Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T05:56:34.027Z Has data issue: false hasContentIssue false

Chapter 2 - Fetal Physiology and Fetal Pain

from Section 1

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

The uterus serves as an incubator for the fetus during pregnancy. Within this incubator, the placenta is the main connection between the mother and the fetus and is integral to the survival of the fetus as it is an important source of fetal nutrients and oxygen. The proper development of the placenta allows it to support the fetus throughout pregnancy and expulsion or removal of a normal placenta following delivery, helps prevent postpartum complications. Maintenance of uteroplacental flow during pregnancy and during fetal surgery is important for the survival of the fetus and especially for the remainder of the pregnancy following fetal surgery. Serial monitoring of umbilical artery flow, a marker for uteroplacental insufficiency, is helpful to monitor fetal well-being. Physiology of the fetus correlates with the different stages of development in different organs and in many instances changes at delivery. The prevention of pain or the effects of noxious stimuli during fetal surgery serves many benefits, which include but are not limited to, prevention of release of stress hormones which can play a role in preterm labor and also prevention of long-term neurodevelopmental effects in the fetus.

Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 17 - 36
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asakura, H. Fetal and neonatal thermoregulation. J Nippon Med Sch. 2004;71(6):360370.Google Scholar
Power, GG. Biology of temperature: The mammalian fetus. J Dev Physiol. 1989;12(6):295304.Google ScholarPubMed
Mann, DG, Nassr, AA, Whitehead, WE, Espinoza, J, Belfort, MA, Shamshirsaz, AA. Fetal bradycardia associated with maternal hypothermia after fetoscopic repair of neural tube defect. Ultrasound Obstet Gynecol. 2018;51(3):411412. doi: 10.1002/uog.17501 [doi].Google Scholar
Wassenaar, TM, Panigrahi, P. Is a foetus developing in a sterile environment? Lett Appl Microbiol. 2014;59(6):572579.Google Scholar
Gude, NM, Roberts, CT, Kalionis, B, King, RG. Growth and function of the normal human placenta. Thromb Res. 2004;114(5–6): 397407. doi: S0049-3848(04)00342-1 [pii].Google Scholar
Robbins, JR, Bakardjiev, AI. Pathogens and the placental fortress. Curr Opin Microbiol. 2012;15(1):3643. doi: 10.1016/j.mib.2011.11.006 [doi].CrossRefGoogle ScholarPubMed
Cross, JC. Placental function in development and disease. Reprod Fertil Dev. 2006;18(1–2): 7176. doi: RD05121 [pii].Google Scholar
Theofanakis, C, Drakakis, P, Besharat, A, Loutradis, D. Human chorionic gonadotropin: The pregnancy hormone and more. Int J Mol Sci. 2017;18(5):10.3390/ijms18051059. doi: E1059 [pii].Google Scholar
Benirschke, K, Kaufmann, P. Anatomy and pathology of the umbilical cord and major fetal vessels. In: Pathology of the human placenta. Springer; 2000:335–398.Google Scholar
Albrecht, ED, Pepe, GJ. Regulation of uterine spiral artery remodeling: A review. Reprod Sci. 2020;27(10):19321942. doi: 10.1007/s43032-020-00212-8 [doi].Google Scholar
Pijnenborg, R, Vercruysse, L, Hanssens, M. The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta. 2006;27(9–10):939958. doi: S0143-4004(05)00320-6 [pii].CrossRefGoogle ScholarPubMed
Lyall, F, Robson, SC, Bulmer, JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: Relationship to clinical outcome. Hypertension. 2013;62(6):10461054. doi: 10.1161/HYPERTENSIONAHA.113.01892 [doi].CrossRefGoogle ScholarPubMed
Brosens, I, Puttemans, P, Benagiano, G. Placental bed research: I. the placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437456. doi: S0002-9378(19)30746-X [pii].Google Scholar
