Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T10:52:20.530Z Has data issue: false hasContentIssue false

Chapter 8 - Species Interactions and Regime Shifts in Intertidal and Subtidal Rocky Reefs of the Mediterranean Sea

Published online by Cambridge University Press:  07 September 2019

Stephen J. Hawkins
Affiliation:
Marine Biological Association of the United Kingdom, Plymouth
Katrin Bohn
Affiliation:
Natural England
Louise B. Firth
Affiliation:
University of Plymouth
Gray A. Williams
Affiliation:
The University of Hong Kong
Get access

Summary

The Mediterranean Sea is a hotspot of biodiversity, originating as the result of various geological, climatic and hydrological transformations, including alternating glacial and interglacial periods during the Quaternary. There is a long tradition of descriptive studies in the Mediterranean Sea, whereas manipulative experiments have been introduced in the 1990s with an initial focus on biological interactions. Experiments are now increasingly used to examining species interactions in relation to regional stressors and global threats such as ocean warming, acidification, extreme climate events and biological invasions. We offer a synthesis of this research using regime shifts as a unifying concept. We start with a brief introduction to regime shifts and the underlying theory, followed by a discussion of ongoing regime shifts in the Mediterranean, such as the transition from macroalgal forests to turf-dominated assemblages and the collapse of sessile organisms in response to heatwaves, species invasions, infectious diseases and pest metabolites. We then examine the implications of threshold-like biological responses and hysteresis for habitat restoration and rehabilitation. We conclude with an overview of the research that is needed to understand the interplay between species interactions and rapid environmental change, for which the Mediterranean is providing several dramatic examples.

Type
Chapter
Information
Interactions in the Marine Benthos
Global Patterns and Processes
, pp. 190 - 213
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, A., Halpern, B. S., Reed, D. C. et al. (2016). Upgrading marine ecosystem restoration using ecological-social concepts. BioScience, 66, 15616310.CrossRefGoogle ScholarPubMed
Agnetta, D., Badalamenti, F., Ceccherelli, G., Di Trapani, F., Bonaviri, C. and Gianguzza, P. (2015). Role of two co-occurring Mediterranean sea urchins in the formation of barren from Cystoseira canopy. Estuarine Coastal and Shelf Science, 152, 73–7.Google Scholar
Airoldi, L. (1998). Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology, 79, 2759–70.Google Scholar
Airoldi, L. (2000a). Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology, 81, 798814.Google Scholar
Airoldi, L. (2000b). Responses of algae with different life histories to temporal and spatial variability of disturbance in subtidal reefs. Marine Ecology Progress Series, 195, 8192Google Scholar
Airoldi, L. (2003). The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology, 41, 161236Google Scholar
Airoldi, L., Ballesteros, E., Buonuomo, R. et al. (2014) Marine forests at risk: solutions to halt the loss and promote the recovery of Mediterranean canopy-forming seaweeds 2014. Regional Activity Centre for Specially Protected Areas (RAC/SPA). In Proceedings of the 5th Mediterranean Symposium on Marine Vegetation.Google Scholar
Airoldi, L. and Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology, 45, 345405.Google Scholar
Airoldi, L. and Cinelli, F. (1997). Effect of sedimenentation on subtidal macroalgal assemblages: an experimental study from a mediterranean roky shore. Journal of Experimental Marine Biology and Ecology, 215, 269–88.CrossRefGoogle Scholar
Airoldi, L., Fabiano, M. and Cinelli, F. (1996). Sediment deposition and movement over a turf assemblage in a shallow rocky coastal area of the Ligurian Sea. Marine Ecology Progress Series, 133, 241–51.Google Scholar
Airoldi, L. and Hawkins, S. J. (2007). Negative effects of sediment deposition on grazing activity and survival of the limpet Patella vulgata. Marine Ecology Progress Series, 332, 235–40.Google Scholar
Airoldi, L., Rindi, F. and Cinelli, F. (1995). Structure, seasonal dynamics and reproductive phenology of a filamentous turf assemblage on a sediment influenced, rocky subtidal shore. Botanica Marina, 38, 227–37.Google Scholar
