Processes and Landforms, 41, 21372152.CrossRefGoogle Scholar
Horton, B. K. and DeCelles, P. G. (1997). The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895898.2.3.CO;2>CrossRefGoogle Scholar
Horton, B. K. and DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust belts. Basin Research, 13, 4363.Google Scholar
Ibisch, P. L., Beck, S. G., Gerkmann, B., and Carretero, A. (2004). Ecoregions and ecosystems. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Editorial FAN, Santa Cruz, 4788.Google Scholar
Insel, N., Ehlers, T. A., Schaller, M., et al. (2010). Spatial and temporal variability in denudation across the Bolivian Andes from multiple geochronometers. Geomorphology, 122, 6577.CrossRefGoogle Scholar
Iriondo, M. (1993). Geomorphology and late Quaternary of the Chaco (South America). Geomorphology, 7, 289303.Google Scholar
Isacks, B. L. (1988). Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research, 93, 32113231.Google Scholar
Jones, L. S. and Schumm, S. A. (1999). Causes of avulsion: an overview. In N. D. Smith and J. Rogers, eds., Fluvial Sedimentology IV. Blackwell, Oxford, 171178.Google Scholar
Killeen, T. J., Guerra, A., Calzada, M., et al. (2008). Total historical land-use change in Eastern Bolivia: Who, where, when, and how much? Ecology and Society, 13, 36.Google Scholar
Kober, F., Zeilinger, G., Hippe, K., et al. (2015). Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics, 657, 230244.Google Scholar
Köster, G. (1978). Santa Cruz de la Sierra (Bolivien): Entwicklung, Struktur und Funktion einer tropischen Tieflandstadt. RWTH, Aachen University, Dept. of Geography.Google Scholar
Kruck, W., Helms, F., Geyh, M. A., et al. (2011). Late Pleistocene-Holocene history of Chaco-Pampa sediments in Argentina and Paraguay. Eiszeitalter und Gegenwart / Quaternary Science Journal, 60, 188202.Google Scholar
Krüger, J.-P. (2006). Waldkonversion und Bodendegradation im tropischen Tiefland von Ostbolivien. GIS-gestützte Analyse zur Regionalisierung der Bodendegradation im Department Santa Cruz. Georg-August-Universität zu Göttingen.Google Scholar
Latrubesse, E. M. (2015). Large rivers, megafans and other Quaternary avulsive fluvial systems: a potential “who’s who” in the geological record. Earth-Science Reviews, 146, 130.Google Scholar
Latrubesse, E. M. and Restrepo, J. D. (2014). Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216, 225233.Google Scholar
Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., et al. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 7588.CrossRefGoogle Scholar
Leeder, M. R. and Mack, G. H. (2001). Lateral erosion (‘toe-cutting’) of alluvial fans by axial rivers: Implications for basin analysis and architecture. Journal of the Geological Society, London, 158, 885893.CrossRefGoogle Scholar
Lombardo, U., May, J.-H., and Veit, H. (2012). Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. The Holocene, 22, 10351045.Google Scholar
Lombardo, U., Denier, S., May, J.-H., Rodrigues, L., and Veit, H. (2013a). Human–environment interactions in pre-Columbian Amazonia: The case of the Llanos de Moxos, Bolivia. Quaternary International, 312, 109119.Google Scholar
Lombardo, U., Szabo, K., Capriles, J. M., et al. (2013b). Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens. PLoS ONE, 8, e72746e72746.Google Scholar
Lombardo, U. (2016). Alluvial plain dynamics in the southern Amazonian foreland basin. Earth System Dynamics Discussions, 7, 453467.CrossRefGoogle Scholar
Lombardo, U. (2017). River logjams cause frequent large-scale forest die-off events in Southwestern Amazonia. Earth System Dynamics Discussions, 2017, 124.Google Scholar
Martín-Vide, J. P., Amarilla, M., and Zárate, F. J. (2014). Collapse of the Pilcomayo River. Geomorphology, 205, 155163.Google Scholar
May, J.-H. (2006). Geomorphological indicators of large-scale climatic changes in the Eastern Bolivian lowlands. Geographica Helvetica, 61, 120134.Google Scholar