Miller, DA, Chollet, JA, Goodwin, TM. Clinical risk factors for placenta previa-placenta accreta. Am J Obstet Gynecol. 1997;177(1):210214. doi: S0002-9378(97)70463-0 [pii].Google Scholar
Silver, RM, Branch, DW. Placenta accreta spectrum. N Engl J Med. 2018;378(16):15291536. doi: 10.1056/NEJMcp1709324 [doi].CrossRefGoogle ScholarPubMed
Berkley, EM. Prenatal diagnosis of placenta accreta: Is sonography all we need? J Ultrasound Med. 2013;32(8):13451350. doi: 10.7863/ultra.32.8.1345 [doi].Google Scholar
Comstock, CH, Bronsteen, RA. The antenatal diagnosis of placenta accreta. BJOG. 2014;121(2):171–81;discussion 181–2. doi: 10.1111/1471-0528.12557 [doi].Google Scholar
Warshak, CR, Eskander, R, Hull, AD, et al. Accuracy of ultrasonography and magnetic resonance imaging in the diagnosis of placenta accreta. Obstet Gynecol. 2006; 108 (3 Pt 1): 573581. doi: 108/3/573 [pii].CrossRefGoogle ScholarPubMed
Goh, WA, Zalud, I. Placenta accreta: Diagnosis, management and the molecular biology of the morbidly adherent placenta. J Matern Fetal Neonatal Med. 2016;29(11):17951800. doi: 10.3109/14767058.2015.1064103 [doi].Google ScholarPubMed
Publications Committee, Society for Maternal-Fetal Medicine, Belfort, MA. Placenta accreta. Am J Obstet Gynecol. 2010;203(5):430439. doi: 10.1016/j.ajog.2010.09.013 [doi].Google Scholar
Kliman, HJ. Uteroplacental blood flow. The story of decidualization, menstruation, and trophoblast invasion. Am J Pathol. 2000;157(6):17591768.Google Scholar
Soares, MJ, Chakraborty, D, Kubota, K, Renaud, SJ, Rumi, MK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014;58:247. Accessed 10/23/2020 4:46:27 PM.CrossRefGoogle ScholarPubMed
Metcalfe, J, Ueland, K. Maternal cardiovascular adjustments to pregnancy. Prog Cardiovasc Dis. 1974;16(4):363374. doi: 0033-0620(74)90028-0 [pii].Google Scholar
Ueland, K, Metcalfe, J. Circulatory changes in pregnancy. Clin Obstet Gynecol. 1975;18(3):4150. doi: 10.1097/00003081-197509000-00007 [doi].CrossRefGoogle ScholarPubMed
Ueland, K. Maternal cardiovascular dynamics. VII. intrapartum blood volume changes. Am J Obstet Gynecol. 1976;126(6):671677. doi: 0002-9378(76)90517-2 [pii].CrossRefGoogle ScholarPubMed
Hansen, V, Maigaard, S, Allen, J, Forman, A. Effects of vasoactive intestinal polypeptide and substance P on human intramyometrial arteries and stem villous arteries in term pregnancy. Placenta. 1988;9(5):501506. doi: 0143-4004(88)90022-7 [pii].Google Scholar
Skajaa, K, Forman, A, Andersson, KE. Effects of magnesium on isolated human fetal and maternal uteroplacental vessels. Acta Physiol Scand. 1990;139(4):551559. doi: 10.1111/j.1748-1716.1990.tb08958.x [doi].Google Scholar
Wolff, K, Nisell, H, Modin, A, Lundberg, JM, Lunell, NO, Lindblom, B. Contractile effects of endothelin 1 and endothelin 3 on myometrium and small intramyometrial arteries of pregnant women at term. Gynecol Obstet Invest. 1993;36(3):166171. doi: 10.1159/000292619 [doi].CrossRefGoogle ScholarPubMed
Fred, G, Liu, YA. Effect of endothelin, calcium blockade and EDRF inhibition on the contractility of human placental arteries. Acta Physiol Scand. 1994(151):477484.Google Scholar
Gagnon, R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol. 2003;110 Suppl 1: S99107. doi: S0301211503001799 [pii].Google Scholar
Mazarico, E, Molinet-Coll, C, Martinez-Portilla, RJ, Figueras, F. Heparin therapy in placental insufficiency: Systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2020;99(2):167174. doi: 10.1111/aogs.13730 [doi].Google Scholar
Harman, CR, Baschat, AA. Comprehensive assessment of fetal wellbeing: Which doppler tests should be performed? Curr Opin Obstet Gynecol. 2003;15(2):147157. doi: 10.1097/00001703-200304000-00010 [doi].CrossRefGoogle ScholarPubMed