Alexander, J. M., Diez, J. M., Hart, S. P. and Levine, J. M. (2016). When climate reshuffles competitors: a call for experimental macroecology. Trends in Ecology and Evolution, 31, 831–41.CrossRefGoogle Scholar
Alker, A. P., Smith, G. W. and Kim, K. (2001). Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia, 460, 105–11.CrossRefGoogle Scholar
Andrews, J. D. (1988). Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. American Fisheries Society Special Publication, 18, 4763.Google Scholar
Azzurro, E. and Andaloro, F. (2004). A new settled population of the lessepsian migrant Siganus luridus (Pisces: Siganidae) in Linosa Island – Sicily Strait. Journal of the Marine Biological Association of the United Kingdom, 84, 819–21.Google Scholar
Balata, D., Piazzi, L. and Cinelli, F. (2004). A comparison among assemblages in areas invaded by Caulerpa taxifolia and C. racemosa on a subtidal Mediterranean rocky bottom. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I, 25, 113.CrossRefGoogle Scholar
Benedetti-Cecchi, L. (2000a). Predicting direct and indirect interactions during succession in a mid-littoral rocky shore assemblage. Ecological Monographs, 70, 4572.CrossRefGoogle Scholar
Benedetti-Cecchi, L. (2000b). Priority effects, taxonomic resolution, and the prediction of variable patterns of colonisation of algae in littoral rock pools. Oecologia, 123, 265–74.CrossRefGoogle ScholarPubMed
Benedetti-Cecchi, L. (2000c). Variance in ecological consumer-resource interactions. Nature, 407, 370–4.Google Scholar
Benedetti-Cecchi, L. (2003). The importance of the variance around the mean effect size of ecological processes. Ecology, 84, 2335–46.Google Scholar
Benedetti-Cecchi, L., Bertocci, I., Vaselli, S. and Maggi, E. (2006). Temporal variance reverses the impact of high mean intensity of stress in climate change experiments. Ecology, 87, 2489–99.Google Scholar
Benedetti-Cecchi, L. and Cinelli, F. (1992a). Canopy removal experiments in Cystoseira-dominated rockpools from the western coast of the Mediterranean (Ligurian Sea). Journal of Experimental Marine Biology and Ecology, 155, 6983.Google Scholar
Benedetti-Cecchi, L. and Cinelli, F. (1992b). Effects of canopy cover, herbivores and substratum type on patterns of Cystoseira spp. settlement and recruitment in littoral rockpools. Marine Ecology Progress Series, 90, 183–91.Google Scholar
Benedetti-Cecchi, L., Pannacciulli, F., Bulleri, F. et al. (2001a). Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology-Progress Series, 214, 137–50.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Pannacciulli, F., Bulleri, F. et al. (2001b). Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series, 214, 137–50.Google Scholar
Benedetti-Cecchi, L., Tamburello, L., Bulleri, F., Maggi, E., Gennusa, V. and Miller, M. (2012). Linking patterns and processes across scales: the application of scale-transition theory to algal dynamics on rocky shores. Journal of Experimental Biology, 215, 977–85.Google Scholar
Benedetti-Cecchi, L., Tamburello, L., Maggi, E. and Bulleri, F. (2015). Experimental perturbations modify the performance of early warning indicators of regime shift. Current Biology, 25, 1867–72.Google Scholar
Benedetti-Cecchi, L., Vaselli, S., Maggi, E. and Bertocci, I. (2005). Interactive effects of spatial variance and mean intensity of grazing on algal cover in rock pools. Ecology, 86, 2212–22.CrossRefGoogle Scholar
Bertocci, I., Maggi, E., Vaselli, S. and Benedetti-Cecchi, L. (2005). Contrasting effects of mean intensity and temporal variation of disturbance on a rocky seashore. Ecology, 86, 2061–7.Google Scholar
Bianchelli, S., Buschi, E., Danovaro, R. and Pusceddu, A. (2016). Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna. Scientific Reports, 6, 34544, http://dx.doi.org/10.1038/srep34544.Google Scholar
Bianchi, C. N. and Morri, C. (2000). Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin, 40, 367–76.Google Scholar
Bonaviri, C., Fernandez, T. V., Fanelli, G., Badalamenti, F. and Gianguzza, P. (2011). Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Marine Biology, 158, 2505–13.CrossRefGoogle Scholar
Bouillon, J., Medel, M. D., Pags, F., Gili, J. M., Boero, F. and Gravili, C. (2004). Fauna of the Mediterranean Hydrozoa. Scientia Marina, 68, 39206.CrossRefGoogle Scholar
Breitburg, D. L., Craig, J. K., Fulford, R. S. et al. (2009). Nutrient enrichment and fisheries exploitation: interactive effects on estuarine living resources and their management. Hydrobiologia, 629, 3147.Google Scholar