May, J.-H., Zech, R., and Veit, H. (2008). Late Quaternary paleosol-sediment-sequences and landscape evolution along the Andean piedmont, Bolivian Chaco. Geomorphology, 98, 3454.Google Scholar
May, J.-H. (2011). The Río Parapetí – Holocene megafan dynamics and wetland formation in the southernmost Amazon basin. Geographica Helvetica, 66, 193201.Google Scholar
May, J.-H. (2013). Dunes and dunefields in the Bolivian Chaco as potential records of environmental change. Aeolian Research, 10, 89102.CrossRefGoogle Scholar
May, J.-H., Plotzki, A., Rodrigues, L., Preusser, F., and Veit, H. (2015). Holocene floodplain soils along the Río Mamoré, northern Bolivia, and their implications for understanding inundation and depositional patterns in seasonal wetland settings. Sedimentary Geology, 330, 7489.CrossRefGoogle Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Heidelberg, 582 pp.Google Scholar
Minchin, J. B. (1881). Eastern Bolivia and the Gran Chaco. Proceedings of the Royal Geographical Society and Monthly Record of Geography, New Monthly Series, 3, 401420.Google Scholar
Morozova, G. and Smith, N. D. (2000). Holocene avulsion styles and sedimentation patterns of the Saskatchewan River, Cumberland Marshes, Canada. Sedimentary Geology, 130, 81105.Google Scholar
Müller, R., Müller, D., Schierhorn, F., and Gerold, G. (2011). Spatiotemporal modeling of the expansion of mechanized agriculture in the Bolivian lowland forests. Applied Geography, 31, 631640.Google Scholar
Navarro, G. and Maldonado, M. (2002). Geografía Ecológica de Bolivia: Vegetación y Ambientes Acuaticos, Santa Cruz: Centro de Ecología Simón I. Patiño.Google Scholar
Perez-Arlucea, M. and Smith, N. D. (1999). Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research, 69, 6273.Google Scholar
Plotzki, A., May, J.-H., Preusser, F., and Veit, H. (2013). Geomorphological and sedimentary evidence for late Pleistocene to Holocene hydrological change along the Río Mamoré, Bolivian Amazon. Journal of South American Earth Sciences, 47, 230242.Google Scholar
Plotzki, A., May, J. H., Preusser, F., et al. (2015). Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon. Catena, 127, 102–115.Google Scholar
Purinton, B. and Bookhagen, B. (2018). Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼2015) in the south-central Andes. Earth Surface Dynamics, 6, 971.Google Scholar
Rafiqpoor, D., Nowicki, C., Villarpardo, R., et al. (2004). Climate: the abiotic factor that most influences the distribution of biodiversity. In Ibisch, P. L and Mérida, G., eds., Biodiversity: The Richness of Bolivia. Santa Cruz: Editorial FAN, 3146.Google Scholar
Richards, K., Chandra, S., and Friend, P. (1993). Avulsive channel systems: characteristics and examples. In J. L. Best and C. W. Bristow, eds., Braided Rivers. Geological Society of London, Special Publication, 75, 195203.Google Scholar
Riveros, F. (2004). The Gran Chaco [Online]. FAO; Agricultural Department, Crop and Grassland Service. Available: www.fao.org/ag/AGP/AGPC/doc/Bulletin/GranChaco.htm [Accessed 15 January 2007].Google Scholar
Roca, O. (2016). Cuatro Ojos - El Histórico Puerto de Ingreso a la Amazonia. Available from: https://ovidioroca.wordpress.com/ [Accessed 21 February 2018].Google Scholar
Roca Salazar, R., Fernádez Ríos, D., and Gutiérrez Guillén, R. (2003). Sistema de Alerta Temprana contra las crecidas del Río Grande (SALTEM-RG). Gestión del Riesgo Prevención, Mitigación, Preparación. Bolivia. Federación de Asociaciones Municipales (FAM); Bolivia. Asociación de Municipios de Santa Cruz (AMDECRUZ); Alemania. Cooperación Técnica Alemana (GTZ). Proyecto Gestión Interinstitucional de Riesgos.Google Scholar
Röhringer, I. (2006). Holozäne Flussdynamik und Auensedimentation des Río Grande (Ostbolivien). Unpubl. Diploma Thesis, TU Dresden.Google Scholar
Santillan, J. and Makinano-Santillan, M. (2016). Vertical Accuracy Assessment of 30-M Resolution Alos, Aster, and SRTM Global DEMs Over Northeastern Mindanao, Philippines. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 149156.Google Scholar