Alfirevic, Z, Stampalija, T, Dowswell, T. Fetal and umbilical doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6:CD007529. doi: 10.1002/14651858.CD007529.pub4 [doi].Google Scholar
Sinskey, JL, Rollins, MD, Whitlock, E, et al. Incidence and management of umbilical artery flow abnormalities during open fetal surgery. Fetal Diagn Ther. 2018;43(4):274283. doi: 10.1159/000477963 [doi].Google Scholar
Olutoye, OO, Johnson, MP, Coleman, BG, Crombleholme, TM, Adzick, NS, Flake, AW. Abnormal umbilical cord doppler sonograms may predict impending demise in fetuses with sacrococcygeal teratoma. A report of two cases. Fetal Diagn Ther. 2004;19(1):3539. doi: 10.1159/000074257 [doi].CrossRefGoogle ScholarPubMed
Mari, G, Deter, RL, Carpenter, RL, et al. Noninvasive diagnosis by doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. collaborative group for doppler assessment of the blood velocity in anemic fetuses. N Engl J Med. 2000;342(1):914. doi: 10.1056/NEJM200001063420102 [doi].Google Scholar
Moise, KJ, Jr., Argoti, PS. Management and prevention of red cell alloimmunization in pregnancy: A systematic review. Obstet Gynecol. 2012;120(5):11321139. doi: http://10.1097/AOG.0b013e31826d7dc1 [doi].Google Scholar
Gil Guevara, E, Pazos, A, Gonzalez, O, Carretero, P, Molina, FS. Doppler assessment of patients with twin-to-twin transfusion syndrome and survival following fetoscopic laser surgery. Int J Gynaecol Obstet. 2017;137(3):241245. doi: 10.1002/ijgo.12143 [doi].CrossRefGoogle ScholarPubMed
Lumbers, ER. Effects of drugs on uteroplacental blood flow and the health of the foetus. Clin Exp Pharmacol Physiol. 1997;24(11):864868. doi: 10.1111/j.1440-1681.1997.tb02706.x [doi].Google Scholar
Musk, GC, Netto, JD, Maker, GL, Trengove, RD. Transplacental transfer of medetomidine and ketamine in pregnant ewes. Lab Anim. 2012;46(1):4650. doi: 10.1258/la.2011.010179 [doi].Google Scholar
Ngamprasertwong, P, Dong, M, Niu, J, Venkatasubramanian, R, Vinks, A, Shamdasimvam, S. Propofol pharmacokinetics and estimation of fetal propofol exposure during mid-gestational fetal surgery: A maternal-fetal sheep model. PLOS One. 2016;11(1):e0146563.Google Scholar
He, YL, Tsujimoto, S, Tanimoto, M, Okutani, R, Murakawa, K, Tashiro, C. Effects of protein binding on the placental transfer of propofol in the human dually perfused cotyledon in vitro. Br J Anaesth. 2000;85(2):281286. doi: S0007-0912(17)37318-X [pii].Google Scholar
He, YL, Seno, H, Tsujimoto, S, Tashiro, C. The effects of uterine and umbilical blood flows on the transfer of propofol across the human placenta during in vitro perfusion. Anesth Analg. 2001;93(1):151156. doi: 10.1097/00000539-200107000-00030 [doi].CrossRefGoogle ScholarPubMed
Ueki, R, Tatara, T, Kariya, N, Shimode, N, Hirose, M, Tashiro, C. Effect of decreased fetal perfusion on placental clearance of volatile anesthetics in a dual perfused human placental cotyledon model. J Anesth. 2014;28(4):635638. doi: 10.1007/s00540-013-1777-3 [doi].CrossRefGoogle Scholar
Koren, G, Ornoy, A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharmacol. 2018;11(4):373385. doi: 10.1080/17512433.2018.1425615 [doi].CrossRefGoogle ScholarPubMed
Gregory, MA, Davidson, DG. Plasma etomidate levels in mother and fetus. Anaesthesia. 1991;46(9):716718. doi: 10.1111/j.1365-2044.1991.tb09762.x [doi].Google Scholar
Satoh, D, Iwatsuki, N, Naito, M, Sato, M, Hashimoto, Y. Comparison of the placental transfer of halothane, enflurane, sevoflurane, and isoflurane during cesarean section. J Anesth. 1995;9(3):220223. doi: 10.1007/BF02479867 [doi].Google Scholar
