Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T20:19:43.117Z Has data issue: false hasContentIssue false

2 - Epigenesis, Synapse Selection, Cultural Imprints, and Human Brain Development

From Molecules to Cognition

from Part I - Neurobiological Constraints and Laws of Cognitive Development

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

The human brain is neither John Locke’s “blank slate” deprived of any pre-existing innate structure – or, in a modern AI language, a random network of undifferentiated neurons fully instructed by experience – nor a fully genetically determined, irrevocably hard-wired neuronal architecture. Neither is it represented by the simplistic yet very popular deep-learning artificial networks. The 85–100 billion neurons of the human brain and their synaptic connections, that arose over million years of evolution and for each individual brain over almost 15 years of postnatal development, possess an original organization unmatched by any of our current computers. It is a unique compromise between an eminently variable, intrinsically rich connectivity and a set of species-specific, genetically determined, rules, which unambiguously make our brain that of Homo sapiens.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonini, A., & Stryker, M. (1996). Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. Journal of Comparative Neurology, 369, 6482.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Antonini, A., & Stryker, M. (1998). Effect of sensory disuse on geniculate afferents to cat visual cortex. Visual Neuroscience, 15, 401409.CrossRefGoogle ScholarPubMed
Arcaro, M., & Livingstone, M. (2017). Retinotopic organization of scene areas in Macaque inferior temporal cortex. Journal of Neuroscience, 37, 73737389.Google Scholar
Avale, M. E., Chabout, J., Pons, S., et al. (2011). Prefrontal nicotinic receptors control novel social interaction between mice. The FASEB Journal, 25, 21452155.Google Scholar
Baars, J. (1989). A Theory of Consciousness. Cambridge: Cambridge University Press.Google Scholar
Bailly, Y., Rabacchi, S., Sherrard, R. M., et al. (2018). Elimination of all redundant climbing fiber synapses requires granule cells in the postnatal cerebellum. Scientific Reports, 8, Article number: 10017.CrossRefGoogle ScholarPubMed
Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J.-P., Changeux, J.-P., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. PNAS, 107, 1156711572.Google Scholar
Barkow, J., Cosmides, L., & Tooby, J. (1992). The Adapted Mind: Evolutionary Psychology and the Generation of Culture. Oxford: Oxford University Press.CrossRefGoogle Scholar
Benoit, P., & Changeux, J. P. (1975). Consequences of tenotomy on the evolution of multiinnervation in developing rat soleus muscle. Brain Research, 99, 354358.Google Scholar
Benoit, P., & Changeux, J. P. (1978). Consequences of blocking the nerve with a local anaesthetic on the evolution of multiinnervation at the regenerating neuromuscular junction of the rat. Brain Research, 149, 8996.Google Scholar
Berridge, M., & Rapp, P. (1979). A comparative survey of the function, mechanism and control of cellular oscillators. Journal of Exprerimental Biology, 81, 217279.Google Scholar
Blakemore, C., Garey, L., & Vital-Durand, F. (1981). Orientation preferences in the monkeys visual cortex. Journal of Physiology, 319, 78.Google Scholar
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony, and epigenesis in the mammalian neocortex. Acta Paediatrica, 422, 2733.CrossRefGoogle ScholarPubMed
Bourgeron, T. (2009). A synaptic trek to autism. Current Opinion in Neurobiology, 19, 231234.Google Scholar
Buchtal, F., & Schmalbruch, H. (1980). Motor unit of mammalian muscle. Physiological Reviews, 60, 90142.CrossRefGoogle Scholar
Campbell, J. O. (2016). Universal Darwinism as a process of Bayesian inference. Frontiers in System Neuroscience, doi:10.3389/fnsys.2016.00049Google Scholar
Carreiras, M., Seghier, M. L., Baquero, S., et al. (2009). An anatomical signature for literacy. Nature, 461, 983986.CrossRefGoogle ScholarPubMed
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 10531063.Google Scholar
Changeux, J. P. (1983). L’Homme neuronal. Paris: Fayard. English translation, Neuronal Man: The Biology of Mind. Princeton, NJ: Princeton University Press.Google Scholar
Changeux, J. P. (1985). Neuronal Man: The Biology of Mind. Princeton, NJ: Princeton University Press.Google Scholar
