Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T14:31:05.574Z Has data issue: false hasContentIssue false

Part II - Protein Folding, Structure, Confirmation, and Dynamics

Published online by Cambridge University Press:  05 May 2022

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Raghu Kiran Appasani
Affiliation:
Psychiatrist, Neuroscientist, & Mental Health Advocate
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Single-Molecule Science
From Super-Resolution Microscopy to DNA Mapping and Diagnostics
, pp. 65 - 94
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ali, M. M. U., Roe, S. M., Vaughan, C. K., et al. (2006) Crystal Structure of an Hsp90–Nucleotide–p23/Sba1 Closed Chaperone Complex. Nature, 440(7087), 10131017.Google Scholar
Aubin-Tam, M.-E., Olivares, A., Sauer, R. T., Baker, T. A., and Lang, M. J. (2011) Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine, Cell, 145(2), 257267.Google Scholar
Baker, T. A. and Sauer, R. T. (2006) ATP-Dependent Proteases of Bacteria: Recognition Logic and Operating Principles, Trends in Biochemical Sciences, 31(12), 647653.Google Scholar
Bauer, D., Merz, D. R., Pelz, B., et al. (2015) Nucleotides Regulate the Mechanical Hierarchy between Subdomains of the Nucleotide Binding Domain of the Hsp70 Chaperone DnaK. Proceedings of the National Academy of Sciences, 112(33), 1038910394.Google Scholar
Bauer, D., Meinhold, S., Jakob, R. P., et al. (2018) A Folding Nucleus and Minimal ATP Binding Domain of Hsp70 Identified by Single-Molecule Force Spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 46664671.Google Scholar
Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J., and Lindquist, S. (1989). Hsp82 Is an Essential Protein That Is Required in Higher Concentrations for Growth of Cells at Higher Temperatures. Molecular and Cellular Biology, 9(9), 39193930.Google ScholarPubMed
Calloni, G., Chen, T., Schermann, S., et al. (2012). DnaK Functions as a Central Hub in the E. Coli Chaperone Network. Cell Reports, 1(3), 251264.Google Scholar
Camici, M., Allegrini, S., and Tozzi, M. G. (2018). Interplay between Adenylate Metabolizing Enzymes and AMP-Activated Protein Kinase. FEBS Journal, 285(18), 33373352.Google Scholar
Genevaux, P., Georgopoulos, C., and Kelley, W. L. (2007). The Hsp70 Chaperone Machines of Escherichia Coli: A Paradigm for the Repartition of Chaperone Functions. Molecular Microbiology, 66(4), 840857.Google Scholar
Georgopoulos, C. P., Lam, B., Lundquist-Heil, A., Rudolph, C. F., Yochem, J., and Feiss, M. (1979). Identification of the E. Coli dnaK (groPC756) Gene Product. MGG Molecular and General Genetics, 172(2), 143179.Google Scholar
Georgopoulos, C., Tilly, K., Drahos, D., and Hendrix, R. (1982). The B66.0 Protein of Escherichia Coli Is the Product of the dnaK+ Gene. Journal of Bacteriology, 149(3), 11751177.Google Scholar
Goodall, E. C. A., Robinson, A., Johnston, I. G., et al. (2018). The Essential Genome of Escherichia Coli K-12. mBio, 9(1), e02096e02117.Google Scholar
Hainzl, O., Lapina, M. C., Buchner, J., and Richter, K. (2009). The Charged Linker Region Is an Important Regulator of Hsp90 Function. Journal of Biological Chemistry, 284(34), 2255922567.CrossRefGoogle ScholarPubMed
Hessling, M., Richter, K., and Buchner, J. (2009). Dissection of the ATP-Induced Conformational Cycle of the Molecular Chaperone Hsp90. Nature Structural and Molecular Biology, 16(3), 287293.Google Scholar
Jahn, M., Rehn, A., Pelz, B., et al. (2014). The Charged Linker of the Molecular Chaperone Hsp90 Modulates Domain Contacts and Biological Function. Proceedings of the National Academy of Sciences, 111(50), 1788117886.CrossRefGoogle ScholarPubMed
