Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-08T16:01:33.748Z Has data issue: false hasContentIssue false

12 - Radioactive Properties of Rocks

Published online by Cambridge University Press:  19 November 2021

Nikolai Bagdassarov
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

There are geogenic and cosmogenic contributions to the radioactivity of rocks. Radioactivity arises from the relationship between the atomic mass number, the number of protons and neutrons, and the atomic ordinal number in a radioactive element. Radioactive nuclei decay according to the exponential law. There are three natural decay series: uranium-radium, uranium-actinium, and thorium. The 87Sr/86Sr ratio in rocks and seawater is used for paleo-tectonic reconstructions. The measurement of gamma spectra is an important component of radiometry. Measurement of natural radioactivity using a gamma-spectrometer is considered. Fossil tracks of α-particles in rocks and minerals may be used to measure the time since the rock sample formed. Muon energetic spectra are used to estimate underground cavities. Radioactive emanations are connected with the gas radon, and their efficiency depends on rock porosity, saturation and mineral grain size. There are several methods for dating rocks using radioactive and stable isotope ratios: 87Sr/86Sr, ∝87Rb/86Sr and K-Ar. The Oklo reactor is a unique natural nuclear reactor. Focus Box 12.1: Binding energy Eb. Focus Box 12.2: Excitation and loss energy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