de Barros Duarte, L, Moisés, ECD, Cavalli, RC, Lanchote, VL, Duarte, G, Da Cunha, SP. Distribution of fentanyl in the placental intervillous space and in the different maternal and fetal compartments in term pregnant women. Eur J Clin Pharmacol. 2009;65(8):803808.Google Scholar
Soens, M, Tsen, L. Fetal physiology. In: Chestnut, D, Wong, C, Tsen, L, et al, eds. Chestnut’s Obstetric Anesthesia: Principles and Practice. Fifth ed. USA: Saunders; 2014:7591.Google Scholar
Cadkin, AV, McAlpin, J. Detection of fetal cardiac activity between 41 and 43 days of gestation. J Ultrasound Med. 1984;3(11):499503. doi: 10.7863/jum.1984.3.11.499 [doi].Google Scholar
Kiserud, T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10(6):493503. doi: S1744-165X(05)00068-5 [pii].Google Scholar
Grant, DA, Fauchere, JC, Eede, KJ, Tyberg, JV, Walker, AM. Left ventricular stroke volume in the fetal sheep is limited by extracardiac constraint and arterial pressure. J Physiol. 2001;535(Pt1): 231239. doi: PHY_12256 [pii].Google Scholar
Kirkpatrick, SE, Pitlick, PT, Naliboff, J, Friedman, WF. Frank-Starling relationship as an important determinant of fetal cardiac output. Am J Physiol. 1976;231(2):495500. doi: 10.1152/ajplegacy.1976.231.2.495 [doi].Google Scholar
Weil, SR, Russo, PA, Heckman, JL, Balsara, RK, Pasiecki, V, Dunn, JM. Pressure-volume relationship of the fetal lamb heart. Ann Thorac Surg. 1993;55(2):470475. doi: 0003-4975(93)91021-E [pii].Google Scholar
Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980;238(1):H8086. doi: 10.1152/ajpheart.1980.238.1.H80 [doi].Google Scholar
Thornburg, KL, Morton, MJ. Filling and arterial pressures as determinants of RV stroke volume in the sheep fetus. Am J Physiol. 1983;244(5):H656663. doi: 10.1152/ajpheart.1983.244.5.H656 [doi].Google Scholar
Rudolph, AM, Heymann, MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26(3):289299. doi: 10.1161/01.res.26.3.289 [doi].CrossRefGoogle ScholarPubMed
Papp, JG. Autonomic responses and neurohumoral control in the human early antenatal heart. Basic Res Cardiol. 1988;83(1):29. doi: 10.1007/BF01907099 [doi].Google Scholar
Hildreth, V, Anderson, RH, Henderson, DJ. Autonomic innervation of the developing heart: Origins and function. Clin Anat. 2009;22(1):3646. doi: 10.1002/ca.20695 [doi].Google Scholar
Brace, RA. Fetal blood volume responses to intravenous saline solution and dextran. Am J Obstet Gynecol. 1983;147(7):777781. doi: 0002-9378(83)90036-4 [pii].Google Scholar
Nicolaides, KH, Clewell, WH, Rodeck, CH. Measurement of human fetoplacental blood volume in erythroblastosis fetalis. Am J Obstet Gynecol 1987;151(1):5053.Google Scholar
Brace, R. Regulation of blood volume in utero. In: Hanson, M, Spencer, J, Rodeck, C, eds. The circulation, fetus and neonate. UK: Cambridge University Press; 1993:7599.Google Scholar
Johnson, P, Maxwell, DJ, Tynan, MJ, Allan, LD. Intracardiac pressures in the human fetus. Heart. 2000;84(1):5963.Google Scholar
Schoenwolf, GC, Bleyl, SB, Brauer, PR, Francis-West, PH, eds. Larsen’s Human Embryology. Fifth ed. Philadelphia, PA: Elsevier; 2015.Google Scholar
Burri, P. Postnatal lung development and modulation of lung growth. In: Physiology of the Fetal and Neonatal Lung. Springer; 1987:3959.CrossRefGoogle Scholar
Deprest, J, Jani, J, Cannie, M, et al. Prenatal intervention for isolated congenital diaphragmatic hernia. Curr Opin Obstet Gynecol. 2006;18(3):355367. doi: 10.1097/01.gco.0000193000.12416.80.Google Scholar
Merrill, JD, Ballard, RA. Antenatal hormone therapy for fetal lung maturation. Clin Perinatol. 1998;25(4):983997.Google Scholar
Roberts, D, Brown, J, Medley, N, Dalziel, SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454. doi: 10.1002/14651858.CD004454.pub3 [doi].Google Scholar
