Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T02:47:56.327Z Has data issue: false hasContentIssue false

16 - Cichlid fishes: A model for the integrative study of social behavior

Published online by Cambridge University Press:  18 December 2015

Walter D. Koenig
Affiliation:
Cornell University, New York
Janis L. Dickinson
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cooperative Breeding in Vertebrates
Studies of Ecology, Evolution, and Behavior
, pp. 272 - 293
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktipis, C. A. (2004). Know when to walk away: contingent movement and the evolution of cooperation. J. Theor. Biol., 231, 249260.CrossRefGoogle ScholarPubMed
Arnold, C. and Taborsky, B. (2010). Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim. Behav., 79, 621630.CrossRefGoogle Scholar
Aubin-Horth, N., Desjardins, J. K., Martei, Y. M., Balshine, S., and Hofmann, H. A. (2007). Masculinized dominant females in a cooperatively breeding species. Mol. Ecol., 16, 13491358.CrossRefGoogle Scholar
Awata, S., Munehara, H., and Masanori, K. (2005). Social system and reproduction of helpers in a cooperatively breeding cichlid fish (Julidochromis ornatus) in Lake Tanganyika: field observations and parentage analyses. Behav. Ecol. Sociobiol., 58, 506516.CrossRefGoogle Scholar
Balshine, S., Leach, B., Neat, F., Reid, H., Taborsky, M., et al. (2001). Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). Behav. Ecol. Sociobiol., 50, 134140.CrossRefGoogle Scholar
Balshine-Earn, S., Neat, F. C., Reid, H., and Taborsky, M. (1998). Paying to stay or paying to breed? Field evidence for direct benefits of helping behavior in a cooperatively breeding fish. Behav. Ecol., 9, 432438.CrossRefGoogle Scholar
Bender, N., Heg, D., Hamilton, I. M., Bachar, Z., Taborsky, M., et al. (2006). The relationship between social status, behaviour, growth and steroids in male helpers and breeders of a cooperatively breeding cichlid. Horm. Behav., 50, 173182.CrossRefGoogle ScholarPubMed
Bender, N., Taborsky, M., and Power, D. M. (2008a). The role of prolactin in the regulation of brood care in the cooperatively breeding fish Neolamprologus pulcher. J. Exp. Zool., 309A, 515524.CrossRefGoogle Scholar
Bender, N., Heg-Bachar, Z., Oliveira, R. F., Canario, A. V. M., and Taborsky, M. (2008b). Hormonal control of brood care and social status in a cichlid fish with brood care helpers. Physiol. Behav., 94, 349358.CrossRefGoogle Scholar
Bergmüller, R. and Taborsky, M. (2005). Experimental manipulation of helping in a cooperative breeder: helpers "pay to stay" by pre-emptive appeasement. Anim. Behav., 69, 1928.CrossRefGoogle Scholar
Bergmüller, R. and Taborsky, M. (2007). Adaptive behavioural syndromes due to strategic niche specialization. BMC Ecology, 7, 12.CrossRefGoogle ScholarPubMed
Bergmüller, R. and Taborsky, M. (2010). Animal personality due to social niche specialisation. Trends Ecol. Evol., 25, 504511.CrossRefGoogle ScholarPubMed
Bergmüller, R., Heg, D., and Taborsky, M. (2005a). Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. London B, 272, 325331.Google ScholarPubMed
Bergmüller, R., Heg, D., Peer, K., and Taborsky, M. (2005b). Extended safe havens and between-group dispersal of helpers in a cooperatively breeding cichlid. Behaviour, 142, 16431667.CrossRefGoogle Scholar
Blumer, L. S. (1979). Male parental care in bony fishes. Q. Rev. Biol., 54, 149161.CrossRefGoogle Scholar