Jahn, M., Buchner, J., Hugel, T., and Rief, M. (2016). Folding and Assembly of the Large Molecular Machine Hsp90 Studied in Single-Molecule Experiments. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 12321237.CrossRefGoogle ScholarPubMed
Jahn, M., Tych, K., Girstmair, H., et al. (2018). Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy. Structure, 26(1), 96105.Google Scholar
Jakob, U., Lilie, H., and Buchner, J. (1995). Transient Interactions of Hsp90 with Early Unfolding Intermediates of Citrate Synthase. Implications for Heat Shock in Vivo. Journal of Biological Chemistry, 270(13), 72887294.Google Scholar
Johnson, J. L. (2012). Evolution and Function of Diverse Hsp90 Homologs and Cochaperone Proteins. Biochimica et Biophysica Acta, 1823(3), 607613.CrossRefGoogle ScholarPubMed
Kerns, S. J., Agafonov, R. V., Cho, Y-J., et al. (2015) The Energy Landscape of Adenylate Kinase during Catalysis. Nature Structural and Molecular Biology, 22(2), 124131.Google Scholar
Kityk, R., Kopp, J., Sinning, I., and Mayer, M. P. (2012). Structure and Dynamics of the ATP-Bound Open Conformation of Hsp70 Chaperones. Molecular Cell, 48(6), 863874.CrossRefGoogle ScholarPubMed
Krukenberg, K. A., Street, T. O., Lavery, L. A., and Agard, D. A. (2011). Conformational Dynamics of the Molecular Chaperone Hsp90, Quarterly Reviews of Biophysics, 44(2), 229255.Google Scholar
Maillard, R., Chistol, G., Sen, M., et al. (2011) ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates, Cell, 145(3), 459469.CrossRefGoogle ScholarPubMed
Mandal, S. S., Merz, D. R., Buchsteiner, M., Dima, R. I., Rief, M., and Žoldák, G. (2017). Nanomechanics of the Substrate Binding Domain of Hsp70 Determine Its Allosteric ATP-Induced Conformational Change. Proceedings of the National Academy of Sciences, 114(23),60406045.CrossRefGoogle ScholarPubMed
Mashaghi, A., Kramer, G., Lamb, D. C., Mayer, M. P., and Tans, S. J. (2014) Chaperone Action at the Single-Molecule Level. Chemical Reviews, 114(1), 660676.CrossRefGoogle ScholarPubMed
Matsuura, S., Igarashi, M., Tanizawa, Y., et al. (1989) Human Adenylate Kinase Deficiency Associated with Hemolytic Anemia. A Single Base Substitution Affecting Solubility and Catalytic Activity of the Cytosolic Adenylate Kinase. Journal of Biological Chemistry, 264(17), 1014810155.Google Scholar
Mayer, M. P. and Kityk, R. (2015). Insights into the Molecular Mechanism of Allostery in Hsp70s. Frontiers in Molecular Biosciences, 2(58), 17.CrossRefGoogle ScholarPubMed
Mickler, M., Hessling, M., Ratzke, C., Buchner, J., and Hugel, T. (2009). The Large Conformational Changes of Hsp90 Are Only Weakly Coupled to ATP Hydrolysis. Nature Structural and Molecular Biology, 16(3), 281286.Google Scholar
Milo, R. and Phillips, R. (2015). Cell Biology by the Numbers. Garland Science, New York, NY.CrossRefGoogle Scholar
Nathan, D. F., Vos, M. H., and Lindquist, S. (1997). In Vivo Functions of the Saccharomyces Cerevisiae Hsp90 Chaperone. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 1294912956.Google Scholar
Neuwald, A. F., Aravind, L., Spouge, J. L., and Koonin, E. V. (1999). AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. Genome Research, 9(1), 2743.CrossRefGoogle ScholarPubMed
Olivares, A. O., Kotamarthi, H. C., Stein, B. J., Sauer, R. T., and Baker, T. A. and (2017). Effect of Directional Pulling on Mechanical Protein Degradation by ATP-Dependent Proteolytic Machines. Proceedings of the National Academy of Sciences of the United States of America, 114(31), E6306E6313.Google ScholarPubMed