Breitburg, D. L. and Reidel, G. F. (2013). Multiple Stressors in Marine Systems. Norse, E. and Crowder, L., eds. Island Press, Washington, DC, 167–82.Google Scholar
Brown, C. J., Saunders, M. I., Possingham, H. P. and Richardson, A. J. (2013). Managing for interactions between local and global stressors of ecosystems. PLoS ONE, 8, http://doi.org/10.1371/journal.pone.0065765.Google Scholar
Bulleri, F. (2013). Grazing by sea urchins at the margins of barren patches on Mediterranean rocky reefs. Marine Biology, 160, 2493–501.CrossRefGoogle Scholar
Bulleri, F., Alestra, T., Ceccherelli, G. et al. (2011). Determinants of Caulerpa racemosa distribution in the north-western Mediterranean. Marine Ecology-Progress Series, 431, 5567.Google Scholar
Bulleri, F., Badalamenti, F., Ivesa, L. et al. (2016). The effects of an invasive seaweed on native communities vary along a gradient of land-based human impacts. PeerJ, 4, e1795.Google Scholar
Bulleri, F., Balata, D., Bertocci, I., Tamburello, L. and Benedetti-Cecchi, L. (2010). The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change. Ecology, 91, 2205–12.Google Scholar
Bulleri, F. and Benedetti-Cecchi, L. (2008). Facilitation of the introduced green alga Caulerpa racemosa by resident algal turfs: experimental evaluation of underlying mechanisms. Marine Ecology-Progress Series, 364, 7786.Google Scholar
Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. and Hawkins, S. J. (2002). The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology, 267, 89106.Google Scholar
Bulleri, F., Benedetti-Cecchi, L., Ceccherelli, G. and Tamburello, L. (2017). A few is enough: a low cover of a non-native seaweed reduces the resilience of Mediterranean macroalgal stands to disturbances of varying extent. Biological Invasions, 19, 2291–305.Google Scholar
Bulleri, F., Benedetti-Cecchi, L. and Cinelli, F. (1999). Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. Journal of Experimental Marine Biology and Ecology, 241, 8195.Google Scholar
Bulleri, F., Benedetti-Cecchi, L., Cusson, M. et al. (2012). Temporal stability of European rocky shore assemblages: variation across a latitudinal gradient and the role of habitat-formers. Oikos, 121, 1801–9.Google Scholar
Bulleri, F., Tamburello, L. and Benedetti-Cecchi, L. (2009). Loss of consumers alters the effects of resident assemblages on the local spread of an introduced macroalga. Oikos, 118, 269–79.Google Scholar
Buonomo, R., Assis, J., Fernandes, F., Engelen, A. H., Airoldi, L. and Serrao, E. A. (2017). Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea. Molecular Ecology, 26, 766–80.Google Scholar
Burreson, E. M. A. (1996). Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. Journal of Shellfish Research, 15, 1734.Google Scholar
Carpenter, S. R. and Brock, W. A. (2006). Rising variance: a leading indicator of ecological transition. Ecology Letters, 9, 308–15.Google Scholar
Carpenter, S. R., Cole, J. J., Pace, M. L. et al. (2011). Early warnings of regime shifts: a whole-ecosystem experiment. Science, 332, 1079–82.Google Scholar
Ceccherelli, G., Pinna, S., Cusseddu, V. and Bulleri, F. (2014). The role of disturbance in promoting the spread of the invasive seaweed Caulerpa racemosa in seagrass meadows. Biological Invasions, 16, 2737–45.Google Scholar
Cerrano, C., Bavestrello, G., Bianchi, C. N. et al. (2000). A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecology Letters, 3, 284–93.CrossRefGoogle Scholar
Chapman, A. R. O. (1995). Functional ecology of Fucoid algae – 23 years of progress. Phycologia, 34, 132.Google Scholar
Chevaldonne, P. and Lejeusne, C. (2003). Regional warming-induced species shift in north-west Mediterranean marine caves. Ecology Letters, 6, 371–9.CrossRefGoogle Scholar
Claudet, J. and Fraschetti, S. (2010). Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biological Conservation, 143, 2195–206.Google Scholar
Coll, M., Piroddi, C. and Albouy, C. a. (2012). The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecology and Biogeography, 21, 465–80.Google Scholar
Coll, M., Piroddi, C., Steenbeek, J. et al. (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE, 5, e11842.Google Scholar
Connell, S. D., Foster, M. S. and Airoldi, L. (2014). What are algal turfs? Towards a better description of turfs. Marine Ecology Progress Series, 495, 299307.CrossRefGoogle Scholar