Changeux, J. P. (2006). Les bases neurales de l’habitus. In Fussman, G. (ed.), Croyance, raison et déraison (pp. 143158). Paris: Odile Jacob.Google Scholar
Changeux, J. P. (2010). Nicotine addiction and nicotinic receptors: Lessons from genetically modified mice. Nature Reviews Neuroscience, 11, 389401.Google Scholar
Changeux, J. P. (2017). Climbing brain levels of organization from genes to consciousness. Trends in Cognitive Sciences, 21, 168181.Google Scholar
Changeux, J. P. (2018). Mon rêve est qu’il puisse y avoir une éducation laïque universelle. In Colloque Henri Caillavet les libertés en question? (pp. 1–5).Google Scholar
Changeux, J. P. (2019). Two cultures and our encyclopaedic brain. European Review, 27, 5465.Google Scholar
Changeux, J. P., Courrège, P., & Danchin, A. (1973). A theory of the epigenesis of neuronal networks by selective stabilization of synapses. PNAS, 70, 29742978.Google Scholar
Changeux, J. P., & Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705712.Google Scholar
Changeux, J. P. & Lou, H. (2011). Emergent pharmacology of conscious experience: New perspectives in substance addiction. The FASEB Journal, 25, 20982108.Google Scholar
Changeux, J. P., & Mikoshiba, K. (1978). Genetic and “epigenetic” factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. Progress in Brain Research, 48, 4366.Google Scholar
Changeux, J. P., & Ricoeur, P. (2000). What Makes Us Think? A Neuroscientist and a Philosopher Argue about Ethics, Human Nature and the Brain. Princeton, NJ: Princeton University Press.Google Scholar
Cook, E., & Scherer, S. (2008). Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919923.Google Scholar
Collin, G., & van den Heuvel, M. (2013). The ontogeny of the human connectome: Development and dynamic changes of brain connectivity across the life span. Neuroscientist, 19, 616628.Google Scholar
Corriveau, R., Huh, G., & Shatz, C. (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron, 21, 505520.CrossRefGoogle ScholarPubMed
de Lange, A. M., Kaufmann, T., van der Meer, D., et al. (2019). Population-based neuroimaging reveals traces of childbirth in the maternal brain. PNAS, 116, 2234122346.Google Scholar
Dehaene, S., & Changeux, J. P. (1991). The Wisconsin card-sorting test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex, 1, 6279.Google Scholar
Dehaene, S., & Changeux, J. P. (2000). Reward-dependent learning in neuronal networks for planning and decision making. Progress in Brain Research, 126, 217229.Google Scholar
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200227.Google Scholar
Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. PNAS, 95, 1452914534.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330, 13591364.Google Scholar
Dejerine, J. (1895). Anatomie des centres nerveux. Paris: Rueff et Cie.Google Scholar
Dejerine, J. (1914). Sémiologie des affections du système nerveux. Paris: Masson.Google Scholar
Dubois, J., Poupon, C., Thirion, B., et al. (2006). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26, 22832298.Google Scholar
Dumas, G., Malesys, S., & Bourgeron, T. (2019). Systematic detection of divergent brain protein-coding genes in human evolution and their roles in cognition. BioRxiv. doi: https://doi.org/10.1101/658658CrossRefGoogle Scholar
Edelman, G. (1978). Group selection and phasic reentrant signaling: A theory of higher brain function. In Edelman, G. M., & Mountcastle, V. B. (eds.), The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function (pp. 5198). Boston, MA: MIT Press.Google Scholar
Edelman, G. (1981). Group selection as the basis for higher brain function. In Schmitt, F. O., Worden, F. G., Adelman, G., & Dennis, S. G. (eds.), The Organization of the Cerebral Cortex (pp. 535563). Boston, MA: MIT Press.Google Scholar
Edelman, G. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
Edelman, G. (2006). Second Nature: Brain Science and Human Knowledge. New Haven, CT: Yale University Press.Google Scholar
Edelman, G., & Gally, J. (2001). Degeneracy and complexity in biological systems. PNAS, 98, 1376313768.Google Scholar
Evers, K., & Changeux, J. P. (2016). Proactive epigenesis and ethical innovation: A neuronal hypothesis for the genesis of ethical rules. EMBO Reports, 17, 13611364.Google Scholar
Farisco, M., Salles, A., & Evers, K. (2018). Neuroethics: A conceptual approach. Cambridge Quarterly of Healthcare Ethics, 27, 717727.Google Scholar
Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., & Shatz, C. J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science, 272, 11821187.CrossRefGoogle ScholarPubMed