Abbady, A. G. E., El-Arabi, A. M. & Abbady, A. (2006). Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt. Applied Radiation and Isotopes 64, 131137.Google Scholar
Abdulqader, M. S., Vakanjac, B., Kovačević, J., Naunovic, Z. & Zdjelarević, N. (2018). Natural radioactivity of intrusive-metamorphic and sedimentary rocks of the Balkan Mountain Range (Serbia, Stara Planina). Minerals 8(1), 6. https://doi.org/10.3390/min8010006.CrossRefGoogle Scholar
Ahmed, A. A. & Hussein, M. I. (2011). Natural radioactivity measurements of basalt rocks in Sidakan District Northeastern of Kurdistan Region-Iraq. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 5(2), 6673.Google Scholar
Alam, M. N., Miah, M. M. H., Chowdhury, M. I., et al. (1999). Radiation dose estimation from the radioactivity analysis of lime and cement used in Bangladesh. Journal of Environmental Radioactivity 42, 7785.CrossRefGoogle Scholar
Alharbi, W. R. & El-Taher, A. (2016). Elemental analysis and natural radioactivity levels of clay by gamma ray spectrometer and instrumental neutron activation analysis. Science and Technology of Nuclear Installations, vol. 2016, Article ID 8726260, 5 pages. https://doi.org/10.1155/2016/8726260.CrossRefGoogle Scholar
Alshahri, F. (2017). Radioactivity of 226Ra, 232Th, 40K and 137Cs in beach sand and sediment near to desalination plant in eastern Saudi Arabia: Assessment of radiological impacts. Journal of King Saud University – Science 29, 174181.CrossRefGoogle Scholar
Alvarez, L.W., Anderson, J. A., El Bedwei, F., et al. (1970). Search for hidden chambers in the Pyramids. Science 167, 832839. doi:10.1126/science.167.3919.832.CrossRefGoogle ScholarPubMed
Arvela, H., Holmgren, O. & Hänninen, P. (2016). Effect of soil moisture on seasonal variation in indoor radon concentration: Modelling and measurements in 326 Finnish houses. Radiation Protection Dosimetry 168(2), 277290. doi: 10.1093/rpd/ncv182.Google ScholarPubMed
Berger, M. J., Inokuti, M., Anderson, H. H., et al. (1984). Stopping powers for electrons and positrons. Report 37, Journal of the International Commission on Radiation Units and Measurements 19(2), 4549. https://doi.org/10.1093/jicru/os19.2.45.CrossRefGoogle Scholar
Bragg, W. H. & Kleeman, R. (1905). On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Ser. 6, 10(57), 318340.Google Scholar
Cember, H. & Johnson, T. E. (1996). Introduction to Health Physics, 3rd Ed., McGraw-Hill Medical, New York, p. 132.Google Scholar
Cermak, V., Huckenholz, H. G., Rybach, L. & Schmid, R. (1982). Radioactive heat generation in rocks. Chapter 4.4 in: Hellwege, K. (Ed.) Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology. New Series, Group V. Geophysics and Space Research, vol. 1, Physical properties of rocks, suppl. Volume B. Springer-Verlag, Berlin, Heidelberg, New York, pp. 433481.Google Scholar
Coulibaly, V., Sei., J., Kouame, N, Dr., et al. (2013). Measurement of natural radioactivity in the clays consummated in Côte d’Ivoire using gamma-ray spectrometry. Journal of Applied Sciences 13, 140146. doi: 10.3923/jas.2013.140.146.Google Scholar
Dostal, J. & Capedri, S. (1976). Uranium in spinel peridotite inclusions in basalts from Sardinia. Contributions to Mineralogy and Petrology 54, 245254.CrossRefGoogle Scholar
Dye, S. T. & Guillian, E. H. (2008). Estimating terrestrial uranium and thorium by antineutrino flux measurements. PNAS 105(1), 4447. https://doi.org/10.1073/pnas.0706541105.CrossRefGoogle ScholarPubMed
Fakeha, A. A. & Hamidalddin, S. H. Q. (2012). Study of some limestone samples from Sinai and Eastern Desert, Egypt. Australian Journal of Basic and Applied Sciences 6(5), 225229.Google Scholar
Fares, S. (2017). Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake beach in Suez Canal region in Egypt. Journal of Radiation Research and Applied Sciences 10, 194203.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. (1965). Ion explosion spike mechanism for formation of charged-particle tracks in solids. Journal of Applied Physics 36, 36453652.Google Scholar
Gbadebo, A. M. & Amos, A. J. (2010). Assessment of radionuclide pollutants in bedrocks and soils from Ewekoro Cement Factory, Southwest Nigeria. Asian Journal of Applied Sciences 3, 135144. doi: 10.3923/ajaps.2010.135.144.Google Scholar
Green, D. H., Morgan, J. W. & Heier, K. S. (1968). Thorium, uranium and potassium abundances in peridotite inclusions and their host basalts. Earth and Planetary Science Letters 4, 155166.CrossRefGoogle Scholar
Groom, D. E., Mokhov, N. V. & Striganov, S. (2001). Muon stopping power in the range 10 MeV–100 TeV. Atomic Data and Nuclear Data Tables, 76(2), 137.Google Scholar
Haack, U. (1982). Radioactivity of rocks. Chapter 7 in: Hellwege, K. (Ed.) Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology. New Series, Group V. Geophysics and Space Research, Vol. 1, Physical properties of rocks, suppl. Volume B. Springer-Verlag, Berlin, Heidelberg, New York, pp. 433481.Google Scholar
Harb, S., El-Kamel, A. H., Zahran, A. M., Abbady, A. & Ahmed, F. A. (2014). Natural radioactivity measurements of basalt rocks in Aden governorate, South of Yemen on Gulf of Aden. IOSR Journal of Applied Physics 5(6), 3948.CrossRefGoogle Scholar
Helbig, K. & Treitel, S. (1996). Handbook of Geophysical Exploration, Seismic Exploration, vol. 18. Elsevier Science, Amsterdam, chapter 5.Google Scholar