Crain, C. M., Kroeker, K. and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 1304–15.Google Scholar
Crowe, T. P., Cusson, M., Bulleri, F. et al. (2013). Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE, 8, e66238.Google Scholar
Dai, L., Korolev, K. S. and Gore, J. (2013). Slower recovery in space before collapse of connected populations. Nature, 496, 355–58.Google Scholar
Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012). Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175–7.Google Scholar
Dakos, V., Carpenter, S. R., Brock, W. A. et al. (2012). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE, 7, http://dx.doi.org/10.1371/journal.pone.0041010.Google Scholar
Dakos, V., van Nes, E. H. and Scheffer, M. (2013). Flickering as an early warning signal. Theoretical Ecology, 6, 309–17.CrossRefGoogle Scholar
Daniel, B., Piro, S., Charbonnel, E., Francour, P. and Letourneur, Y. (2009). Lessepsian rabbitfish Siganus luridus reached the French Mediterranean coasts. Cybium, 33, 163–4Google Scholar
Danovaro, R., Company, J. B., Corinaldesi, C. et al. (2010). Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE, 5, http://dx.doi.org/10.1371/journal.pone.0011832.CrossRefGoogle ScholarPubMed
Danovaro, R., Dell’Anno, A., Fabiano, M., Pusceddu, A. and Tselepides, A. (2001). Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends in Ecology and Evolution, 16, 505–10.Google Scholar
Dayton, P. K. (1985). Ecology of Kelp Communities. Annual Review of Ecology and Systematics, 16, 215–45.CrossRefGoogle Scholar
deYoung, B., Barange, M., Beaugrand, G. et al. (2008). Regime shifts in marine ecosystems: detection, prediction and management. Trends in Ecology and Evolution, 23, 402–9.CrossRefGoogle ScholarPubMed
Di Camillo, C. G. and Cerrano, C. (2015). Mass mortality events in the NW Adriatic Sea: phase shift from slow- to fast-growing organisms. PLoS ONE, 10, e0126689.CrossRefGoogle ScholarPubMed
Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. and Gemmell, N. J. (2005). Are invasive species the drivers of ecological change? Trends in Ecology and Evolution, 20, 470–4.Google Scholar
Drake, J. M. and Griffen, B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature, 467, 456–9.Google Scholar
Elliott, M., Burdon, D., Hemingway, K. L. and Apitz, S. E. (2007). Estuarine, coastal and marine ecosystem restoration: confusing management and science – a revision of concepts. Estuarine, Coastal and Shelf Science, 74, 349–66.Google Scholar
Falace, A., Zanelli, E. and Bressan, G. (2006). Algal transplantation as a potential tool for artificial reef management and environmental mitigation. Bulletin of Marine Science, 78, 161–6.Google Scholar
Felline, S., Caricato, R., Cutignano, A. et al. (2012). Subtle effects of biological invasions: Cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS ONE, 7, http://dx.doi.org/10.1371/journal.pone.0038763.Google Scholar
Ferrario, F., Iveša, L., Jaklin, A., Perkol-Finkel, S. and Airoldi, L. (2016). The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. Journal of Applied Ecology, 53, 1624.Google Scholar
Ferrier-Pagès, C., Tambutté, E., Zamoum, T. et al. (2009). Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. The Journal of experimental biology, 212, 3007–15.Google Scholar
Firth, L. B., Thompson, R. C., Bohn, K. et al. (2014). Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coastal Engineering, 87, 122–35.Google Scholar
Ford, S. E. and Chintala, M. M. (2006). Northward expansion of a marine parasite: Testing the role of temperature adaptation. Journal of Experimental Marine Biology and Ecology, 339, 226–35.Google Scholar
Gaertner, M., Biggs, R., Te Beest, M., Hui, C., Molofsky, J. and Richardson, D. M. (2014). Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Diversity and Distributions, 20, 733–44.Google Scholar
Galil, B. S., Boero, F., Campbell, M. L. et al. (2015). ‘Double trouble’: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biological Invasions, 17, 973–6.Google Scholar
Galil, B. S., Marchini, A., Occhipinti-Ambrogi, A. et al. (2014). International arrivals: widespread bioinvasions in European Seas. Ethology Ecology and Evolution, 26, 152–71.Google Scholar
Garrabou, J., Coma, R., Bensoussan, N., Bally, M. and Chevaldonn, (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology, 15, 1090–103.Google Scholar