Blumer, L. S. (1982). A bibliography and categorization of bony fishes exhibiting parental care. Zool. J. Linn. Soc., 76, 122.CrossRefGoogle Scholar
Bourke, A. F. G. (2011). Principles of Social Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brawand, D., Wagner, C.E., Li, Y. I., Malinsky, M., Keller, I., et al. (2014). The genomic substrate for adaptive radiation in African cichlid fish. Nature, 513, 375381.CrossRefGoogle ScholarPubMed
Breder, C. M. and Rosen, D. E. (1966). Modes of Reproduction in Fishes. Garden City, NY: Natural History Press.Google Scholar
Brichard, P. (1978). Fishes of Lake Tanganyika. Neptune City, NJ: T. F. H. Publishers.Google Scholar
Brouwer, L., Heg, D., and Taborsky, M. (2005). Experimental evidence for helper effects in a cooperatively breeding cichlid. Behav. Ecol., 16, 667673.CrossRefGoogle Scholar
Brown, J. L. (1987). Helping and Communal Breeding in Birds: Ecology and Evolution. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Bruintjes, R. and Taborsky, M. (2008). Helpers in a cooperative breeder pay a high price to stay: effects of demand, helper size and sex. Anim. Behav., 75, 18431850.CrossRefGoogle Scholar
Bruintjes, R. and Taborsky, M. (2011). Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav., 81, 387394.CrossRefGoogle Scholar
Bruintjes, R., Hekman, R., and Taborsky, M. (2010). Experimental global food reduction raises resource acquisition costs of brood care helpers and reduces their helping effort. Funct. Ecol., 24, 10541063.CrossRefGoogle Scholar
Bruintjes, R., Bonfils, D., Heg, D., and Taborsky, M. (2011). Paternity of subordinates raises cooperative effort in cichlids. Plos One, 6(10), e25673.CrossRefGoogle ScholarPubMed
Cant, M. A. (2011). The role of threats in animal cooperation. Proc. R. Soc. London B, 278, 170178.Google ScholarPubMed
Cant, M. A. and Johstone, R. A. (2009). How threats influence the evolutionary resolution of within-group conflict. Am. Nat., 173, 759771.CrossRefGoogle ScholarPubMed
Champagne, F. A. (2010). Epigenetic influence of social experiences across the lifespan. Devel. Psychobiol., 52, 299311.CrossRefGoogle ScholarPubMed
Chervet, N., Zöttl, M., Schürch, R., Taborsky, M., and Heg, D. (2011). Repeatability and heritability of behavioural types in a social cichlid. Int. J. Evol. Biol., 2011, 321729.CrossRefGoogle Scholar
Desjardins, J. K., Fitzpatrick, J. L., Stiver, K. A., van der Kraak, G. J., and Balshine, S. (2008a). Costs and benefits of polygyny in the cichlid Neolamprologus pulcher. Anim. Behav., 75, 17711779.CrossRefGoogle Scholar
Desjardins, J. K., Stiver, K. A., Fitzpatrick, J. L., Milligan, N., van der Kraak, G. J., et al. (2008b). Sex and status in a cooperative breeding fish: behavior and androgens. Behav. Ecol. Sociobiol., 62, 785794.CrossRefGoogle Scholar
Desjardins, J. K., Stiver, K. A., Fitzpatrick, J. L., and Balshine, S. (2008c). Differential responses to territory intrusions in cooperatively breeding fish. Anim. Behav., 75, 595604.CrossRefGoogle Scholar
Dey, C. J., Reddon, A. R., O’Connor, C. M., and Balshine, S. (2013). Network structure is related to social conflict in a cooperatively breeding fish. Anim. Behav., 85, 395402.CrossRefGoogle Scholar
Dierkes, P., Taborsky, M., and Kohler, U. (1999). Reproductive parasitism of broodcare helpers in a cooperatively breeding fish. Behav. Ecol., 10, 510515.CrossRefGoogle Scholar