Fodor, J. (1983). The Modularity of Mind. An Essay on Faculty Psychology. Boston, MA: MIT Press.CrossRefGoogle Scholar
Fuster, J. (2015). The Prefrontal Cortex. Cambridge, MA: Academic Press.Google Scholar
Galli-Resta, L., & Maffei, L. (1988). Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science, 242, 9091.Google Scholar
Geschwind, D., & Rakic, P. (2013). Cortical evolution: Judge the brain by its cover. Neuron, 80, 633647.Google Scholar
Gisiger, T., & Kerszberg, M. (2006). A model for integrating elementary neural functions into delayed-response behavior. PLoS Computational Biology 2(4): e25. https://doi.org/10.1371/journal.pcbi.0020025Google Scholar
Gisiger, T., Kerszberg, M., & Changeux, J.P. (2005). Acquisition and performance of delayed-response tasks: A neural network model. Cerebral Cortex, 15, 489506.Google Scholar
Goldowitz, D., & Mullen, R. (1982). Nuclear morphology of ichthyosis mutant mice as a cell marker in chimeric brain. Developmental Biology, 89, 261267.Google Scholar
Goldman-Rakic, P. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156.Google Scholar
Goldman-Rakic, P. (1999). The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry, 46, 650661.Google Scholar
Goulas, A., Betzel, R., & Hilgetag, C. (2019). Spatiotemporal ontogeny of brain wiring. Science Advances, 5, eaav9694.Google Scholar
Gouzé, J. L., Lasry, J. M., & Changeux, J. P. (1983). Selective stabilization of muscle innervation during development: A mathematical model. Biological Cybernetics, 46, 207215.Google Scholar
Grubb, M. S., Rossi, F. M., Changeux, J. P., & Thompson, I. D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron, 40, 11611172.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.CrossRefGoogle ScholarPubMed
Hagmann, P., Sporns, O., Madan, N., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. PNAS, 107, 1906719072.Google Scholar
Hamburger, V. (1970). Embryonic motility in vertabrates. In Schmitt, F. (ed.), The Neurosciences: Second Study Program (pp. 210220). New York: Rockefeller University Press.Google Scholar
Hauser, M.D., Yang, C., Berwick, R. C., et al. (2014). The mystery of language evolution. Frontiers in Psychology, 5, doi: 10.3389/fpsyg.2014.00401CrossRefGoogle ScholarPubMed
Henderson, C. E., Benoit, P., Huchet, M., Guenet, J. L., & Changeux, J. P. (1986). Increase of neurite-promoting activity for spinal neurons in muscles of ‘paralysé’ mice and tenotomised rats. Brain Research, 390, 6570.Google Scholar
Hensch, T. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Nruroscience, 6, 877888.Google Scholar
Hermoye, L., Saint-Martin, C., Cosnard, G., et al. (2006). Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood. NeuroImage, 29, 493504.Google Scholar
Hokfelt, T., Fuxe, K., & Pernow, P. (eds.) (1986). Coexistence of neuronal messengers: A new principle in chemical transmission. Progress in Brain Research, 68, 1411.Google Scholar
Hokfelt, T., Barde, S., Xu, Z.-Q. D., et al. (2018). Neuropeptide and small transmitter coexistence: Fundamental studies and relevance to mental illness. Frontiers in Neural Circuits, 12(106). doi: 10.3389/fncir.2018.00106Google Scholar
Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15, 6373.Google Scholar
Houdé, O. (2019). 3-System Theory of the Cognitive Brain: A Post-Piagetian Approach. New York: Routledge.Google Scholar
Houdé, O., Zago, L., Mellet, E., et al. (2000). Shifting from the perceptual brain to the logical brain: The neural impact of cognitive inhibition training. Journal of Cognitive Neuroscience, 12, 721728.Google Scholar
Houdé, O., Pineau, A., Leroux, G., et al. (2011). Functional MRI study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.CrossRefGoogle ScholarPubMed
Houdé, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nature Reviews Neuroscience, 4, 507514.Google Scholar
Huang, Z. J., Kirkwood, A., Pizzorusso, T., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98, 739755.Google Scholar
Hubel, D., & Wiesel, T. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229289.Google Scholar
Hubel, D., & Wiesel, T. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206, 419436.Google Scholar
Hubel, D., Wiesel, T., & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 278, 377409.Google Scholar
Huguet, G., Benabou, M., & Bourgeron, T. (2016). The genetics of autism spectrum disorders. In Sassone-Corsi, P., & Christen, Y. (eds.), A Time for Metabolism and Hormones (pp. 101129). Berlin: Springer Verlag.Google Scholar
