Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-26T08:27:49.873Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 March 2024

Finn Gunnar Nielsen
Affiliation:
Universitetet i Bergen, Norway
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Offshore Wind Energy
Environmental Conditions and Dynamics of Fixed and Floating Turbines
, pp. 368 - 377
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aasen, S., Page, A. M., Skau, K. S. and Nygaard, T. A.. 2017. “Effect of Foundation Modelling on the Fatigue Lifetime of a Monopile-Based Offshore Wind Turbine.Wind Energy Science 2 (2): 361–76. https://doi.org/10.5194/wes-2-361-2017.CrossRefGoogle Scholar
Abramowitz, M. and Stegun, I. A. (ed.). 1970. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, Inc.Google Scholar
Anaya-Lara, O., Tande, J. O., Uhlen, K. and Merz, K.. 2018. Offshore Wind Energy Technology. Wiley.Google Scholar
Arany, L., Bhattacharya, S., Macdonald, J. and Hogan, S. J.. 2017. “Design of Monopiles for Offshore Wind Turbines in 10 Steps.Soil Dynamics and Earthquake Engineering 92: 126–52. https://doi.org/10.1016/j.soildyn.2016.09.024.CrossRefGoogle Scholar
Attari, A. and Doherty, P.. 2015. “Gravity Base Foundations in Offshore Wind: Design Drivers.” Engineers Journal, April 21. www.engineersireland.ie/Engineers-Journal/More/Renewables/gravity-base-foundations-in-offshore-wind-design-drivers (accessed August 3, 2018).Google Scholar
Bak, C., Zahle, F., Bitsche, R. et al. 2013. “Description of the DTU 10 MW Reference Wind Turbine.” DTU Wind Energy Report-I-0092, Technical University of Denmark.Google Scholar
Barthelmie, R. J. 1999. “The Effects of Atmospheric Stability on Coastal Wind Climates.Meteorological Applications 6 (1): 3947. https://doi.org/10.1017/S1350482799000961.CrossRefGoogle Scholar
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T. et al. 2010. “Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms.Journal of Atmospheric and Oceanic Technology 27(8): 1302–17. https://doi.org/10.1175/2010JTECHA1398.1.Google Scholar
Bastankhah, M. and Porté-Agel, F.. 2014. “A New Analytical Model for Wind-Turbine Wakes.Renewable Energy 70: 116–23. https://doi.org/10.1016/j.renene.2014.01.002.CrossRefGoogle Scholar
Benson, T. J. 1996. “Interactive Educational Tool for Classical Aerofoil Theory.” NASA Lewis Research Center. www.grc.nasa.gov/WWW/K-12/airplane/FoilTheory.pdf (accessed November 15, 2017).Google Scholar
Betz, A. 1926. Wind-Energie und Ihre Ausnutzung durch Windmühlen. Vandenhoeck & Ruprecht.Google Scholar
Beyer, F., Choisnet, T., Kretschmer, M. and Cheng, P. W.. 2015. “Coupled MBS-CFD Simulation of the IDEOL Floating Offshore Wind Turbine Foundation Compared to Wave Tank Model Test Data.” Proceedings of 25th International Ocean and Polar Engineering Conference, June 2126, Kona, 367–74.Google Scholar
Birknes, J., Hagen, Ø, Johannessen, T. B., Lande, Ø and Nestegård, A.. 2013. “Second Order Kinematics Underneath Irregular Waves.” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, June 813, Nantes.Google Scholar
Blevins, R. D. 1977. Flow-Induced Vibrations. Van Nostrand Reinhold Company Ltd.Google Scholar
Bramwell, A. R. S., Done, G. and Balmford, D.. 2001. Bramwell’s Helicopter Dynamics. 2nd ed. American Institute of Aeronautics and Astronautics, Inc. and Butterworth-Heinemann.Google Scholar
Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E.. 2011. Wind Energy Handbook. 2nd ed. John Wiley & Sons.CrossRefGoogle Scholar