Katz, L. & Penfold, A. S. (1952). Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Reviews of Modern Physics 24(1), 2844.CrossRefGoogle Scholar
Kemski, J., Klingel, R. & Siehl, A. (1996a). Classification and mapping of radon-affected areas in Germany. Environment International 22(S1): 789798. https://doi.org/10.1016/S0160-4120(96)00185-7.CrossRefGoogle Scholar
Kemski, J., Klingel, R. & Siehl, A. (1996b): Das geogene Radon-Potential. In: Siehl, A. (Ed.) Umweltradioaktivität.-, Reihe Geologie und Ökologie im Kontext, Ernst & Sohn, Berlin, pp. 179222.Google Scholar
Khater, A. E. M., Al-Mobark, L. H., Aly, A. A. & Al-Omran, A. M. (2013). Natural radionuclides in clay deposits: Concentration and dose assessment. Radiation Protection Dosimetry 156(3), 321330.CrossRefGoogle ScholarPubMed
Kuroda, P. K. (1956). On the nuclear physical stability of uranium minerals. Journal of Chemical Physics 25, 781782.CrossRefGoogle Scholar
Lambrechts, A., Foulquier, L. & Garnier-Laplace, J. (1992). Natural radioactivity in the aquatic component of the main French rivers. Radiation Protection Dosimetry 45, 253256.CrossRefGoogle Scholar
Loss, R. D., Laeter, J. R., Rosman, K. J. R., et al. (1988). The Oklo natural reactors: Cumulative fission yields and nuclear characteristics of Zone 9. Earth and Planetary Science Letters, 89, 193206.CrossRefGoogle Scholar
Malhotra, P., Shukla, P., Stephens, S., et al. (1966). Energy spectrum of primary cosmic-rays. Nature 209, 567569. https://doi.org/10.1038/209567a0.CrossRefGoogle Scholar
Mattauch, J. (1934). Zur Systematik der Isotope. Zeitschrift für Physik 91(5–6), 361371.CrossRefGoogle Scholar
Meyerhof, W. E. (1967). Elements of Nuclear Physics. McGraw-Hill, New York.Google Scholar
Naeser, C. W. (1979). Fission-track dating and geologic annealing of fission tracks. In: Jäger, E. & Hunziker, J. C. (Eds.) Lectures in Isotope Geology. Springer, Berlin, Heidelberg.Google Scholar
Najam, L. A., Al-Jomaily, F. M. & Al-Farha, E. M. (2011). Natural radioactivity levels of limestone rocks in northern Iraq using gamma spectroscopy and nuclear track detector. Journal of Radioanalytical and Nuclear Chemistry 289, 709715.CrossRefGoogle Scholar
Patrignani, C., et al. (Particle Data Group) (2017). The review of particle physics. Chinese Physics C 40: 100001.Google Scholar
Pourimani, R., Ghahri, R. & Zare, M. R. (2014). Natural radioactivity concentrations in Alvand granitic rocks in Hamadan. Radiation Protection and Environnment 37, 132142.CrossRefGoogle Scholar
Pribnow, D. F. C. & Winter, H. (1997). Radiogenic heat production in the upper third of continental crust from KTB. Geophysical Research Letters 24(3), 349352.CrossRefGoogle Scholar
Price, P. B. & Salamon, M. H. (1986). Fossil tracks of α-particle interaction in minerals. Nature 320, 425427.CrossRefGoogle Scholar
Ruffenach, J. C., Menes, J., Devillers, C., Lucas, M. & Hagelmann, R. (1976). Etudes chimique et isotopique de l’uranium du plomb, et de plusieres produits de fission dans echantillon de minerai du reacteur naturel d’Oklo. Earth and Planetary Science Letters, 30, 94108.CrossRefGoogle Scholar
Segre, E., Staub, H. & Coldrey, B. (1953). Experimental Nuclear Physics, Vol. 1. John Wiley & Sons, New York.Google Scholar
Seltzer, S. M. & Berger, M. J. (1982). Evaluation of the collision stopping power of elements and compounds for electrons and positrons. International Journal of Applied Radiation and Isotopes 33(11), 11891218.CrossRefGoogle Scholar
Shapiro, J. (1972). Radiation Protection: A Guide for Scientists and Physicians. Harvard University Press., Cambridge, MA.Google Scholar
Simov, S. D. (1989). Uranium deposits in the foothills of a granite massif in the southeastern Alps (IAEA-TC-571/1). In: Uranium deposits in magmatic and metamorphic rocks. Proceedings of Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks. IAEA, Vienna.Google Scholar
Stolz, W. (2005). Radioaktivität. Teubner Verlag, Wiesbaden, 216pp.CrossRefGoogle Scholar
Tanaka, H. K. M. & Ohshiro, M. (2016). Muographic data analysis method for medium-sized rock overburden inspections. Geoscientific Instrumentation, Methods and Data Systems 5, 427435. doi:10.5194/gi-5-427-2016.CrossRefGoogle Scholar
Travidon, G., Flouro, H., Angelopoulos, A. & Sakelliou, L. (1996). Environmental study of the radioactivity of the Spas in the island of Ikaria, Greece. Radiation Protection Dosimetry 63, 6367.Google Scholar
Turcotte, D. L. & Schubert, G. (2002). Geodynamics. Cambridge University Press, New York.CrossRefGoogle Scholar
Tzortzis, M. & Tsertos, H. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation Measurements 37, 221229.Google Scholar
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1993). Sources and Effects of Ionising Radiation, Vol. I. United Nations, New York.Google Scholar
Uosif, M. A. A., Issa, M.-A. A. & Abd El-Salam, L. M. (2015). Measurement of natural radioactivity in granites and its quartz-bearing gold at El-Fawakhir area (Central Eastern Desert), Egypt. Journal of Radiation Research and Applied Sciences 8, 393398.CrossRefGoogle Scholar
Wagner, G. A. (1998). Particle tracks. In: Age Determination of Young Rocks and Artifacts. Natural Science in Archaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03676-1_6.CrossRefGoogle Scholar
Wakita, H., Nagasawa, H., Uyeda, S. & Kuno, H. (1967). Uranium, thorium and potassium contents of possible mantle materials. Geochemical Journal 1, 183198.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×