Huh, G. S., Boulanger, L. M., Du, H., et al. (2000). Functional requirement for class I MHC in CNS development and plasticity. Science, 290, 21552159.Google Scholar
Hull, C. (1943). Principles of Behavior: An Introduction to Behavior Theory. New York: Appleton-Century.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.Google Scholar
Huttenlocher, P., & Dabholkar, A. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.Google Scholar
Innocenti, G., & Price, D. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955965.Google Scholar
Joutsa, J., Saunavaara, J., Parkkola, R., Niemelä, S., & Kaasinen, V. (2011). Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Research: Neuroimaging, 194, 340346.Google Scholar
Kangiser, M. M., Thomas, A. M., Kaiver, C. M., & Lisdahl, K. M. (2019). Nicotine effects on white matter microstructure in young adults. Archives of Clinical Neuropsychology, 35, 1021.Google Scholar
Kano, M., & Hashimoto, L. (2012). Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum, 11, 449450.Google Scholar
Karlsgodt, K. H., van Erp, T. G. M., Poldrack, R. A., et al. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63, 512518.Google Scholar
Kasthuri, N., & Lichtman, J. (2003). The role of neuronal identity in synaptic competition. Nature, 424, 426430.Google Scholar
Kim, T., Vidal, G. S., Djurisic, M., et al. (2013). Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science, 341, 13991404.Google Scholar
Ko, H., Hofer, S. B., Pichler, B., et al. (2011). Functional specificity of local synaptic connections in neocortical networks. Nature, 473, 8791.CrossRefGoogle ScholarPubMed
Kobayashi, S., & Schultz, W. (2014). Reward contexts extend dopamine signals to unrewarded stimuli. Current Biology, 24, 5662.Google Scholar
Koechlin, E. (2016). Prefrontal executive function and adaptive behavior in complex environments. Current Opinion in Neurobiology, 37, 16.Google Scholar
Koukouli, F., Rooy, M., Tziotis, D., et al. (2017). Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine, 23, 347354.Google Scholar
Lagercrantz, H., Hanson, M. A., Ment, L. R., & Peebles, D. M. (eds.) (2010). The Newborn Brain. Cambridge: Cambridge University Press.Google Scholar
LaMantia, A., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10, 21562175.Google Scholar
LeVay, S., Wiesel, T., & Hubel, D. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191, 151.Google Scholar
Levi Montalcini, R. (2000). From Turin to Stockholm via St. Louis and Rio de Janeiro. Science, 287(5454), 809.Google Scholar
Levi Strauss, C. (1952). Race et histoire. Paris: UNESCO.Google Scholar
Levinthal, F., Macagno, E., & Levinthal, C. (1976). Anatomy and development of identified cells in isogenic organisms. Cold Spring Harbor Symposia on Quantitative Biology, 40, 321331.Google Scholar
Li, W., Bellot-Saez, A., Phillips, M. L., et al. (2017). A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Disease Models & Mechanisms, 10, 837845.Google Scholar
Lichtman, J. (1977). The reorganization of synaptic connexions in the rat submandibular ganglion during post‐natal development. The Journal of Physiology, 273, 155177.Google Scholar
Lichtman, J. (1980). On the predominantly single innervation of submandibular ganglion cells in the rat. The Journal of Physiology, 302, 121130.Google Scholar
Lohof, A., Delhaye-Bouchaud, N., & Mariani, J. (1996). Synapse elimination in the central nervous system: Functional significance and cellular mechanisms. Reviews in Neurosciences, 7, 85101.Google Scholar
Lu, J., Tapia, J. C., While, O. L., & Lichtman, J. W. (2009). The interscutularis muscle connectome. PLoS Biology, 7, e1000108.Google Scholar
Lucchesi, J. (2019). Epigenetics, Nuclear Organization & Gene Function. Oxford: Oxford University Press.Google Scholar
Luo, L., & O’Leary, D. (2005). Axon retraction and degeneration in development and disease. The Annual Review of Neuroscience, 28, 127156.Google Scholar
Macagno, E., Lopresti, V., & Levinthal, C. (1973). Structure and development of neuronal connections in isogenic organisms: Variations and similarities in the optic system of Daphnia magna. PNAS, 70, 5761.Google Scholar
Maffei, L., & Galli-Resta, L. (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. PNAS, 87, 26612864.Google Scholar
Mandolesi, G., Menna, E., Harauzov, A., et al. (2005). A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity. Current Biology, 15, 21192124.CrossRefGoogle ScholarPubMed