Schneider, U., Becker, A., Finger, P., et al.. (2016). GPCC Full Data Reanalysis Version 7.0: Monthly Land-Surface Precipitation from Rain Gauges built on GTS based and Historic Data. In Research Data Archive at the National Center for Atmospheric Research - Computational and Information Systems Laboratory.Google Scholar
Servant, M., Fontes, J.-C., Rieu, M., and Saliège, J.-F. (1981). Phases climatiques arides holocènes dans le sud-ouest de l’Amazonie (Bolivie). Comptes Rendus de l’Académie des Sciences, Paris, Série II, 292, 12951297.Google Scholar
Shukla, U. K., Singh, I. B., Sharma, M., and Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144, 243262.Google Scholar
Sinha, R., Ahmad, J., Gaurav, K., and Morin, G. (2014). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133149.Google Scholar
Slingerland, R. L. and Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32, 257285.Google Scholar
Smith, N. D., Cross, T. A., Dufficiy, J. P., and Clough, S. R. (1989). Anatomy of an avulsion. Sedimentology, 36, 123.Google Scholar
Steininger, M. K., Tucker, C. J., Townshend, J. R. G., et al. (2001). Tropical deforestation in the Bolivian Amazon. Environmental Conservation, 28, 127134.Google Scholar
Stouthamer, E. (2001). Sedimentary products of avulsions in the Holocene Rhine–Meuse Delta, The Netherlands. Sedimentary Geology, 145, 7392.Google Scholar
Stouthamer, E. and Berendsen, H. J. A. (2001). Avulsion frequency, avulsion duration, and interavulsion period of Holocene channel belts in the Rhine-Meuse Delta, The Netherlands. Journal of Sedimentary Research, 71, 589598.CrossRefGoogle Scholar
Stouthamer, E. and Berendsen, H. J. A. (2007). Avulsion: the relative roles of autogenic and allogenic processes. Sedimentary Geology, 198, 309325.Google Scholar
Syvitski, J. P. M., Overeem, I., Brakenridge, G. R., and Hannon, M. (2012). Floods, floodplains, delta plains—a satellite imaging approach. Sedimentary Geology, 267–268, 114.Google Scholar
Tadono, T., Ishida, H., Oda, F., et al. (2014). Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 7176.Google Scholar
Uba, C. E., Strecker, M. R., and Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979982.CrossRefGoogle Scholar
Uba, E. C., Heubeck, C., and Hulka, C. (2006). Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia. Basin Research, 18, 145170.Google Scholar
Vera, C., Higgins, W., Amador, J., et al. (2006). Toward a unified view of the American monsoon systems. Journal of Climate, 19, 49775000.Google Scholar
Vicente-Serrano, S. M., El Kenawy, A., Azorin-Molina, C., et al. (2016). Average monthly and annual climate maps for Bolivia. Journal of Maps, 12, 295310.Google Scholar
Wachholtz, R. and Herold-Mergl, A. (2003). Amenaza y vulnerabilidad por cambio de cauce e inundación en la cuenca baja del Río Grande. GTZ, C. T. A., Santa Cruz, La Paz.Google Scholar
Weissmann, G., Hartley, A., Scuderi, L., et al. (2013). Prograding distributive fluvial systems: geomorphic models and ancient examples. In S. G. Driese and L. C. Nordt, eds., New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication, 104, 131147.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology, 38, 3942.Google Scholar
Wells, N. A. and Dorr, J. A. J. (1987). Shifting of the Kosi River, northern India. Geology, 15, 204207.Google Scholar
Werding, L. (1977a). Geomorphologie und rezente Sedimentation im Chaco Boreal, Bolivien. Giessener Geologische Schriften, 12, 429446.Google Scholar
Werding, L. (1977b). The Rio Grande ground-water basin, Chaco Boreal, Bolivia. Geologisches Jahrbuch, C 17, 1936.Google Scholar
Wilkinson, M. J., Marshall, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Sciences, 21, 151172.Google Scholar
Zani, H., Assine, M. L., and McGlue, M. M. (2012). Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology, 161–162, 8292.Google Scholar
Zhou, J. and Lau, K.-M. (1998). Does a monsoon climate exist over South America? Journal of Climate, 11, 10201040.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×