Busch, N. E., Larsen, S. E. and Thomson, D. W. 1978. “Data Analysis of Atmospheric Measurements.” In Hansen, B. W. (ed.), Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows. Springer, 887908.CrossRefGoogle Scholar
Butkov, E. 1973. Mathematical Physics. Addison-Wesley Publishing Company.Google Scholar
Campbell, I. M. C. and Weynberg, P. A.. 1980. Measurement of Parameters Affecting Slamming. Rep.440, Tech. Rep. Centre No. OT-R-8042. Southampton University.Google Scholar
Carswell, W., Johansson, J., Løvholt, F., Arwade, S. R., Madshus, C., DeGroot, D. J. and Myers, A. T.. 2015. “Foundation Damping and the Dynamics of Offshore Wind Turbine Monopiles.Renewable Energy 80: 724–36. https://doi.org/10.1016/j.renene.2015.02.058.Google Scholar
Chaaban, R. 2012. “NREL 5-MW Reference Turbine: CP, CQ, CT Coefficients.” NREL Forum. https://wind.nrel.gov/forum/wind/viewtopic.php?t=582 (accessed August 28, 2023).Google Scholar
Charnock, H. 1955. “Wind Stress on a Water Surface.Quarterly Journal of the Royal Meteorological Society 81(350): 639–40. https://doi.org/10.1002/qj.49708135027.CrossRefGoogle Scholar
Chen, D., Huang, K., Bretel, V. and Hou, L.. 2013. “Comparison of Structural Properties between Monopile and Tripod Offshore Wind-Turbine Support Structures.” Advances in Mechanical Engineering 5. https://doi.org/10.1155/2013/175684.CrossRefGoogle Scholar
Cheynet, E. 2019. “Influence of the Measurement Height on the Vertical Coherence of Natural Wind.” In Ricciardelli, F. and Avossa, A. M. (eds.), Proceedings of the XV Conference of the Italian Association for Wind Engineering. IN VENTO 2018. Lecture Notes in Civil Engineering 27. Springer International Publishing.Google Scholar
Cheynet, E., Jakobsen, J. B. and Obhrai, C.. 2017. “Spectral Characteristics of Surface-Layer Turbulence in the North Sea.Energy Procedia 137: 414–27. https://doi.org/10.1016/j.egypro.2017.10.366.CrossRefGoogle Scholar
Cheynet, E., Jakobsen, J. B. and Reuder, J.. 2018. “Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer.” Boundary-Layer Meteorology 169(3): 429–60. doi:10.1007/s10546-018-0382-2.CrossRefGoogle Scholar
Chougule, A., Mann, J., Kelly, M. and Larsen, G. C.. 2018. “Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability.Boundary-Layer Meteorology 167 (3): 371–97. https://doi.org/10.1007/s10546-018-0332-z.CrossRefGoogle Scholar
Churchfield, M. J., Lee, S., Moriarty, P. J. et al. 2012. “A Large-Eddy Simulation of Wind-Plant Aerodynamics Preprint.” January.CrossRefGoogle Scholar
Cummins, W. E. 1962. “The Impulse Response Function and Ship Motions.” Schifftechnik 47 (9): 101–9.Google Scholar
Curle, N. and Davies, H. J. 1968. Modern Fluid Dynamics, Volume 1: Incompressible Flow. D. van Nostrand Company.Google Scholar
Dahlquist, G. and Björck, Å. 2003. Numerical Methods. Dover Publications, Inc.Google Scholar
Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D. and Revie, M.. 2015. “Advanced Logistics Planning for Offshore Wind Farm Operation and Maintenance Activities.Ocean Engineering 101: 211–26. https://doi.org/10.1016/j.oceaneng.2015.04.040.CrossRefGoogle Scholar
Damiani, R., Dykes, K. and Scott, G.. 2016. “A Comparison Study of Offshore Wind Support Structures with Monopiles and Jackets for U.S. Waters.Journal of Physics: Conference Series 753 (9): 092003. https://doi.org/10.1088/1742-6596/753/9/092003.Google Scholar
Davenport, A. G. 1962. “The Response of Slender, Line-Like Structures to a Gusty Wind.Proceedings of the Institution of Civil Engineers 23 (3): 389408. https://doi.org/10.1680/iicep.1962.10876.Google Scholar