Dierkes, P., Heg, D., Taborsky, M., Skubic, E., and Achmann, R. (2005). Genetic relatedness in groups is sex-specific and declines with age of helpers in a cooperatively breeding cichlid. Ecol. Lett., 8, 968975.CrossRefGoogle Scholar
Donaldson, Z. R. and Young, L. J. (2008). Oxytocin, vasopressin, and neurogenetics of sociality. Science, 322, 900904.CrossRefGoogle ScholarPubMed
Duftner, N., Sefc, K. M., Koblmüller, S., Salzburger, W., Taborsky, M., et al. (2007). Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/N. pulcher species complex endemic to Lake Tanganyika. Mol. Phyl. Evol., 45, 706715.CrossRefGoogle ScholarPubMed
Emlen, S. T. (1982). The evolution of helping. 1. An ecological constraints model. Am. Nat., 119, 2939.CrossRefGoogle Scholar
Fischer, S., Zöttl, M., Groenewoud, F., and Taborsky, B. (2014). Group-size-dependent punishment of idle subordinates in a cooperative breeder where helpers pay to stay. Proc. R. Soc. London B, 281, 20140184.Google Scholar
Fitzpatrick, J. L., Desjardins, J. K., Stiver, K. A., Montgomerie, R. and Balshine, S. (2006). Male reproductive suppression in the cooperatively breeding fish Neolamprologus pulcher. Behav. Ecol., 17, 2533.CrossRefGoogle Scholar
Gashagaza, M. M. (1988). Feeding activity of a Tanganyikan cichlid fish Lamprologus brichardi. African Study Monogr., 9, 19.Google Scholar
Gaston, A. J. (1978). The evolution of group territorial behavior and cooperative breeding. Am. Nat., 112, 10911100.CrossRefGoogle Scholar
Godwin, J. and Thompson, R. (2012). Nonapeptides and social behavior in fishes. Horm. Behav., 61, 230238.CrossRefGoogle ScholarPubMed
Grantner, A. and Taborsky, M. (1998). The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). J. Comp. Physiol. B, 168, 427433.CrossRefGoogle Scholar
Griesser, M., Nystrand, M., and Ekman, J. (2006). Reduced mortality selects for family cohesion in a social species. Proc. R. Soc. London B, 273, 18811886.Google Scholar
Griffin, A. S. and West, S. A. (2003). Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science, 302, 634636.CrossRefGoogle ScholarPubMed
Gross, M. R. and Sargent, R. C. (1985). The evolution of male and female parental care in fishes. Am. Zool., 25, 807822.CrossRefGoogle Scholar
Hager, R. and Jones, C. B., eds. (2009). Reproductive Skew in Vertebrates: Proximate and Ultimate Causes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hamilton, I. M. and Heg, D. (2008). Sex differences in the effect of social status on the growth of subordinates in a co-operatively breeding cichlid. J. Fish Biol., 72, 10791088.CrossRefGoogle Scholar
Hamilton, I. M. and Taborsky, M. (2005a). Contingent movement and cooperation evolve under generalized reciprocity. Proc. R. Soc. London B, 272, 22592267.Google ScholarPubMed
Hamilton, I. M. and Taborsky, M. (2005b). Unrelated helpers will not fully compensate for costs imposed on breeders when they pay to stay. Proc. R. Soc. London B, 272, 445454.Google Scholar
Hamilton, I. M., Heg, D., and Bender, N. (2005). Size differences within a dominance hierarchy influence conflict and help in a cooperatively breeding cichlid. Behaviour, 142, 15911613.Google Scholar
Hamilton, W. D. (1964). The genetical evolution of social behaviour I and II. J. Theor. Biol., 7, 152.CrossRefGoogle Scholar
Heg, D. (2008). Reproductive suppression in female cooperatively breeding cichlids. Biol. Lett., 4, 606609.CrossRefGoogle ScholarPubMed
Heg, D. and Bachar, Z. (2006). Cooperative breeding in the Lake Tanganyika cichlid Julidochromis ornatus. Envir. Biol. Fishes, 76, 265281.CrossRefGoogle Scholar
