Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T12:21:15.815Z Has data issue: false hasContentIssue false

11 - Bioluminescence Activation of Light-sensing Molecules

from Part II - Opsin Biology, Tools, and Technology Platform

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 151 - 166
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atasoy, D., Aponte, Y., Su, H.H. and Sternson, S.M. (2008) A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. The Journal of Neuroscience, 28, 7025–30.CrossRefGoogle ScholarPubMed
Baubet, V., Le Mouellic, H., Campbell, A.K., Lucas-Meunier, E., Fossier, P. and Brúlet, P. (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proceedings of the National Academy of Sciences of the United States of America, 97, 7260–5.Google ScholarPubMed
Berglund, K., Birkner, E., Augustine, G.J. and Hochgeschwender, U. (2013) Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS ONE, 8, e59759.CrossRefGoogle ScholarPubMed
Berglund, K., Gutekunst, C.-A., Tung, J., Hochgeschwender, U. and Gross, R.E. (2015) Step-function luminopsin for prolonged activation of neurons by bioluminescence. Society for Neuroscience Abstracts.Google Scholar
Berglund, K., Tung, J.K., Higashikubo, B., Gross, R.E., Moore, C.I. and Hochgeschwender, U. (2016) Combined optogenetic and chemogenetic control of neurons. Methods in Molecular Biology, 1408, 207–25.CrossRefGoogle ScholarPubMed
Berndt, A., Lee, S.Y., Ramakrishnan, C. and Deisseroth, K. (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science (New York, N.Y.), 344, 420–4.CrossRefGoogle ScholarPubMed
Berndt, A., Schoenenberger, P., Mattis, J., Tye, K.M., Deisseroth, K., Hegemann, P., et al. (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America, 108, 7595–600.Google ScholarPubMed
Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P. and Deisseroth, K. (2009) Bi-stable neural state switches. Nature Neuroscience, 12, 229–34.CrossRefGoogle ScholarPubMed
Birkner, E., Berglund, K., Klein, M.E., Augustine, G.J. and Hochgeschwender, U. (2014) Non-invasive activation of optogenetic actuators. SPIE Proceedings, 8928, 89282F.Google ScholarPubMed
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience, 8, 1263–8.CrossRefGoogle ScholarPubMed
Campbell, A.K. (1974) Extraction, partial purification and properties of obelin, the calcium-activated luminescent protein from the hydroid Obelia geniculata. The Biochemical Journal, 143, 411–8.CrossRefGoogle ScholarPubMed
Chou, W.C., Liao, K.W., Lo, Y.C., Jiang, S.Y., Yeh, M.Y. and Roffler, S.R. (1999) Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells. Biotechnology and Bioengineering, 65, 160–9.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Chow, B.Y., Han, X., Dobry, A.S., Qian, X., Chuong, A.S., Li, M., et al. (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature, 463, 98102.CrossRefGoogle ScholarPubMed
Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A.C., Acker, L.C., Sørensen, A.T., et al. (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17, 1123–9.CrossRefGoogle ScholarPubMed
Clissold, K.A., Berglund, K., Klein, M.E., Prevosto, V., Koval, M., Abzug, Z.M., et al. (2014) In vivo bioluminescence-driven optogenetics for neuronal activation and inhibition. Society for Neuroscience Abstracts.Google Scholar
Deluca, M. (1976) Firefly luciferase. Advances in Enzymology and Related Areas of Molecular Biology, 44, 3768.CrossRefGoogle ScholarPubMed
Ernst, O.P., Sánchez Murcia, P.A., Daldrop, P., Tsunoda, S.P., Kateriya, S. and Hegemann, P. (2008) Photoactivation of channelrhodopsin. The Journal of Biological Chemistry, 283, 1637–43.CrossRefGoogle ScholarPubMed
Fairless, R., Masius, H., Rohlmann, A., Heupel, K., Ahmad, M., Reissner, C., et al. (2008) Polarized targeting of neurexins to synapses is regulated by their C-terminal sequences. The Journal of Neuroscience, 28, 12969–81.CrossRefGoogle ScholarPubMed
Feinberg, E.H., Vanhoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., et al. (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57, 353–63.CrossRefGoogle ScholarPubMed
Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X. and Spudich, J.L. (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science, 349, 647–50.CrossRefGoogle ScholarPubMed