Pelz, B., Žoldák, G., Zeller, F., Zacharias, M., and Rief, M. (2016). Subnanometre Enzyme Mechanics Probed by Single-Molecule Force Spectroscopy. Nature Communications, 7, 10848.CrossRefGoogle ScholarPubMed
Qi, R., Sarbeng, E. B., Liu, Q., et al. (2013). Allosteric Opening of the Polypeptide-Binding Site When an Hsp70 Binds ATP. Nature Structural and Molecular Biology, 20(7), 900907.Google Scholar
Rehn, A. B. and Buchner, J. (2015). p23 and Aha1. In Blatch, G. L., ed., The Networking of Chaperones by Co-Chaperones. Springer, New York, NY: 113131.Google Scholar
Rüdiger, S., Buchberger, A., and Bukau, B. (1997). Interaction of Hsp70 Chaperones with Substrates. Nature Structural and Molecular Biology, 4(5), 342349.CrossRefGoogle ScholarPubMed
Schopf, F. H., Biebl, M. M., and Buchner, J. (2017). The Hsp90 Chaperone Machinery. Nature Reviews Molecular Cell Biology, 18(6), 345360.Google Scholar
Street, T. O., Lavery, L. A., and Agard, D. A. (2011). Substrate Binding Drives Large-Scale Conformational Changes in the Hsp90 Molecular Chaperone. Molecular Cell, 42(1), 96105.Google Scholar
Taipale, M., Jarosz, D. F., and Lindquist, S. (2010). Hsp90 at the Hub of Protein Homeostasis: Emerging Mechanistic Insights. Nature Reviews Molecular Cell Biology, 11(7), 515528.Google Scholar
Tych, K. M., Jahn, M., Gegenfurtner, V. K., et al. (2018). Nucleotide-Dependent Dimer Association and Dissociation of the Chaperone Hsp90. Journal of Physical Chemistry B., 122(49), 1137311380.Google Scholar
Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D., and von Mering, C. (2015) Version 4.0 of PaxDb: Protein Abundance Data, Integrated across Model Organisms, Tissues, and Cell-Lines. Proteomics, 15(18), 31633168.CrossRefGoogle ScholarPubMed
Winkler, J., Seybert, A., König, L., et al. (2010) Quantitative and Spatio-Temporal Features of Protein Aggregation in Escherichia Coli and Consequences on Protein Quality Control and Cellular Ageing. EMBO Journal, 29(5), 910923.Google Scholar

References

Arora, A. and Tamm, L. K. (2001). Byophisical Approaches to Membrane Protein Structure Determination. Current Opinion in Structural Biology, 11, 540547.CrossRefGoogle ScholarPubMed
a Nijeholt, J. A. L. and Driessen, A. J. (2012). The Bacterial Sec-Translocase: Structure and Mechanism. Philosophical Transactions of the Royal Society B, 367, 10161028.Google Scholar
Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24, 156159.Google Scholar
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., et al. (1986). Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters, 11, 288290.Google Scholar
Astumian, R. D. (1997). Thermodynamics and Kinetics of a Brownian Motor. Science, 276, 917922.Google Scholar
Banerjee, R., Jayaraj, G. G., Peter, J. J., et al. (2016). Monitoring Conformational Heterogeneity of the Lid of DnaK Substrate-Binding Domain during Chaperone Cycle. FEBS Journal, 283, 28532868.Google Scholar
Bechtluft, P, Van Leeuwen, R. G., Tyreman, M., et al. (2007). Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway. Science, 318, 14581461.CrossRefGoogle Scholar
Becker, T., Bhushan, S., Jarasch, A., et al. (2009). Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome. Science, 326, 13691373.Google Scholar
Behnke, J., Feige, M. J., and Hendershot, L. M. (2015). BiP and Its Nucleotide Exchange Factors Grp170 and Sil1: Mechanisms of Action and Biological Functions. Journal of Molecular Biology, 427, 15891608.Google Scholar
Bertelsen, E. B., Chang, L., Gestwicki, J. E., et al. (2009). Solution Conformation of Wild-Type E. coli Hsp70 (DnaK) Chaperone Complexed with ADP and Substrate. Proceedings of the National Acadamy of Science U.S.A., 106, 84718476.Google Scholar