Heg, D. and Hamilton, I. M. (2008). Tug-of-war over reproduction in a cooperatively breeding cichlid. Behav. Ecol. Sociobiol., 62, 12491257.CrossRefGoogle Scholar
Heg, D. and Taborsky, M. (2010). Helper response to experimentally manipulated predation risk in the cooperatively breeding cichlid Neolamprologus pulcher. PLoS One, 5(5), e10784.CrossRefGoogle ScholarPubMed
Heg, D., Bachar, Z., Brouwer, L., and Taborsky, M. (2004a). Predation risk is an ecological constraint for helper dispersal in a cooperatively breeding cichlid. Proc. R. Soc. London B, 271, 23672374.CrossRefGoogle Scholar
Heg, D., Bender, N., and Hamilton, I. (2004b). Strategic growth decisions in helper cichlids. Proc. R. Soc. London B, 271, S505–S508.CrossRefGoogle ScholarPubMed
Heg, D., Bachar, Z., and Taborsky, M. (2005a). Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology, 111, 10171043.CrossRefGoogle Scholar
Heg, D., Brouwer, L., Bachar, Z., and Taborsky, M. (2005b). Large group size yields group stability in the cooperatively breeding cichlid Neolamprologus pulcher. Behaviour, 142, 16151641.Google Scholar
Heg, D., Bergmuller, R., Bonfils, D., Otti, O., Bachar, Z., et al. (2006). Cichlids do not adjust reproductive skew to the availability of independent breeding options. Behav. Ecol., 17, 419429.CrossRefGoogle Scholar
Heg, D., Jutzeler, E., Bonfils, D., and Mitchell, J. S. (2008a). Group composition affects male reproductive partitioning in a cooperatively breeding cichlid. Mol. Ecol., 17, 43594370.CrossRefGoogle Scholar
Heg, D., Heg-Bachar, Z., Brouwer, L., and Taborsky, M. (2008b). Experimentally induced helper dispersal in colonially breeding cooperative cichlids. Envir. Biol. Fishes, 83, 191206.CrossRefGoogle Scholar
Heg, D., Rothenberger, S., and Schürch, R. (2011). Habitat saturation, benefits of philopatry, relatedness, and the extent of co-operative breeding in a cichlid. Behav. Ecol., 22, 8292.CrossRefGoogle Scholar
Hick, K., Reddon, A. R., O’Connor, C. M., and Balshine, S. (2014). Strategic and tactical fighting decisions in cichlid fishes with divergent social systems. Behaviour, 151, 4771.CrossRefGoogle Scholar
Hirschenhauser, K., Taborsky, M., Oliveira, T., Canario, A. V. M., and Oliveira, R. F. (2004). A test of the “challenge hypothesis” in cichlid fish: simulated partner and territory intruder experiments. Anim. Behav., 68, 741750.CrossRefGoogle Scholar
Hirschenhauser, K., Canario, A. V., Ros, A. F., Taborsky, M., and Oliveira, R. F. (2008). Social context may affect urinary excretion of 11-ketotestosterone in African cichlids. Behaviour, 145, 13671388.Google Scholar
Hochberg, M. E., Rankin, D. J., and Taborsky, M. (2008). The coevolution of cooperation and dispersal in social groups and its implications for the emergence of multicellularity. BMC Evol. Biol., 8, 238.CrossRefGoogle ScholarPubMed
Houston, A. I., Szekely, T., and McNamara, J. M. (2005). Conflict between parents over care. Trends. Ecol. Evol., 20, 3338.CrossRefGoogle Scholar
Johnstone, R. A. (2011). Load lightening and negotiation over offspring care in cooperative breeders. Behav. Ecol., 22, 436444.CrossRefGoogle Scholar
Johnstone, R. A., Manica, A., Fayet, A. L., Stoddard, M. C., Rodriguez-Girones, M. A. et al. (2014). Reciprocity and conditional cooperation between great tit parents. Behav. Ecol., 25, 216222.CrossRefGoogle Scholar