Stubblefield, PG. Pulmonary edema occurring after therapy with dexamethasone and terbutaline for premature labor: A case report. Am J Obstet Gynecol. 1978;132(3):341342. doi: 0002-9378(78)90907-9 [pii].Google Scholar
Arant, BS, Jr. Postnatal development of renal function during the first year of life. Pediatr Nephrol. 1987;1(3):308313. doi: 10.1007/BF00849229 [doi].Google Scholar
Modena, AB, Fieni, S. Amniotic fluid dynamics. Acta Biomed. 2004;75 Suppl 1:1113.Google Scholar
Anand, KJ, Coskun, V, Hrivikraman, KV, Nemeroff, CB, Plotsky, PM. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav. 1999;66(4):627637.Google Scholar
Bhutta, AT, Rovnaghi, C, Simpson, PM, Gossett, JM, Scalzo, FM, Anand, KJ. Interactions of inflammatory pain and morphine in infant rats: Long-term behavioral effects. Physiol Behav. 2001;73(1–2):5158.Google Scholar
Radunovic, N, Lockwood, CJ, Ghidini, A, Alvarez, M, Berkowitz, RL. Is fetal blood sampling associated with increased beta-endorphin release into the fetal circulation? Am J Perinatol. 1993;10(2):112114. doi: 10.1055/s-2007-994640.CrossRefGoogle ScholarPubMed
Giannakoulopoulos, X, Teixeira, J, Fisk, N, Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 1999; 45 (4 Pt 1): 494499.Google Scholar
Teixeira, JM, Glover, V, Fisk, NM. Acute cerebral redistribution in response to invasive procedures in the human fetus. Obstet Gynecol. 1999;181(4):10181025.Google Scholar
Carrasco, GA, Van de Kar, LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1–3):235272. doi: S0014299903012858 [pii].Google Scholar
Anand, K. Sippell, WG, and Aynsley-Green, A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1:6266.Google Scholar
Anand, K. Neonatal analgesia and anesthesia. Introduction. Semin Perinatol. 1998;22(5):347.Google Scholar
Anand, KJ, Maze, M. Fetuses, fentanyl, and the stress response: Signals from the beginnings of pain? Anesthesiology. 2001;95(4):823825. doi: 10.1097/00000542-200110000-00006 [doi].Google Scholar
Lee, SJ, Ralston, HJP, Drey, EA, Partridge, JC, Rosen, MA. Fetal pain: A systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947954.Google Scholar
Mrzljak, L, Uylings, HB, Van Eden, GG, Judáš, M. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res. 1991 ;85:185222.Google Scholar
Krmpotić-Nemanić, J, Kostović, I, Kelović, Z, Nemanić, Đ, Mrzljak, L. Development of the human fetal auditory cortex: Growth of afferent fibres. Acta Anat (Basel). 1983;116(1):6973.Google Scholar
Kostovic, I, Rakic, P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci. 1984;4(1):2542.Google Scholar
Van de Velde, M, De Buck, F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn Ther. 2012;31(4):201209.Google Scholar
Kostovic, I, Judas, M. Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec. 2002;267(1):16. doi: 10.1002/ar.10069 [doi].Google Scholar
Clancy, RR, Bergqvist, AGC, Dlugos, DJ. Neonatal electroencephalography. In: Ebersole, JS, Pedley, TA, eds. Current Practice of Clinical Electroencephalography. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003:160234.Google Scholar
Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol. 1985;2(2):89103. doi: 10.1097/00004691-198504000-00001 [doi].Google Scholar
Fisk, NM, Gitau, R, Teixeira, JM, Giannakoulopoulos, X, Cameron, AD, Glover, VA. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828835.Google Scholar
Schenone, MH, Mari, G. The MCA doppler and its role in the evaluation of fetal anemia and fetal growth restriction. Clin Perinatol. 2011;38(1):83102, vi. doi: 10.1016/j.clp.2010.12.003 [doi].Google Scholar
Kehlet, H, Brandt, MR, Hansen, AP, Alberti, KG. Effect of epidural analgesia on metabolic profiles during and after surgery. Br J Surg. 1979;66(8):543546. doi: 10.1002/bjs.1800660807 [doi].Google Scholar