Haddock, S.H.D., Moline, M.A. and Case, J.F. (2010) Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–93.CrossRefGoogle ScholarPubMed
Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., et al. (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chemical Biology, 7, 1848–57.CrossRefGoogle ScholarPubMed
Han, X. and Boyden, E.S. (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One, 2, e299.CrossRefGoogle ScholarPubMed
Han, X., Chow, B.Y., Zhou, H., Klapoetke, N.C., Chuong, A., Rajimehr, R., et al. (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Frontiers in Systems Neuroscience, 5, 18.CrossRefGoogle ScholarPubMed
Higashikubo, B., McDonnell, E., Hochgeschwender, U. and Moore, C.I. (2015) Multi-timescale In vivo regulation of the thalamic reticular nucleus using bioluminescent optogenetics (BL-OG). Society for Neuroscience Abstracts.Google Scholar
Hoshino, H., Nakajima, Y. and Ohmiya, Y. (2007) Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nature Methods, 4, 637–9.CrossRefGoogle ScholarPubMed
Hu, C.-D. and Kerppola, T.K. (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology, 21, 539–45.CrossRefGoogle ScholarPubMed
Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., et al. (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell, 81, 435–43.CrossRefGoogle ScholarPubMed
Kendall, J.M., Badminton, M.N., Dormer, R.L. and Campbell, A.K. (1994) Changes in free calcium in the endoplasmic reticulum of living cells detected using targeted aequorin. Analytical Biochemistry, 221, 173–81.CrossRefGoogle ScholarPubMed
Kerppola, T.K. (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nature Protocols, 1, 12781286.CrossRefGoogle ScholarPubMed
Kim, S.B., Suzuki, H., Sato, M. and Tao, H. (2011) Superluminescent variants of marine luciferases for bioassays. Analytical Chemistry, 83, 8732–40.CrossRefGoogle ScholarPubMed
Kim, S.B., Torimura, M. and Tao, H. (2013) Creation of artificial luciferases for bioassays. Bioconjugate Chemistry, 24, 2067–75.CrossRefGoogle ScholarPubMed
Kim, J., Zhao, T., Petralia, R.S., Yu, Y., Peng, H., Myers, E., et al. (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nature Methods, 9, 96102.CrossRefGoogle Scholar
Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., et al. (2014) Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–46.Google ScholarPubMed
Kopparaju, R., Lin, S.H., Chen, Y.C., Hochgeschwender, U. and Chen, C.C. (2015) Intimate touch at a distance. Society for Neuroscience Abstracts.Google Scholar
Lanyi, J.K., Duschl, A., Hatfield, G.W., May, K. and Oesterhelt, D. (1990) The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. The Journal of Biological Chemistry, 265, 1253–60.CrossRefGoogle ScholarPubMed
Li, X., Gutierrez, D. V, Hanson, M.G., Han, J., Mark, M.D., Chiel, H., et al. (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 102, 17816–21.Google ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. and Tsien, R.Y. (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16, 1499–508.CrossRefGoogle ScholarPubMed
Martin, J.-R., Rogers, K.L., Chagneau, C. and Brûlet, P. (2007) In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One, 2, e275.CrossRefGoogle ScholarPubMed
Le Masson, G., Przedborski, S. and Abbott, L.F. (2014) A computational model of motor neuron degeneration. Neuron, 83, 975–88.Google ScholarPubMed
Morise, H., Shimomura, O., Johnson, F.H. and Winant, J. (1974) Intermolecular energy transfer in the bioluminescent system of aequorea. Biochemistry, 13, 2656–62.CrossRefGoogle Scholar
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., et al. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940–5.Google ScholarPubMed
Naumann, E.A., Kampff, A.R., Prober, D.A., Schier, A.F. and Engert, F. (2010) Monitoring neural activity with bioluminescence during natural behavior. Nature Neuroscience, 13, 513–20.CrossRefGoogle ScholarPubMed
Rangaraju, V., Calloway, N. and Ryan, T.A. (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell, 156, 825–35.CrossRefGoogle ScholarPubMed
Rogers, K.L., Picaud, S., Roncali, E., Boisgard, R., Colasante, C., Stinnakre, J., et al. (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One, 2, e974.CrossRefGoogle ScholarPubMed