Jordan, L. A., Wong, M. Y., and Balshine, S. S. (2010). The effects of familiarity and social hierarchy on group membership decisions in a social fish. Biol. Lett., 6, 301303.CrossRefGoogle Scholar
Kingma, S. A., Santema, P., Taborsky, M., and Komdeur, J. (2014). Group augmentation and the evolution of cooperation. Trends Ecol. Evol., 29, 476484.CrossRefGoogle ScholarPubMed
Knapp, R., Wingfield, J. C., and Bass, A. H. (1999). Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Horm. Behav., 35, 8189.CrossRefGoogle ScholarPubMed
Koenig, W. D., Pitelka, F. A., Carmen, W. J., Mumme, R. L., and Stanback, M. T. (1992). The evolution of delayed dispersal in cooperative breeders. Q. Rev. Biol., 67, 111150.CrossRefGoogle ScholarPubMed
Kohler, U. (1997). Zur Struktur und Evolution des Sozialsystems von Neolamprologus multifasciatus (Cichlidae, Pisces), dem kleinsten Schneckenbuntbarsch des Tanganjikasees. Ph.D. thesis, Ludwig-Maximilians-Universität, München, Germany.Google Scholar
Kokko, H., Johnstone, R. A., and Clutton-Brock, T.H. (2001). The evolution of cooperative breeding through group augmentation. Proc. R. Soc. London B, 268, 187196.CrossRefGoogle ScholarPubMed
Kokko, H., Johnstone, R. A., and Wright, J. (2002). The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav. Ecol., 13, 291300.CrossRefGoogle Scholar
Komdeur, J. (2006). Variation in individual investment strategies among social animals. Ethology, 112, 729747.CrossRefGoogle Scholar
Komdeur, J. and Ekman, J. (2010). Adaptations and constraints in the evolution of delayed dispersal: implications for cooperation. In: Social Behaviour: Genes, Ecology and Evolution, ed. Szekely, T., Moore, A. J. and Komdeur, J.. Cambridge: Cambridge University Press, pp. 306327.CrossRefGoogle Scholar
Konings, A. (1998). Tanganyika Cichlids in Their Natural Habitat. El Paso, TX: Cichlid Press.Google Scholar
Kuwamura, T. (1997). The evolution of parental care and mating systems among Tanganyikan cichlids. In: Fish Communities in Lake Tanganyika, ed. Kawanabe, H., Hori, M., and Nagoshi, M.), Kyoto, Japan: Kyoto University Press, pp. 5786.Google Scholar
Le Vin, A., Mable, B., and Arnold, K. (2010). Kin recognition via phenotype matching in a cooperatively breeding cichlid, Neolamprologus pulcher. Anim. Behav., 79, 11091114.CrossRefGoogle Scholar
Le Vin, A., Mable, B., Taborsky, M., Heg, D., and Arnold, K. (2011). Individual variation in helping in a cooperative breeder: relatedness versus behavioural type. Anim. Behav., 82, 467477.CrossRefGoogle Scholar
Lehmann, L. and Keller, L. (2006). The evolution of cooperation and altruism – a general framework and a classification of models. J. Evol. Biol., 19, 13651376.CrossRefGoogle Scholar
Ligon, J. D. and Ligon, S. H. (1978). Communal breeding in green woodhoopoes as a case for reciprocity. Nature, 276, 496498.CrossRefGoogle Scholar
Limberger, D. (1983). Pairs and harems in a cichlid fish, Lamprologus brichardi. Z. Tierpsychol., 62, 115144.CrossRefGoogle Scholar
McNamara, J. M., Houston, A. I., Barta, Z., and Osorno, J. L. (2003). Should young ever be better off with one parent than with two? Behav. Ecol., 14, 301310.CrossRefGoogle Scholar
Mileva, V. R., Gilmour, K. M., and Balshine, S. (2011). Effects of maternal stress on egg characteristics in a cooperatively breeding fish. Comp. Biochem. Physiol. A, 158, 2229.CrossRefGoogle Scholar
Mitchell, J. S., Jutzeler, E., Heg, D., and Taborsky, M. (2009a). Gender differences in the costs that subordinate group members impose on dominant males in a cooperative breeder. Ethology, 115, 11621174.CrossRefGoogle Scholar