De Souza, C. E. S. 2022. “Structural Modelling, Coupled Dynamics, and Design of Large Floating Wind Turbines.” PhD thesis, NTNU.Google Scholar
Dinwoodie, I., Endrerud, O.-E. V., Hofmann, M., Martin, R. and Sperstad, I. B.. 2015. “Reference Cases for Verification of Operation and Maintenance Simulation Models for Offshore Wind Farms.Wind Engineering 39 (1): 114. https://doi.org/10.1260/0309-524X.39.1.1.CrossRefGoogle Scholar
DNV. 2011. “Marine Operations, General, DNV Offshore Standard, DNV-OS-H101.” DNV Offshore Standard. Oslo.Google Scholar
DNV. 2014a. “Offshore Standard DNV-OS-J101, Design of Offshore Wind Turbine Structures.DNV Offshore Standard. Oslo.Google Scholar
DNV. 2021a. “Standard DNV-ST-0126, Support Structures for Wind Turbines.” DNV Offshore Standard. Oslo.Google Scholar
DNV. 2021b. “Standard DNV-ST-0436 Load and Site Conditions for Wind Turbines.” DNV Offshore Standard. Oslo.Google Scholar
DNV. 2021c. “Recommended Practice DNV-RP-C205, Environmental Conditions and Environmental Loads.” Oslo.Google Scholar
DNV. 2021d. “Standard DNV-ST-N001 Marine Operations and Marine Warranty.” DNV Offshore Standard. Oslo.Google Scholar
Duarte, T., Alves, M., Jonkman, J. and Sarmento., A. 2013. “State-Space Realization of the Wave-Radiation Force within FAST.” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, June 813, Nantes. https://doi.org/10.1115/OMAE2013-10375.Google Scholar
Englberger, A. and Lundquist, J. K.. 2020. “How Does Inflow Veer Affect the Veer of a Wind-Turbine Wake?Journal of Physics: Conference Series 1452 (1): 19. https://doi.org/10.1088/1742-6596/1452/1/012068.Google Scholar
European Commission Directorate-General for Energy. 2022. Study on the Performance of Support for Electricity from Renewable Sources Granted by Means of Tendering Procedures in the Union 2022. Luxemburg. https://doi.org/10.2833/93256.Google Scholar
Falnes, J. 2002. Ocean Waves and Oscillating Systems: Linear Interaction Including Wave-Energy Extraction. Cambridge University Press.CrossRefGoogle Scholar
Faltinsen, O. M. 1990. Sea Loads on Ships and Offshore Structures. 1st ed. Cambridge University Press.Google Scholar
Faltinsen, O. M. 2005. Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.Google Scholar
Faltinsen, O. M., Newman, J. N. and Vinje, T.. 1995. “Nonlinear Wave Loads on a Slender Vertical Cylinder.Journal of Fluid Mechanics 289: 179–98.CrossRefGoogle Scholar
Fenton, J. D. 1985. “A Fifth Order Stokes Theory for Steady Waves.” Journal of Waterway, Port, Coast and Ocean Engineering 111 (2). https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(216).CrossRefGoogle Scholar
Frandsen, S., Barthelmie, R., Pryor, S. et al. 2006. “Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms.” Wind Energy 9 (1–2): 3953. https://doi.org/10.1002/we.189.CrossRefGoogle Scholar
Furevik, B. R. and Haakenstad, H.. 2012. “Near-Surface Marine Wind Profiles from Rawinsonde and NORA10 Hindcast.Journal of Geophysical Research Atmospheres 117 (23): 114. https://doi.org/10.1029/2012JD018523.CrossRefGoogle Scholar
Gaertner, E., Rinker, J., Sethuraman, L. et al. 2020. “IEA Wind TCP Task 37: Definition of the IEA 15 MW Offshore Reference Wind Turbine.” Technical Report NREL/TP-5000-75698 March. https://doi.org/10.2172/1603478.Google Scholar
Glauert, H. 1935. “Airplane Propellers.” In Durand, W. F. (ed.), Aerodynamic Theory, Vol. IV. Springer, 169360.CrossRefGoogle Scholar