Mariani, J., & Changeux, J. P. (1980). Intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the developing rat. Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles, 291, 97100.Google Scholar
Markov, N., Ercsey-Ravasz, M., Van Essen, D. C., et al. (2013). Cortical high-density counterstream architectures. Science, 342, 1238406.Google Scholar
Mehler, J. (1982). Dips and drops: A theory of cognitive development. In Bever, T. (ed.), Regressions in Development: Basic Phenomena and Theoretical Alternatives (pp. 133152). Hillsdale, NJ: Erlbaum.Google Scholar
Meister, M., Wong, R. O., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939943.Google Scholar
Morange, M., Wolff, F., & Worms, F. (eds.) (2016). L’Homme neuronal 30 ans après, Dialogue avec Jean-Pierre Changeux. Paris: Rue d’Um.Google Scholar
Movshon, J. (1976). Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex. The Journal of Physiology, 261, 125174.Google Scholar
O’Brien, R., Purves, R., & Vabova, G. (1977). Effect of activity on the elimination of multiple innervation in soleus muscle of rats. Journal of Physiology, 271, 5455.Google ScholarPubMed
Oren-Suissa, M., Bayer, E., & Hobert, O. (2016). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 533, 206211.Google Scholar
Oster-Granite, M., & Gearhart, J. (1981). Cell lineage analysis of cerebellar Purkinje cells in mouse chimeras. Developmental Biology, 85, 199208.Google Scholar
Paabo, S. (2013). The human condition: A molecular approach? Cell, 157, 216226.Google Scholar
Paolicelli, R. C., Bolasco, G., Pagani, F., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 14561458.Google Scholar
Penn, A. A., Riquelme, P. A., Feller, M. B., & Shatz, C. J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science, 279, 21082112.Google Scholar
Perdikis, D., Huys, R., & Jirsa, V. (2011). Complex processes from dynamical architectures with time-scale hierarch. PLoS ONE, 6. doi: 10.1371/journal.pone.0016589Google Scholar
Petanjek, Z., Judaš, M., Šimic, G., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS, 108, 1328113286.CrossRefGoogle ScholarPubMed
Petr, M., Pääbo, S., Kelso, J., & Vernot, B. (2019). Limits of long-term selection against Neandertal introgression. PNAS, 116, 16391644.Google Scholar
Piaget, J. (1976). Le comportement, moteur de l’évolution. Paris: Gallimard.Google Scholar
Picciotto, M. R., Zoli, M., Léna, C., et al. (1995). Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 374, 6567.Google Scholar
Picciotto, M. R., Zoli, M., Rimondini, R., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391, 173177.Google Scholar
Pillai, A., & Jirsa, V. (2017). Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron, 94, 10101026.Google Scholar
Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. PNAS, 104, 1386113867.Google Scholar
Prochiantz, A., & Di Nardo, A. (2015). Homeoprotein signaling in the developing and adult nervous system. Neuron, 85, 911925.Google Scholar
Provine, R., & Ripley, K. (1972). Neural correlates of embryonic motility in the chick. Brain Research, 45, 127134.Google Scholar
Pugliese, L., Catani, M., Ameis, S., et al. (2009). The anatomy of extended limbic pathways in Asperger syndrome: A preliminary diffusion tensor imaging tractography study. NeuroImage, 47, 427434.Google Scholar
Purves, D., & Lichtman, J. (1980). Elimination of synapses in the developing nervous system. Science, 210, 153157.CrossRefGoogle ScholarPubMed
Quartz, S., & Sejnowski, T. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20, 537556.Google Scholar
Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467471.Google Scholar
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., & Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 4747, 232235.CrossRefGoogle Scholar
Redfern, P. (1970). Neuromuscular transmission in new‐born rats. The Journal of Physiology, 209, 701709.Google Scholar
Rømer Thomsen, K., Joensson, M., Lou, H. C., et al. (2013). Altered paralimbic interaction in behavioral addiction. PNAS, 110, 47444749.Google Scholar
Rossi, F. M., Pizzorusso, T., Porciatti, V., et al. (2001). Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system. PNAS, 98, 64536458.Google Scholar
Scott, A., Zelenin, S., Malmersjö, S., et al. (2006). Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. PNAS, 103, 762767.Google Scholar
Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., et al. (2010). Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science Translational Medicine, 2, 5680.Google Scholar