Bertz, M. and Rief, M. (2009). Ligand Binding Mechanics of Maltose Binding Protein. Journal of Molecular Biology, 393, 10971105.Google Scholar
Blobel, G. and Dobberstein, B. (1975). Transfer of Proteins across Membranes. I. Presence of Proteolytically Processed and Unprocessed Nascent Immunoglobulin Light-Chains on Membrane-Bound Ribosomes of Murine Myeloma. Journal of Cell Biology, 67, 835851.Google Scholar
Bustamante, C. (2008). In Singulo Biochemistry: When Less Is More. Annual Review of Biochemistry, 77, 4550.CrossRefGoogle ScholarPubMed
Bustamante, C., Chemla, Y. R., Forde, N. R., et al. (2004). Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 73, 705748.CrossRefGoogle ScholarPubMed
Bustamante, C., Cheng, W., and Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144, 480497.Google Scholar
Bustamante, C., Kaiser, C. M., Maillard, R. A., et al. (2014). Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches. Annual Review of Biophysics, 43, 119140.Google Scholar
Bustamante, C., Macosko, J. C., and Wuite, G. J. (2000). Grabbing the Cat by the Tail: Manipulating Molecules One by One. Nature Reviews Molecular Cell Biology, 1, 130136.CrossRefGoogle ScholarPubMed
Cecconi, C., Shank, E. A., Bustamante, C., et al. (2005). Direct Observation of the Three-State Folding of a Single Molecule. Science, 309, 20572060.Google Scholar
Cecconi, C., Shank, E. A., Marqusee, S., et al. (2007). Studying Protein Folding with Laser Tweezers. Proceedings of the International School of Physics “Enrico Fermi,” 165, 145160.Google Scholar
Cecconi, C., Shank, E. A., Dahlquist, F. W., et al. (2008). Protein-DNA Chimeras for Single Molecule Mechanical Folding Studies with the Optical Tweezers. European Biophysics Journal, 37, 729733.Google Scholar
del Rio, A., Perez-Jimenez, R., Liu, R., et al. (2009). Stretching Single Talin Rod Molecules Activates Vinculin Binding. Science, 323, 638641.Google Scholar
Deniz, A. A., Mukhopadhyay, S., and Lemke, E. A. (2008). Single-Molecule Biophysics: At the Interface of Biology, Physics and Chemistry. Journal of the Royal Society Interface, 5, 1545.Google Scholar
Deshaies, R. J., Sanders, S. L., Feldheim, D. A., et al. (1991). Assembly of Yeast Sec Proteins Involved in Translocation into the Endoplasmic Reticulum into a Membrane-Bound Multisubunit Complex. Nature, 349, 806808.Google Scholar
Erlandson, K. J., Millar, S. B. M., Nam, Y., et al. (2008). A Role for the Two-Helix Finger of the SecA ATPase in Protein Translocation. Nature, 455, 984987.Google Scholar
Fisher, T. E., Marszalek, P. E., and Fernandez, J. M. (2000). Stretching Single Molecules into Novel Conformations Using the Atomic Force Microscope. Nature Structural and Molecular Biology, 7, 719724.Google ScholarPubMed
Frauenfeld, J., Gumbart, J., Sluis, E. O., et al. (2011). Cryo-EM Structure of the Ribosome-SecYE Complex in the Membrane Environment. Nature Structural and Molecular Biology, 18, 614621.CrossRefGoogle ScholarPubMed
Gogala, M., Becker, T., Beatrix, B., et al. (2014). Structures of the Sec61 Complex Engaged in Nascent Peptide Translocation or Membrane Insertion. Nature, 506, 107110.CrossRefGoogle ScholarPubMed
Goloubinoff, P. and De los Ríos, P. (2007). The Mechanism of Hsp70 Chaperones: (Entropic) Pulling the Models Together. Trends in Biochemical Science, 32, 372380.Google Scholar
Guo, Q., He, Y., and Lu, H. P. (2015). Interrogating the Activities of Conformational Deformed Enzyme by Single-Molecule Fluorescence-Magnetic Tweezers Microscopy. Proceedings of the National Academy of Science U.S.A., 112, 1390413909.Google Scholar