Mitchell, J. S., Jutzeler, E., Heg, D., and Taborsky, M. (2009b). Dominant members of cooperatively-breeding groups adjust their behaviour in response to the sexes of their subordinates. Behaviour, 146, 16651686.CrossRefGoogle Scholar
O’Connell, L. A., Matthews, B. J., and Hofmann, H. A. (2012). Isotocin regulates paternal care in a monogamous cichlid fish. Horm. Behav., 61, 725733.CrossRefGoogle Scholar
Oliveira, R. F., Hirschenhauser, K., Canario, A. V. M., and Taborsky, M. (2003). Androgen levels of reproductive competitors in a co-operatively breeding cichlid. J. Fish Biol., 63, 16151620.CrossRefGoogle Scholar
Poll, M. (1974). Contribution à la faune ichthyologique du lac Tanganika, d’après les récoltes de P. Brichard. Rev. Zool. Afri., 88, 99110.Google Scholar
Raihani, N. J., Thornton, A., and Bshary, R. (2012). Punishment and cooperation in nature. Trends Ecol. Evol., 27, 288295.CrossRefGoogle ScholarPubMed
Reale, D., Dingemanse, N. J., Kazem, A. J., and Wright, J. (2010). Evolutionary and ecological approaches to the study of personality. Phil. Trans. R. Soc. London B, 365, 39373946.CrossRefGoogle Scholar
Reddon, A. R., Voisin, M. R., Menon, N., Marsh-Rollo, S. E., et al. (2011a). Rules of engagement for resource contests in a social fish. Anim. Behav., 82, 9399.CrossRefGoogle Scholar
Reddon, A. R., Balk, D., and Balshine, S. (2011b). Sex differences in group-joining decisions in social fish. Anim. Behav., 82, 229234.CrossRefGoogle Scholar
Reddon, A. R., O’Connor, C. M., Marsh-Rollo, S. E., and Balshine, S. (2012). Effects of isotocin on social responses in a cooperatively breeding fish. Anim. Behav., 84, 753760.CrossRefGoogle Scholar
Reddon, A. R., Voisin, M. R., O’Connor, C. M., and Balshine, S. (2014). Isotocin and sociality in the cooperatively breeding cichlid fish, Neolamprologus pulcher. Behaviour, 151, 13891411.CrossRefGoogle Scholar
Riebli, T., Avgan, B., Bottini, A. M., Duc, C., Taborsky, M., and Heg, D. (2011). Behavioral type affects dominance and growth in staged encounters of cooperatively breeding cichlids. Anim. Behav., 81, 313323.CrossRefGoogle Scholar
Riebli, T., Taborsky, M., Chervet, N., Apolloni, N., Zuercher, Y., et al. (2012). Behavioural type, status and social context affect behaviour and resource allocation in cooperatively breeding cichlids. Anim. Behav., 84, 925936.CrossRefGoogle Scholar
Ros, A. F. H., Bruintjes, R., Santos, R. S., Canario, A. V. M., and Oliveira, R. F. (2004). The role of androgens in the trade-off between territorial and parental behavior in the Azorean rock-pool blenny, Parablennius parvicornis. Horm. Behav., 46, 491497.CrossRefGoogle ScholarPubMed
Rutte, C., Taborsky, M., and Brinkhof, M. W. G. (2006). What sets the odds of winning and losing? Trends Ecol. Evol., 21, 1621.CrossRefGoogle ScholarPubMed
Sargent, R. C. and Gross, M. R. (1986). William’s principle: An explanation of parental care in teleost fishes. In: The Behaviour of Teleost Fishes, ed. Pitcher, T. J.. London: Croom Helm, pp. 275293.CrossRefGoogle Scholar
Schreier, T. (2013). Punishment motivates subordinate helper to pay to stay and to compensate after a period of reduced helping. Bachelor thesis, University of Bern, Switzerland.Google Scholar
Schürch, R. and Heg, D. (2010a). Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behav. Ecol., 21, 588598.CrossRefGoogle Scholar