Giaccone, G. and Calvo, S. (1980). Restaurazione del manto vegetale mediante trapianto di Posidonia oceanica (Linneo) Delile. Risultati preliminari. Memorie di Biologia Marina e Oceanografia, Suppl., 207–11.Google Scholar
Gianni, F., Bartolini, F., Airoldi, L. et al. (2013). Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Advances in Oceanography and Limnology, 4, 83101.Google Scholar
Gilmore, R. (1981). Catastrophe Theory for Scientists and engineers. John Wiley and Sons, New York.Google Scholar
Gomez, D. K., Matsuoka, S., Mori, K. I., Okinaka, Y., Park, S. C. and Nakai, T. (2009). Genetic analysis and pathogenicity of betanodavirus isolated from wild redspotted grouper Epinephelus akaara with clinical signs. Archives of Virology, 154, 343–6.CrossRefGoogle ScholarPubMed
Gorbi, S., Giuliani, M. E., Pittura, L. et al. (2014). Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Marine Environmental Research, 96, 211.Google Scholar
Guarnieri, G., Bevilacqua, S., Vignes, F. and Fraschetti, S. (2014). Grazer removal and nutrient enrichment as recovery enhancers for overexploited rocky subtidal habitats. Oecologia, 175, 959–70.Google Scholar
Halpern, B. S., McLeod, K. L., Rosenberg, A. A. and Crowder, L. B. (2008). Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean and Coastal Management, 51, 203–11.Google Scholar
Harrold, C. and Reed, D. C. (1985). Food availability, sea-urchin grazing, and kelp forest community structure. Ecology, 66, 1160–9.Google Scholar
Harvell, C. D., Kim, K., Burkholder, J. M. et al. (1999). Emerging marine diseases-climate links and anthropogenic factors. Science, 285, 1505–10.Google Scholar
Hata, N., Okinaka, Y., Sakamoto, T., Iwamoto, T. and Nakai, T. (2007). Upper temperature limits for the multiplication of betanodaviruses. Fish Pathology, 42, 225–8.Google Scholar
Hereu, B. (2006). Depletion of palatable algae by sea urchins and fishes in a Mediterranean subtidal community. Marine Ecology-Progress Series, 313, 95103.Google Scholar
Hobbs, R. J., Davis, M. A., Slobodkin, L. B. et al. (2004). Restoration ecology: the challenge of social values and expectations. Frontiers in Ecology and the Environment, 2, 43.Google Scholar
Hobbs, R. J., Higgs, E. and Harris, J. A. (2009). Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution, 24, 599605.Google Scholar
Huete-Stauffer, C. A., Vielmini, I. B., Palma, M. A. et al. (2011). Paramuricea clavata (Anthozoa, Octocorallia) loss in the marine protected area of Tavolara (Sardinia, Italy) due to a mass mortality event. Marine Ecology, 32, 107–16.Google Scholar
Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. and Airoldi, L. (2009). Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata. Marine Biology, 156, 1223–31.CrossRefGoogle Scholar
Iwamoto, T., Nakai, T., Mori, K., Arimoto, M. and Furusawa, I. (2000). Cloning of the fish cell line SSN-1 for piscine nodaviruses. Diseases of Aquatic Organisms, 43, 81–9.Google Scholar
Kara, H. M., Chaoui, L., Derbal, F. et al. (2014). Betanodavirus-associated mortalities of adult wild groupers Epinephelus marginatus (Lowe) and Epinephelus costae (Steindachner) in Algeria. Journal of Fish Diseases, 37, 273–8.Google Scholar
Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. and Rietkerk, M. (2013). Early warning signals also precede non-catastrophic transitions. Oikos, 122, 641–8.Google Scholar
Kéfi, S., Guttal, V., Brock, W. A. et al. (2014). Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE, 9, http://dx.doi.org/10.1371/journal.pone.0092097.CrossRefGoogle ScholarPubMed
Klimpel, S. and Palm, H. W. (2011). Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? Progress in Parasitology, 2, 201–22.Google Scholar
Kruzic, P. and Popijac, A. (2015). Mass mortality events of the coral Balanophyllia europaea (Scleractinia, Dendrophylliidae) in the Mljet National Park (Eastern Adriatic Sea) caused by sea temperature anomalies. Coral Reefs, 34, 109–18.Google Scholar
Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. and Pérez, T. (2010). Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution, 25, 250–60.Google Scholar
Ling, S. D., Scheibling, R. E., Rassweiler, A. et al. (2015). Global regime shift dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, http://dx.doi.org/10.1098/rstb.2013.0269.Google Scholar
Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. and Airoldi, L. (2011). Recovery of marine animal populations and ecosystems. Trends in ecology and evolution, 26, 595605.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M. and Bazzaz, F. A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689710.CrossRefGoogle Scholar
Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L. and De Clerck, O. (2016). Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Frontiers in Microbiology, 7, 476.Google Scholar
Mangialajo, L., Chiantore, M. and Cattaneo-Vietti, R. (2008). Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Marine Ecology Progress Series, 358, 6374.Google Scholar
Marino, G. and Azzurro, E. (2001). Nodavirus in dusky grouper (Epinephelus marginatus Lowe 1834) of the natural marine reserve of Ustica, south Thyrrenian Sea. Biologia Marina Mediterranea, 8, 837–41.Google Scholar
Marras, S., Cucco, A., Antognarelli, F. et al. (2015). Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling. Conservation Physiology, 3, http://dx.doi.org/1410.1093/conphys/cou059.Google Scholar
Martin, C. S. and Giannoulaki, M. A. (2014). Coralligenous and maerl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Scientific Reports, 4, http://dx.doi.org/10.1038/srep05073.Google Scholar
Martin, Y., Bonnefont, J. L. and Chancerelle, L. (2002). Gorgonians mass mortality during the 1999 late summer in French Mediterranean coastal waters: The bacterial hypothesis. Water Research, 36, 779–82.Google Scholar
McCarron, E., Burnell, G. and Mouzakitis, G. (2009). Growth assessment on three size classes of the purple sea urchin Paracentrotus lividus using continuous and intermittent feeding regimes. Aquaculture, 288, 8391.Google Scholar
Meinesz, A., Caye, G., Molenaar, H. and Loques, F. (1991). Growth and development in culture of orthotropic rhizomes of Posidonia oceanica. Aquatic Botany, 39, 367–77.Google Scholar
Micheli, F., Halpern, B. S., Walbridge, S. et al. (2013). Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE, 8, e79889.Google Scholar
Mollmann, C., Folke, C., Edwards, M. and Conversi, A. (2015). Marine regime shifts around the globe: theory, drivers and impacts. Philosophical Transactions of the Royal Society B-Biological Sciences, 370, http://dx.doi.org/10.1098/rstb.2013.0260.Google Scholar
Mollo, E., Cimino, G. and Ghiselin, M. T. (2015). Alien biomolecules: a new challenge for natural product chemists. Biological Invasions, 17, 941–50.Google Scholar
Mouillot, D., Albouy, C. and Guilhaumon, F. A. (2011). Protected and threatened components of fish biodiversity in the Mediterranean Sea. Current Biology, 21, 1044–50.Google Scholar
Mumby, P. J., Hastings, A. and Edwards, H. J. (2007). Thresholds and the resilience of Caribbean coral reefs. Nature, 450, 98101.CrossRefGoogle ScholarPubMed
Munday, B. L., Kwang, J. and Moody, N. (2002). Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases, 25(3), 127–42.Google Scholar
Pairaud, I. L., Bensoussan, N., Garreau, P., Faure, V. and Garrabou, J. (2014). Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas Topical Collection on the 16th biennial workshop of the Joint Numerical Sea Modelling Group (JONSMOD) in Brest, France 21–23 May 2012. Ocean Dynamics, 64, 103–15.CrossRefGoogle Scholar
Pejchar, L. and Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology and Evolution, 24, 497504.Google Scholar
Perez, T., Garrabou, J., Sartoretto, S., Harmelin, J. G., Francour, P. and Vacelet, J. (2000). Mass mortality of marine invertebrates: an unprecedented event in the Northwestern Mediterranean. Comptes Rendus de l’Academie des Sciences – Serie III, 323, 853–65.Google Scholar
Perkol-Finkel, S. and Airoldi, L. (2010). Loss and recovery potential of marine habitats: an experimental study of factors maintaining resilience in subtidal algal forests at the Adriatic sea. PLoS ONE, 5, e1079110, http://doi.org/10.1371/journal.pone.0010791.Google Scholar
Perkol-Finkel, S., Ferrario, F., Nicotera, V. and Airoldi, L. (2012). Conservation challenges in urban seascapes: promoting the growth of threatened species on coastal infrastructures. Journal of Applied Ecology, 49, 1457–66.CrossRefGoogle Scholar
Piazzi, L., Balata, D., Foresi, L., Cristaudo, C. and Cinelli, F. (2007). Sediment as a constituent of Mediterranean benthic communities dominated by Caulerpa racemosa var. cylindracea. Scientia Marina, 71, 129–35.Google Scholar
Piazzi, L., Balestri, E., Magri, M. and Cinelli, F. (1998). Experimental transplanting of Posidonia oceanica (L.) Delile into a disturbed habitat in the Mediterranean Sea. Botanica Marina, 41, 593602.Google Scholar