Rogers, K.L., Stinnakre, J., Agulhon, C., Jublot, D., Shorte, S.L., Kremer, E.J., et al. (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. The European Journal of Neuroscience, 21, 597610.CrossRefGoogle ScholarPubMed
Saito, K., Chang, Y.-F., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida, M., et al. (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 3, 1262.CrossRefGoogle ScholarPubMed
Schnütgen, F., Doerflinger, N., Calléja, C., Wendling, O., Chambon, P. and Ghyselinck, N.B. (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nature Biotechnology, 21, 562–5.CrossRefGoogle ScholarPubMed
Shimomura, O. (1985) Bioluminescence in the sea: photoprotein systems. Symposia of the Society for Experimental Biology, 39, 351–72.Google ScholarPubMed
Shimomura, O., Johnson, F.H. and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. Journal of Cellular and Comparative Physiology, 59, 223–39.CrossRefGoogle ScholarPubMed
Shimomura, O., Masugi, T., Johnson, F.H. and Haneda, Y. (1978) Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry, 17, 994–8.CrossRefGoogle ScholarPubMed
Sternson, S.M. and Roth, B.L. (2014) Chemogenetic tools to interrogate brain functions. Annual Review of Neuroscience, 37, 387407.CrossRefGoogle ScholarPubMed
Takai, A., Nakano, M., Saito, K., Haruno, R., Watanabe, T.M., Ohyanagi, T., et al. (2015) Expanded palette of nano-lanterns for real-time multicolor luminescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 112, 4352–6.Google ScholarPubMed
Tannous, B.A., Kim, D.-E., Fernandez, J.L., Weissleder, R. and Breakefield, X.O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Molecular Therapy, 11, 435–43.CrossRefGoogle ScholarPubMed
Teranishi, K. and Shimomura, O. (1997) Solubilizing coelenterazine in water with hydroxypropyl-.BETA.-cyclodextrin. Bioscience, Biotechnology, and Biochemistry, 61, 12191220.CrossRefGoogle Scholar
Tung, J.K., Gutekunst, C.-A. and Gross, R.E. (2015) Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition. Scientific Reports, 5, 14366.CrossRefGoogle ScholarPubMed
Verhaegen, M. and Christopoulos, T.K. (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Analytical Chemistry, 74, 4378–85.CrossRefGoogle Scholar
Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., et al. (2007) High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 8143–8.Google ScholarPubMed
Ward, W.W. and Cormier, M.J. (1976) In vitro energy transfer in Renilla bioluminescence. The Journal of Physical Chemsitry, 80, 2289–91.Google Scholar
Welsh, J.P., Patel, K.G., Manthiram, K. and Swartz, J.R. (2009) Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence. Biochemical and Biophysical Research Communications, 389, 563–8.CrossRefGoogle ScholarPubMed
Wen, L., Park, S.Y., Clissold, K.A., Berglund, K., Yin, H.H., Augustine, G.J., et al. (2015) Luminopsins allow neuronal activation over a range of spatial and temporal scales. Society for Neuroscience Abstracts.Google Scholar
Wietek, J., Beltramo, R., Scanziani, M., Hegemann, P., Oertner, T.G. and Simon Wiegert, J. (2015) An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo. Scientific Reports, 5, 14807.CrossRefGoogle ScholarPubMed
Wietek, J., Wiegert, J.S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S.P., et al. (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science (New York, N.Y.), 344, 409–12.CrossRefGoogle ScholarPubMed
Yamagata, M. and Sanes, J.R. (2012) Transgenic strategy for identifying synaptic connections in mice by fluorescence complementation (GRASP). Frontiers in Molecular Neuroscience, 5, 18.CrossRefGoogle ScholarPubMed
Zhang, F., Prigge, M., Beyrière, F., Tsunoda, S.P., Mattis, J., Yizhar, O., et al. (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 11, 631–3.CrossRefGoogle ScholarPubMed
Zhang, F., Wang, L.-P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., et al. (2007) Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–9.CrossRefGoogle ScholarPubMed
Zhao, H., Doyle, T.C., Wong, R.J., Cao, Y., Stevenson, D.K., Piwnica-Worms, D., et al. (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Molecular Imaging, 3, 4354.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×