Johnston, CC, Stevens, BJ. Experience in a neonatal intensive care unit affects pain response. Pediatrics. 1996;98(5):925930.Google Scholar
Lowery, CL, Hardman, MP, Manning, N, Hall, RW, Anand, KJ, Clancy, B. Neurodevelopmental changes of fetal pain. Semin Perinatol. 2007;31(5):275282. doi: S0146-0005(07)00068-7 [pii].Google Scholar
Robinson, S, Gregory, GA. Fentanyl-air-oxygen anesthesia for ligation of patent ductus arteriosus in preterm infants. Anesth Analg. 1981;60(5):331334.Google Scholar
Van de Velde, M, Van Schoubroeck, D, Lewi, LE, et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: A randomized, double-blind comparison with diazepam. Anesth Analg. 2005;101(1):251–8. doi: 10.1213/01.ANE.0000156566.62182.AB.Google Scholar
Danzer, E, Sydorak, RM, Harrison, MR, Albanese, CT. Minimal access fetal surgery. Eur J Obstet Gynecol Reprod Biol. 2003;108(1):313. doi: S0301211502004219 [pii].Google Scholar
Golombeck, K, Ball, RH, Lee, H, et al. Maternal morbidity after maternal-fetal surgery. Obstet Gynecol. 2006;194(3):834839.Google Scholar
Pomini, F, Noia, G, Mancuso, S. Hypothetical role of prostaglandins in the onset of preterm labor after fetal surgery. Fetal Diagn Ther. 2007;22(2):9499. doi: 97104 [pii].Google Scholar
Ruiz, RJ, Dwivedi, AK, Mallawaarachichi, I, et al. Psychological, cultural and neuroendocrine profiles of risk for preterm birth. BMC Pregnancy Childbirth. 2015;15:204–015–0640-y. doi: 10.1186/s12884-015-0640-y [doi].Google Scholar
Jevtovic-Todorovic, V, Hartman, RE, Izumi, Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876882. doi: 23/3/876 [pii].Google Scholar
Coleman, K, Robertson, ND, Dissen, GA, et al. Isoflurane anesthesia has long-term consequences on motor and behavioral development in infant rhesus macaques. Anesthesiology. 2017;126(1):7484. doi: 10.1097/ALN.0000000000001383 [doi].Google Scholar
Rizzi, S, Carter, LB, Ori, C, Jevtovic-Todorovic, V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol. 2008;18(2):198210. doi: 10.1111/j.1750-3639.2007.00116.x.Google Scholar
Loepke, AW, Soriano, SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):16811707. doi: 10.1213/ane.0b013e318167ad77 [doi].Google Scholar
Olutoye, OA, Sheikh, F, Zamora, IJ, et al. Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain. Am J Obstet Gynecol. 2016;214(4):542.e1–542.e8. doi: 10.1016/j.ajog.2015.10.927 [doi].Google Scholar
Olutoye, OA, Cruz, SM, Akinkuotu, AC, et al. Fetal surgery decreases anesthesia-induced neuroapoptosis in the mid-gestational fetal ovine brain. Fetal Diagn Ther. 2019;46(2):111118. doi: 10.1159/000491925 [doi].Google Scholar
Sprung, J, Flick, RP, Wilder, RT, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;111(2):302310. doi: 10.1097/ALN.0b013e3181adf481 [doi].Google Scholar
Davidson, AJ, Disma, N, de Graaff, JC, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): An international multicentre, randomised controlled trial. Lancet. 2016;387(10015):239250. doi: 10.1016/S0140-6736(15)00608-X [doi].Google Scholar
McCann, ME, de Graaff, JC, Dorris, L, et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393(10172):664677. doi: S0140-6736(18)32485-1 [pii].Google Scholar
United States Food and Drug Administration. FDA drug safety communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women. Updated 2017. Accessed 07/06/2017.Google Scholar
Andropoulos, DB. Effect of anesthesia on the developing brain: Infant and fetus. Fetal Diagn Ther. 2018;43(1):111. doi: 10.1159/000475928 [doi].Google Scholar
Olutoye, OA, Baker, BW, Belfort, MA, Olutoye, OO. Food and drug administration warning on anesthesia and brain development: Implications for obstetric and fetal surgery. Am J Obstet Gynecol. 2018;218(1):98102. doi: S0002-9378(17)31094-3 [pii].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×