Piazzi, L., Bulleri, F. and Ceccherelli, G. (2016). Limpets compensate sea urchin decline and enhance the stability of rocky subtidal barrens. Marine Environmental Research, 115, 4955.Google Scholar
Piazzi, L., Meinesz, A., Verlaque, M. et al. (2005). Invasion of Caulerpa racemosa var. cylindracea (Caulerpales, Chlorophyta) in the Mediterranean Sea: an assessment of the spread. Cryptogamie Algologie, 26, 189202.Google Scholar
Ponti, M., Perlini, R. A., Ventra, V., Grech, D., Abbiati, M. and Cerrano, C. (2014). Ecological shifts in mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS ONE, 9, http://dx.doi.org/10.1371/journal.pone.0102782.Google Scholar
Puce, S. and Bavestrello, G. A. (2009). Long-term changes in hydroid (Cnidaria, Hydrozoa) assemblages: effect of Mediterranean warming? Marine Ecology, 30, 313–26.Google Scholar
Raniello, R., Mollo, E., Lorenti, M., Gavagnin, M. and Buia, M. C. (2007). Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biological Invasions, 9, 361–8.Google Scholar
Reinhart, K. O. and Callaway, R. M. (2006). Soil biota and invasive plants. New Phytologist, 170, 445–57.Google Scholar
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F. et al. (2007). Global desertification: building a science for dryland development. Science, 316, 847–51.Google Scholar
Rilov, G. and Galil, B. S. (2009). Marine Bioinvasions in the Mediterranean Sea – History, Distribution and Ecology. In Rilov, G. and Crooks, J. A., eds. Biological Invasions in Marine Ecosystems. Springer-Verlag, Berlin, pp. 549–75.Google Scholar
Rindi, L., Bello, M. D., Dai, L., Gore, J. and Benedetti-Cecchi, L. (2017). Direct observation of increasing recovery length before collapse of a marine benthic ecosystem. Nature Ecology and Evolution, 1, 153, http://dx.doi.org/10.1038/s41559-017-0153.Google Scholar
Rivetti, I., Boero, F., Fraschetti, S., Zambianchi, E. and Lionello, P. (2015). Anomalies of the upper water column in the Mediterranean Sea. Global and Planetary Change, 151, 6879.Google Scholar
Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. and Boero, F. (2014). Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE, 9, 122.CrossRefGoogle ScholarPubMed
Rizzo, L., Fraschetti, S., Alifano, P., Pizzolante, G. and Stabili, L. (2016). The alien species Caulerpa cylindracea and its associated bacteria in the Mediterranean Sea. Marine Biology, 163, 112.Google Scholar
Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. and Peterson, G. (2015). Marine regime shifts: drivers and impacts on ecosystems services. Philosophical Transactions of the Royal Society: Biological Sciences, 370, http://dx.doi.org/10.1098/rstb.2013.0273.Google Scholar
Rodolfo-Metalpa, R., Richard, C., Allemand, D., Bianchi, C. N., Morri, C. and Ferrier-Pags, C. (2006). Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Marine Biology, 150, 4555.Google Scholar
Sala, E., Kizilkaya, Z., Yildirim, D. and Ballesteros, E. (2011). Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE, 6, e17356.Google Scholar
Sales, M., Cebrian, E., Tomas, F. and Ballesteros, E. (2011). Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuarine, Coastal and Shelf Science, 92, 347–57.Google Scholar
Samhouri, J. F., Levin, P. S. and Ainsworth, C. H. (2010). Identifying thresholds for ecosystem-based management. PLoS ONE, 5, http://dx.doi.org/10.1371/journal.pone.0008907.CrossRefGoogle ScholarPubMed
Sarà, G., Palmeri, V., Rinaldi, A., Montalto, V. and Helmuth, B. (2013). Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis. Diversity and Distributions, 19, 1235–47.Google Scholar
Scheffer, M. (2009). Critical Transitions in Nature and Society. Princeton University Press, Princeton, NJ.Google Scholar
Scheffer, M., Bascompte, J., Brock, W. A. et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–9.Google Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–6.Google Scholar
Schiel, D. R. and Foster, M. S. (2006). The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annual Review of Ecology Evolution and Systematics, 37, 343–72.Google Scholar
Sirota, J., Baiser, B., Gotelli, N. J. and Ellison, A. M. (2013). Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem. Proceedings of the National Academy of Science of the USA, 110, 7742–7.Google Scholar
Steneck, R. S., Graham, M. H., Bourque, B. J. et al. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, 29, 436–59.Google Scholar