Global Wind Energy Council. 2022. Global Wind Report 2022. https://gwec.net/global-wind-report-2022/ (accessed August 28, 2023).Google Scholar
Graham, C. 1982. “The Parameterisation and Prediction of Wave Height and Wind Speed Persistence Statistics for Oil Industry Operational Planning Purposes.Coastal Engineering 6 (4): 303–29. https://doi.org/10.1016/0378-3839(82)90005-9.CrossRefGoogle Scholar
Grue, J. and Huseby, M.. 2002. “Higher-Harmonic Wave Forces and Ringing of Vertical Cylinders.” Applied Ocean Research 24 (4): 203–14. https://doi.org/10.1016/S0141-1187(02)00048-2.CrossRefGoogle Scholar
Grue, J., Kolaas, J. and Jensen, A.. 2014. “Velocity Fields in Breaking-Limited Waves on Finite Depth.” European Journal of Mechanics B/Fluids 47: 97107. https://doi.org/10.1016/j.euromechflu.2014.03.014.Google Scholar
Haakenstad, H., Breivik, Ø, Reistad, M. and Aarnes, O. J.. 2020. “NORA10EI: A Revised Regional Atmosphere-Wave Hindcast for the North Sea, the Norwegian Sea and the Barents Sea.International Journal of Climatology 40 (10): 4347–73. https://doi.org/10.1002/joc.6458.CrossRefGoogle Scholar
Haakenstad, H., Breivik, Ø, Furevik, B. R., Reistad, M., Bohlinger, P. and Aarnes, O. J.. 2021. “NORA3: A Nonhydrostatic High-Resolution Hindcast of the North Sea, the Norwegian Sea, and the Barents Sea.Journal of Applied Meteorology and Climatology 60 (10): 1443–64. https://doi.org/10.1175/JAMC-D-21-0029.1.CrossRefGoogle Scholar
Hansen, M. O. L. 2015. Aerodynamics of Wind Turbines. 3rd ed. Routledge.CrossRefGoogle Scholar
Hansen, M. H., Hansen, A. D., Larsen, T. J., Øye, S., Sørensen, P. and Fuglsang, P.. 2005. Control Design for a Pitch-Regulated, Variable Speed Wind Turbine, Control. Forskningscenter Risoe. Risoe-R No. 1500(EN).Google Scholar
Hansen, M. O. L., Sørensen, J. N., Voutsinas, S., Sørensen, N. and Madsen, H. A. 2006. “State of Art in Wind Turbine Aerodynamics and Aeroelasticity.” Progress in Aerospace Sciences 42 (2006): 285330.CrossRefGoogle Scholar
Haslum, H. and Faltinsen, O. M.. 1999. “Alternative Shapes of Spar Platforms for Use in Hostile Areas, OTC 10953.” Offshore Technology Conference, May 3–6, Houston.CrossRefGoogle Scholar
Haslum, H., Marley, M., Navalkar, S. T., Skaare, B., Maljaars, N. and Andersen, H. S.. 2022. “Roll–Yaw Lock: Aerodynamic Motion Instabilities of Floating Offshore Wind Turbines.Journal of Offshore Mechanics and Arctic Engineering 144 (4): 110. https://doi.org/10.1115/1.4053697.CrossRefGoogle Scholar
Hess, J. L. and Smith, A. M.. 1962. “Calculation of Nonlifting Flow about Arbitrary Three-Dimensional Bodies.” Douglas Aircraft Co. Report No. E.S. 40622 (also in abbreviated form in the Journal of Ship Research 8 (1964)).Google Scholar
Hong, D. C. 1987. “On the Improved Green Integral Equation Applied to the Water-Wave Radiation – Diffraction Problem.Journal of the Society of Naval Architects of Korea 24 (1).Google Scholar
Hooft, J. P. 1972. Hydrodynamic Aspects of Semi-Submersible Platforms. H. Veeman on Zonen N.V. PhD thesis, TU Delft.Google Scholar
IEC. 2005. International Standard IEC 61400-1, Wind Turbines Part 1: Design Requirements.Google Scholar
IEC. 2009. International Standard IEC 61400-3, Wind Turbines Part 3: Design Requirements for Offshore Wind Turbines. European Committee for Electrotechnical Standardization.Google Scholar
Irgens, F. 1999. Dynamikk. 4th ed. Tapir Forlag.Google Scholar
Jacobsen, A. and Godvik, M.. 2020. “Influence of Wakes and Atmospheric Stability on the Floater Responses of the Hywind Scotland Wind Turbines.” Wind Energy 24 (2): 149–61. https://doi.org/10.1002/we.2563.Google Scholar