Junker, J. P., Hell, K., Schlierf, M., et al. (2005). Influence of Substrate Binding on the Mechanical Stability of Mouse Dihydrofolate Reductase. Biophysics Journal, 89, L46L48.Google Scholar
Junker, J. P., Ziegler, F., and Rief, M. (2009). Ligand-Dependent Equilibrium Fluctuations of Single Calmodulin Molecules. Science, 323, 633637.Google Scholar
Kainov, D. E., Tuma, R., and Mancini, E. J. (2006). Hexameric Molecular Motors: P4 Packaging ATPase Unravels the Mechanism. Cellular and Molecular Life Sciences, 63, 10951105.CrossRefGoogle ScholarPubMed
Kedrov, A., Kusters, I., Krasnikov, V. V., et al. (2011). A Single Copy of SecYEG Is Sufficient for Preprotein Translocation. EMBO Journal, 30, 43874397.Google Scholar
Kellner, R., Hofmann, H., Barducci, A., et al. (2014). Single-Molecule Spectroscopy Reveals Chaperone-Mediated Expansion of Substrate Protein. Proceedings of the National Academy of Science U.S.A.,111, 1335513360.Google Scholar
Kosakowska-Cholody, T., Lin, J., Srideshikan, S. M., et al. (2014). HKH40A Downregulates GRP78/BiP Expression in Cancer Cells. Cell Death and Disease, 5, e1240.Google Scholar
Kusters, I., van den Bogaart, G., Kedrov, A., et al. (2011). Quaternary Structure of SecA in Solution and Bound to SecYEG Probed at the Single Molecule Level. Structure, 19 , 430439.Google Scholar
Latorre, R., Ehrenstein, G., and Lecar, H. (1972). Ion Transport through Excitability-Inducing Material (EIM) Channels in Lipid Bilayer Membranes. Journal of General Physiology, 60, 7285.Google Scholar
Lee, A. S. (2014). Glucose-Regulated Proteins in Cancer: Molecular Mechanisms and Therapeutic Potential. Nature Reviews Cancer, 14, 263276.CrossRefGoogle ScholarPubMed
Li, G. W. and Xie, X. S. (2011). Central Dogma at the Single-Molecule Level in Living Cells. Nature, 475, 308315.Google Scholar
Li, L., Park, E., Ling, J., et al. (2016). Crystal Structure of a Substrate-Engaged SecY Protein-Translocation Channel. Nature, 531, 395399.CrossRefGoogle ScholarPubMed
Lyubimov, A. Y., Strycharska, M., and Berger, J. M. (2011). The Nuts and Bolts of Ring-Translocase Structure and Mechanism. Current Opinion in Structural Biology, 21, 240248.Google Scholar
Maillard, R. A., Chistol, G., Sen, M., et al. (2011). ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates. Cell, 145 , 459469.Google Scholar
Mapa, K., Sikor, M., Kudryavtsev, V., et al. (2010). The Conformational Dynamics of the Mitochondrial Hsp70 Chaperone. Molecular Cell, 38, 89100.Google Scholar
Marcinowski, M., Höller, M., Feige, M. J., et al. (2011). Substrate Discrimination of the Chaperone BiP by Autonomous and Cochaperone-Regulated Conformational Transitions. Nature Structural and Molecular Biology, 18 , 150158.Google Scholar
Mashaghi, A., Bezrukavnikov, S., Minde, D. P., et al. (2016). Alternative Modes of Client Binding Enable Functional Plasticity of Hsp70. Nature, 539, 448451.Google Scholar
Matlack, K. E., Misselwitz, B., Plath, K., et al. (1999). BiP Acts as a Molecular Ratchet during Post-Translational Transport of Prepo-αfactor across the ER Membrane. Cell, 97, 553564.CrossRefGoogle ScholarPubMed
Min, D., Jefferson, R. E., Bowie, J. U., et al. (2015). Mapping the Energy Landscape for Second-Stage Folding of a Single Membrane Protein. Nature Chemical Biology, 11, 981987.Google Scholar
Neher, E. and Sakmann, B., (1976). Single-Channel Currents Recorded from Membrane of Denervated Frog Muscle Fibres. Nature, 260, 799802.Google Scholar
Palade, G. (1952). A Study of Fixation for Electron Microscopy. Journal of Experimental Medicine, 95 , 285297.Google Scholar