Steneck, R. S. and Johnson, C. R. (2014). Kelp Forests: Dynamic Patterns, Processes, and Feedbacks. In Bertness, M. D., Bruno, J. F., Silliman, B. R. and Stachowicz, J. J., eds. Marine Community Ecology and Conservation. Sinauer Associates, Inc., Sunderland, MA, pp. 315–36.Google Scholar
Strain, E. M., Thomson, R. J., Micheli, F., Mancuso, F. P. and Airoldi, L. (2014). Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Global Change Biology, 20, 3300–12, http://dx.doi.org.10.1111/gcb.12619.Google Scholar
Strain, E. M. A., van Belzen, J., van Dalen, J., Bouma, T. J. and Airoldi, L. (2015). Management of local stressors can improve the resilience of marine canopy algae to global stressors. PLoS ONE, 10, e0120837, http://dx.doi.org/10.1371/journal.pone.0120837.Google Scholar
Suding, K. N. (2011). Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annual Review of Ecology, Evolution, and Systematics, 42, 465–87.Google Scholar
Susini, M. L., Mangialajo, L., Thibaut, T. and Meinesz, A. (2007). Development of a transplantation technique of Cystoseira amentacea var. stricta and Cystoseira compressa. Hydrobiologia, 580, 241–4.Google Scholar
Tamburello, L., Bulleri, F., Bertocci, I., Maggi, E. and Benedetti-Cecchi, L. (2013). Reddened seascapes: experimentally induced shifts in 1/f spectra of spatial variability in rocky intertidal assemblages. Ecology, 94, 1102–11.Google Scholar
Tedesco, P. (2015) Ecology of parasites and diseases of wild marine fauna. PhD, University of Salento.Google Scholar
Telesca, L., Belluscio, A., Criscoli, A. et al. (2015). Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Scientific Reports, 5, http://dx.doi.org/10.1038/srep12505.Google Scholar
Terlizzi, A., Felline, S., Lionetto, M. G. et al. (2011). Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus. Aquatic Biology, 12, 109–17.Google Scholar
Thibaut, T., Blanfune, A., Boudouresque, C. F. and Verlaque, M. (2015). Decline and local extinction of Fucales in the French Riviera: the harbinger of future extinctions? Mediterranean Marine Science, 16, 206–24.Google Scholar
Torrents, O., Tambutté, E., Caminiti, N. and Garrabou, J. (2008). Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): Assessing the potential effects of warming in the NW Mediterranean. Journal of Experimental Marine Biology and Ecology, 357, 719.Google Scholar
Vargas-Yanez, M., Garcia, M. J., Salat, J., Garcia-Martinez, M. C., Pascual, J. and Moya, F. (2008). Warming trends and decadal variability in the Western Mediterranean shelf. Global and Planetary Change, 63, 177–84.Google Scholar
Vaselli, S., Bulleri, F. and Benedetti-Cecchi, L. (2008). Hard coastal-defence structures as habitats for native and exotic rocky-bottom species. Marine Environmental Research, 66, 395403.Google Scholar
Vendramin, N., Patarnello, P., Toffan, A. et al. (2013). Viral encephalopathy and retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species? BMC Veterinary Research, 9, 20, http://dx.doi.org/10.1186/1746-6148-9-20.Google Scholar
Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lurling, M. and Scheffer, M. (2012). Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–9.Google Scholar
Verges, A., Tomas, F., Cebrian, E. et al. (2014). Tropical rabbitfish and the deforestation of a warming temperate sea. Journal of Ecology, 102, 1518–27.Google Scholar
Verlaque, M., Boudouresque, C. F., Meinesz, A. and Gravez, V. (2000). The Caulerpa racemosa complex (Caulerpales, Ulvophyceae) in the Mediterranean Sea. Botanica Marina, 43, 4968.Google Scholar
Wernberg, T., Bennett, S., Babcock, R. C. et al. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169–72.Google Scholar
Williams, G. A., Helmuth, B., Russell, B. D., Dong, Y. W., Thiyagarajan, V. and Seuront, L. (2016). Meeting the climate change challenge: pressing issues in southern China and SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373–81.Google Scholar
Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5, 475–82.Google Scholar
Zenetos, A. (2010). Trend in aliens species in the Mediterranean. An answer to Galil, 2009 Taking stock: inventory of alien species in the Mediterranean Sea. Biological Invasions, 12, 3379–81.Google Scholar
Zenetos, A., Gofas, S., Verlaque, M. et al. (2010). Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science, 11, 381493.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×