Sellgren, C. M., Gracias, J., Watmuff, B., et al. (2019). Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nature Neurosciences, 22, 374385.Google Scholar
Shatz, C. (1996). Emergence of order in visual system development. PNAS, 93, 602608.Google Scholar
Shatz, C., & Stryker, M. (1978). Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. Journal of Physiology, 281, 267283.Google Scholar
Sheu, S.-H., Tapia, J. C., Tsuriel, S., & Lichtman, J. W. (2017). Similar synapse elimination motifs at successive relays in the same efferent pathway during development in mice. eLife, 6, e23193. doi: 10.7554/eLife.23193Google Scholar
Skinner, B. (1981). Selection by consequences. Science, 213, 501504.Google Scholar
Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews Neuroscience, 14, 112127.Google Scholar
Sommer, M., Koch, M. A., Paulus, W., Weiller, C., & Büchel, C. (2002). Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet, 360, 380383.Google Scholar
Spatazza, J., Lee, H. H. C., Di Nardo, A. A., et al. (2013). Choroid plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports, 3, 18151823.Google Scholar
Spitzer, N. (2017). Neurotransmitter switching in the developing and adult brain. Annual Review of Neuroscience, 40, 119.Google Scholar
Sretavan, D., Shatz, C., & Stryker, M. (1988). Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature, 336, 468471.Google Scholar
Stauffer, W. R., Lak, A., Yang, A., et al. (2016). Dopamine neuron-specific optogenetic stimulation in Rhesus macaques. Cell, 166, 15641571.Google Scholar
Steinmetz, H. , Herzog, A., Schlaug, G., Huang, Y., & Jäncke, L. (1995). Brain (A) symmetry in monozygotic twins. Cerebral Cortex, 5, 296300.Google Scholar
Sretavan, W., & Stryker, M. (1988). Modification of retinal ganglion cell morphology by prenatal infusion of tetrodotoxin. Nature, 336, 468471.Google Scholar
Suzuki, I. K., Gacquer, D., Van Heurck, R., et al. (2018). Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell, 173, 13701384.Google Scholar
Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neurosciences, 26, 459475.Google Scholar
Takesian, A., & Hensch, T. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.CrossRefGoogle ScholarPubMed
Thorndike, E. (1911). Animal Intelligence. New York: Macmillan.Google Scholar
Tononi, G., Sporns, O., & Edelman, G. (1999). Measures of degeneracy and redundancy in biological network. PNAS, 96, 32573262.Google Scholar
Triller, A., & Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59, 359374.Google Scholar
Turney, S., & Lichtman, J. (2012). Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: Evidence for synaptic competition and its mechanism. PLoS Biology, 10, e1001352. doi: 10.1371/journal.pbio.1001352Google Scholar
Vallender, E., Mekel-Bobrov, N., & Lahn, B. T. (2006). Genetic basis of human evolution. Trends in Neurosciences, 31, 637644.CrossRefGoogle Scholar
van Sluyters, R. (1978). Reversal of the physiological effects of brief periods of monocular deprivation in the kitten. The Journal of Physiology, 284, 117.CrossRefGoogle ScholarPubMed
von Economo, C., & Koskinas, G. (1925). Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex. Basel: Karger. Trans, rev, L. C. Triarhou, 2008.Google Scholar
Waddington, C. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563565.Google Scholar
Wei, Y., de Lange, S. C., Scholtens, L. H., et al. (2019). Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nature Communications, 10, Article number: 4839.Google Scholar
Werker, J., & Hensch, T. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173196.Google Scholar
Weyer, S., & Paabo, S. (2016). Functional analyses of transcription factor binding sites that differ between present-day and archaic humans. Molecular Biology and Evolution, 33, 316322.Google Scholar
Weinhard, L., di Bartolomei, G., Bolasco, G., et al. (2018). Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Communications, 9, 1228.Google Scholar
Wiesel, T., & Hubel, D. (1963). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology, 26, 978993.CrossRefGoogle ScholarPubMed
Wiesel, T., & Hubel, D. (1965). Extend of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology, 28, 10601072.Google Scholar
Zoli, M., Léna, C., Picciotta, M. R., & Changeux, J. P. (1998). Identification of four classes of brain nicotinic receptors using β2 mutant mice. Journal of Neuroscience, 18, 44614472.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×