Palade, G. (1975). Intracellular Aspects of the Process of Protein Synthesis. Science, 189, 347358.Google Scholar
Park, E. and Rapoport, T. A. (2012). Mechanism of Sec61/SecY-Mediated Protein Translocation across Membranes. Annual Review of Biophysics, 41, 120.Google Scholar
Ramírez, M. P., Rivera, M., Quiroga-Roger, D., et al. (2017). Single Molecule Force Spectroscopy Reveals the Effect of BiP Chaperone on Protein Folding. Protein Science, 26, 14041412.Google Scholar
Rapoport, T. A. (2007). Protein Translocation across the Eukaryotic Endoplasmic Reticulum and Bacterial Plasma Membranes. Nature, 450, 663669.Google Scholar
Rapoport, T. A., Li, L., and Park, E. (2017). Structural and Mechanistic Insights into Protein Translocation. Annual Review of Cell and Development. Biology, 33, 369390.Google Scholar
Sabatini, D. D., Kreibich, G., Morimoto, T., et al. (1982). Mechanism for the Incorporation of Proteins in Membranes and Organelles. Journal of Cell Biology, 92, 122.Google Scholar
Saparov, S. M., Erlandson, K., Cannon, K., et al. (2007). Determining the Conductance of the SecY Protein Translocation Channel for Small Molecules. Molecular Cell, 26, 501509.Google Scholar
Schekman, R., (1994). Translocation gets a push. Cell, 78, 911913.Google Scholar
Schwille, P., Meyer-Almes, F.J., Rigler, R., (1997). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J., 72, 18781886.Google Scholar
Shank, E. A., Cecconi, C., Dill, J. W., et al. (2010). The Folding Cooperativity of a Protein Is Controlled by Its Chain Topology. Nature, 465, 637640.Google Scholar
Shields, A. M., Panayi, G. S., and Corrigall, V. M., (2012). A New-Age for Biologic Therapies: Long-Term Drug-Free Therapy with BiP? Frontiers in Immunology, 3, 18.CrossRefGoogle ScholarPubMed
Smith, D. E., Tans, S. J., Smith, S. B., et al. (2001). The Bacteriophage Straight phi29 Portal Motor Can Package DNA against a Large Internal Force. Nature, 413, 748752.Google Scholar
Taufik, I., Kedrov, A., Exterkate, M., et al. (2013). Monitoring the Activity of Single Translocons. Journal of Molecular Biology, 425, 41454153.Google Scholar
Tinoco, I. and Gonzalez, R. L. (2011). Biological Mechanisms, One Molecule at a Time. Genes and Development, 25, 12051231.Google Scholar
Tsai, Y. L., Zhang, Y., Tseng, C. C., et al. (2015). Characterization and Mechanism of Stress-Induced Translocation of 78-Kilodalton Glucose-Regulated Protein (GRP78) to the Cell Surface. Journal of Biological Chemistry, 290 , 80498064.Google Scholar
Wu, Z. C., de Keyzer, J., Kedrov, A., et al. (2012). Competitive Binding of the SecA ATPase and Ribosomes to the SecYEG Translocon. Journal of Biological Chemistry, 287, 78857895.Google Scholar
Yang, J., Nune, M., Zong, Y., et al. (2015). Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP. Structure, 23, 21912203.Google Scholar
Zhang, X., Halvorsen, K., Zhang, C. Z., et al. (2009). Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein Von Willebrand Factor. Science, 324, 13301334.Google Scholar
Zhang, Y., Tseng, C. C., Tsai, Y. L., et al. (2013). Cancer Cells Resistant to Therapy Promote Cell Surface Relocalization of GRP78 Which Complexes with PI3K and Enhances PI(3,4,5)P3 Production. PLoS One, 8, e80071.Google Scholar
Zimmer, J., Nam, Y., and Rapoport, T. A. (2008). Structure of a Complex of the ATPase SecA and the Protein-Translocation Channel. Nature, 455, 936943.Google Scholar
Zimmermann, R., Eyrisch, S., Asmad, M., et al. (2011). Protein Translocation across the ER Membrane. Biochimica et Biophysica Acta, 1808, 912924.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×