Schürch, R. and Heg, D. (2010b). Variation in helper type affects group stability and reproductive decisions in a cooperative breeder. Ethology, 116, 257269.CrossRefGoogle Scholar
Schürch, R., Rothenberger, S., and Heg, D. (2010). The building-up of social relationships: behavioural types, social networks and cooperative breeding in a cichlid. Phil. Trans. R. Soc. London B, 365, 40894098.CrossRefGoogle Scholar
Siemens, M. (1990). Broodcare or egg cannibalism by parents and helpers in Neolamprologus brichardi (Poll 1986) (Pisces: Cichlidae): a study on behavioural mechanisms. Ethology, 84, 6080.CrossRefGoogle Scholar
Skubic, E., Taborsky, M., McNamara, J. M., and Houston, A. I. (2004). When to parasitize? A dynamic optimization model of reproductive strategies in a cooperative breeder. J. Theor. Biol. 227, 487501.CrossRefGoogle Scholar
Solomon, N. G. and French, J. A., eds. (1997). Cooperative Breeding in Mammals. Cambridge: Cambridge University Press.Google Scholar
Stacey, P. B. and Koenig, W. D., eds. (1990). Cooperative Breeding in Birds: Long Term Studies of Ecology and Behavior. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stacey, P. B. and Ligon, J. D. (1991). The benefits of philopatry hypothesis for the evolution of cooperative breeding: variance in territory quality and group size effects. Am. Nat., 137, 831846.CrossRefGoogle Scholar
Stiver, K. A., Dierkes, P., Taborsky, M., and Balshine, S. (2004). Dispersal patterns and status change in a co-operatively breeding cichlid Neolamprologus pulcher: evidence from microsatellite analyses and behavioural observations. J. Fish Biol., 65, 91105.CrossRefGoogle Scholar
Stiver, K. A., Dierkes, P., Taborsky, M., Gibbs, H. L., and Balshine, S. (2005). Relatedness and helping in fish: examining the theoretical predictions. Proc. R. Soc. London B, 272, 15931599.Google ScholarPubMed
Stiver, K. A., Fitzpatrick, J., Desjardins, J. K., and Balshine, S. (2006). Sex differences in rates of territory joining and inheritance in a cooperatively breeding cichlid fish. Anim. Behav., 71, 449456.CrossRefGoogle Scholar
Stiver, K., Desjardins, J., Fitzpatrick, J., Neff, B., Quinn, J., et al. (2007). Evidence for size and sex-specific dispersal in a cooperatively breeding cichlid fish. Mol. Ecol., 16, 29742984.CrossRefGoogle Scholar
Stiver, K., Fitzpatrick, J., Desjardins, J., Neff, B., Quinn, J., et al. (2008). The role of genetic relatedness among social mates in a cooperative breeder. Behav. Ecol., 19, 816823.CrossRefGoogle Scholar
Stiver, K., Fitzpatrick, J., Desjardins, J., and Balshine, S. (2009). Mixed parentage in Neolamprologus pulcher groups. J. Fish Biol., 74, 11291135.CrossRefGoogle ScholarPubMed
Taborsky, B. and Oliveira, R. F. (2012). Social competence: an evolutionary approach. Trends Ecol. Evol., 27, 679688.CrossRefGoogle ScholarPubMed
Taborsky, B., Skubic, E., and Bruintjes, R. (2007). Mothers adjust egg size to helper number in a cooperatively breeding cichlid. Behav. Ecol., 18, 652657.CrossRefGoogle Scholar
Taborsky, B., Arnold, C., Junker, J., and Tschopp, A. (2012). The early social environment affects social competence in a cooperative breeder. Anim. Behav., 83, 10671074.CrossRefGoogle Scholar
Taborsky, B., Tschirren, L., Meunier, C., and Aubin-Horth, N. (2013). Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proc. R. Soc. London B, 280, 20122605.Google Scholar