Jamieson, P. 2017. “Multi Rotor Solution for Large Scale Offshore Wind Power.” EERA DeepWind, 14th Deep Sea Offshore Wind R&D Conference, 18–20 January, Trondheim.Google Scholar
Jensen, N. O. 1983. “A Note on Wind Generator Interaction.” Risø-M-2411, Risø National Laboratory Roskilde, 116.Google Scholar
Johannessen, T. B. 2011. “Calculations of Kinematics Underneath Measured Time Histories of Steep Water Waves.” Journal of Applied Ocean Research 32: 391403. https://doi.org/10.1016/j.apor.2010.08.002.CrossRefGoogle Scholar
Jonkman, J., Butterfield, S., Musial, W. and Scott, G.. 2009. “Definition of a 5-MW Reference Wind Turbine for Offshore System Development.” Technical Report, US Department of Energy, February. https://doi.org/10.2172/947422.CrossRefGoogle Scholar
Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. and Mikkelsen, K. K.. 2015. “Optimization of Monopiles for Offshore Wind Turbines.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2035). https://doi.org/10.1098/rsta.2014.0100.Google ScholarPubMed
Kalleklev, A. J. and Nestegård, A.. 2005. “A Numerical Load Model for Wave Impact on Slender Vertical Cylinders.” In Soize, C. and Schuëller, G. I. (eds.), Structural Dynamics – EURODYN 2005: Proceedings of the 6th International Conference on Structural Dynamics, September 47, Paris. Millpress, 205210.Google Scholar
Kalvig, S., Manger, E., Hjertager, B. and Jakobsen, J. B.. 2014. “Wave Influenced Wind and the Effect on Offshore Wind Turbine Performance.” Energy Procedia 53: 202–13. http://dx.doi.org/10.1016/j.egypro.2014.07.229.CrossRefGoogle Scholar
Katic, I., Højstrup, J. and Jensen, N. O.. 1987. “A Simple Model for Cluster Efficiency.” In Palz, W. and Sesto, E. (eds.), EWEC’86: Proceedings 1, 407–10.Google Scholar
Katz, J. and Plotkin, A.. 2001. Low Speed Aerodynamics. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Kiełkiewicz, A., Marino, A., Vlachos, C., Maldonado, F. J. López and Lessis, I.. 2015. “The Practicality and Challenges of Using XL Monopiles for Offshore Wind Turbine Substructures.” University of Strathclyde.Google Scholar
Korotkin, A. I. 2008. Added Masses of Ship Structures. Springer.Google Scholar
Korsmeyer, F. T., Lee, C.-H., Newman, J. N. and Sclavounos, P. D.. 1988. “The Analysis of Wave Effects on Tension Leg Platforms.” Proceedings of the OMAE Conference, paper 88-611, Houston.Google Scholar
Kramm, G., Sellhorst, G., Ross, H. K., Cooney, J., Dlugi, R. and Mölders, N.. 2016. “On the Maximum of Wind Power Efficiency.” Journal of Power and Energy Engineering 4 (1): 139. https://doi.org/10.4236/jpee.2016.41001.CrossRefGoogle Scholar
Krokstad, J. R., Stansberg, C., Nestegård, A. and Marthinsen, T.. 1998. “A New Nonslender Ringing Load Approach Verified against Experiments.” Transactions of the ASME Journal of Offshore Mechanics and Arctic Engineering 120 (1): 20–9.Google Scholar
Krutova, M., Paskyabi, M. B., Nielsen, F. G. and Reuder, J.. 2020. “Evaluation of Gaussian Wake Models under Different Atmospheric Stability Conditions: Comparison with Large Eddy Simulation Results.Journal of Physics: Conference Series 1669: 012016. https://doi.org/10.1088/1742-6596/1669/1/012016.Google Scholar
Lamb, H. 1932. Hydrodynamics. 6th ed. Cambridge University Press.Google Scholar
Lang, S. and McKeogh, E.. 2011. “LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes.Remote Sensing 3 (9): 18711901. https://doi.org/10.3390/rs3091871.CrossRefGoogle Scholar