Taborsky, M. (1982). Brutpflegehelfer Beim Cichliden Lamprologus Brichardi, Poll (1974): Eine Kosten/Nutzen-Analyse. Ph. D. thesis, Universität Wien, Austria.Google Scholar
Taborsky, M. (1984). Broodcare helpers in the cichlid fish Lamprologus brichardi: their costs and benefits. Anim. Behav., 32, 12361252.CrossRefGoogle Scholar
Taborsky, M. (1985). Breeder-helper conflict in a cichlid fish with broodcare helpers: an experimental analysis. Behaviour, 95, 4575.CrossRefGoogle Scholar
Taborsky, M. (1994). Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Adv. Study Behav., 23, 1100.CrossRefGoogle Scholar
Taborsky, M. (2009). Reproductive skew in cooperative fish groups: virtue and limitations of alternative modeling approaches. In: Reproductive Skew in Vertebrates: Proximate and Ultimate Causes, ed. Hager, R. and Jones, C. B.. Cambridge: Cambridge University Press, pp. 265304.CrossRefGoogle Scholar
Taborsky, M. and Grantner, A. (1998). Behavioural time-energy budgets of cooperatively breeding Neolamprologus pulcher (Pisces: Cichlidae). Anim. Behav., 56, 13751382.CrossRefGoogle ScholarPubMed
Taborsky, M. and Limberger, D. (1981). Helpers in fish. Behav. Ecol. Sociobiol., 8, 143145.CrossRefGoogle Scholar
Taborsky, M., Hert, E., Siemens, M., and Stoerig, P. (1986). Social behaviour of Lamprologus species: functions and mechanisms. Ann. Mus. Roy. Afr. Sci. Zool., 251, 711.Google Scholar
Taves, M. D., Desjardins, J. K., Mishra, S., and Balshine, S. (2009). Androgens and dominance: Sex-specific patterns in a highly social fish (Neolamprologus pulcher). Gen. Comp. Endocrinol., 161, 202207.CrossRefGoogle Scholar
Werner, N. Y., Balshine, S., Leach, B., and Lotem, A. (2003). Helping opportunities and space segregation in cooperatively breeding cichlids. Behav. Ecol., 14, 749756.CrossRefGoogle Scholar
Whittington, C. M. and Wilson, A. B. (2013). The role of prolactin in fish reproduction. Gen. Comp. Endocrinol., 191, 123136.CrossRefGoogle ScholarPubMed
Wiley, R. H. and Rabenold, K. N. (1984). The evolution of cooperative breeding by delayed reciprocity and queuing for favorable social positions. Evolution, 38, 609621.CrossRefGoogle ScholarPubMed
Wong, M. and Balshine, S. (2011). The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. Biol. Rev., 86, 511530.CrossRefGoogle ScholarPubMed
Wong, M., Jordan, L., Marsh-Rollo, S., St-Cyr, S., Reynolds, J., et al. (2012). Mating systems in cooperative breeders: the roles of resource dispersion and conflict mitigation. Behav. Ecol., 23, 521530.CrossRefGoogle Scholar
Ziegler, T. E. (2000). Hormones associated with non-maternal infant care: a review of mammalian and avian studies. Folia Primatol., 71, 621.CrossRefGoogle ScholarPubMed
Zöttl, M., Heg, D., Chervet, N., and Taborsky, M. (2013a). Kinship reduces alloparental care in cooperative cichlids where helpers pay-to-stay. Nature Comm., 4, 1341.CrossRefGoogle ScholarPubMed
Zöttl, M., Frommen, J. G., and Taborsky, M. (2013b). Group size adjustment to ecological demand in a cooperative breeder. Proc. R. Soc. London B, 280, 20122772.Google Scholar
Zöttl, M., Fischer, S., and Taborsky, M. (2013c). Partial brood care compensation by female breeders in response to experimental manipulation of alloparental care. Anim. Behav., 85, 14711478.CrossRefGoogle Scholar
Zöttl, M., Chapuis, L., Freiburghaus, M., and Taborsky, M. (2013d). Strategic reduction of help before dispersal in a cooperative breeder. Biol. Lett., 9, 20120878.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×