Larsen, C. M., & Koushan, K. (2005). Empirical Model for the Analysis of Vortex Induced Vibrations of Free Spanning Pipelines. In C. Soize & G. I. Schuëller (Eds.), Proceedings of the 6th International Conference on Structural Dynamics; EURODYN 2005 (pp. 175–180). Millpress, Rotterdam.Google Scholar
Larsen, K. and Sandvik, P. C.. 1990. “Efficient Methods for the Calculation of Dynamic Mooring Line Tension.” Proceedings of the First European Offshore Mechanics Symposium, August 2022, Trondheim.Google Scholar
Larsen, T. J. and Hanson, T. D.. 2007. “A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine.Journal of Physics: Conference Series 75 (1). https://doi.org/10.1088/1742-6596/75/1/012073.Google Scholar
Lee, X. 2018. Fundamentals of Boundary-Layer Meteorology. 1st ed. Springer International Publishing. https://doi.org/10.1007/Thompson,1975.CrossRefGoogle Scholar
Leishman, J. G. and Martin, G. L. 2002. “Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines.Wind Energy 5: 85132. https://doi.org/10.1002/we.62.CrossRefGoogle Scholar
Liu, X, Lu, C., Li, G., Godbole, A. and Chen, Y.. 2017. “Effects of Aerodynamic Damping on the Tower Load of Offshore Horizontal Axis Wind Turbines.” Applied Energy 204: 1101–14. https://doi.org/10.1016/j.apenergy.2017.05.024.CrossRefGoogle Scholar
MacCamy, R. C. and Fuchs, R. A.. 1954. “Wave Forces on Piles: A Diffraction Theory.” US Army Coastal Engineering Research Center (Formerly Beach Erosion Board), Technical Memorandum No. 69.Google Scholar
Mann, J. 1994. “The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence.Journal of Fluid Mechanics 273: 141–68. https://doi.org/10.1017/S0022112094001886.CrossRefGoogle Scholar
Mann, J. 1998. “Wind Field Simulation.Probabilistic Engineering Mechanics 13 (4): 269–82. https://doi.org/10.1016/s0266-8920(97)00036-2.CrossRefGoogle Scholar
Manwell, J. F., McGowan, J. G. and Rogers, A. L.. 2009. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons.CrossRefGoogle Scholar
Maronga, B., Gryschka, M., Heinze, R. et al. 2015. “The Parallelized Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives.Geoscientific Model Development 8 (8): 2515–51. https://doi.org/10.5194/gmd-8-2515-2015.CrossRefGoogle Scholar
Marten, D., Lennie, M., Pechlivanoglou, G., Nayeri, C. N. and Paschereit, C. O.. 2015. “Implementation, Optimization, and Validation of a Nonlinear Lifting Line-Free Vortex Wake Module Within the Wind Turbine Simulation Code QBLADE.” Journal of Engineering for Gas Turbines and Power 138 (7). https://doi.org/10.1115/1.4031872.Google Scholar
Mathiesen, M. 1994. “Estimation of Wave Height Duration Statistics.Coastal Engineering 23 (1–2): 167–81. https://doi.org/10.1016/0378-3839(94)90021-3.CrossRefGoogle Scholar
McCormick, B. W. 1999. Aerodynamics of V/STOL Flight. Dover Publications, Inc.Google Scholar
Molin, B. 2011. “Hydrodynamic Modelling of Perforated Structures.” Applied Ocean Research 33: 111. https://doi.org/10.1016/j.apor.2010.11.003.CrossRefGoogle Scholar
Molin, B. and Nielsen, F. G.. 2004. “Heave Added Mass and Damping of a Perforated Disk Below the Free Surface.” 20th International Workshop on Water Waves and Floating Bodies, March, Cortona.Google Scholar
Moriarty, P. J. and Hansen, A. C.. 2005. AeroDyn Theory Manual. NREL/TP-50. National Renewable Energy Laboratory.CrossRefGoogle Scholar
Morison, J. R., O’Brien, M. P., Johnsen, J. W. and Schaaf, S. A.. 1950. “The Force Exerted by Surface Waves on Piles.” Petroleum Transactions AIME 189: 149–54.Google Scholar
Mork, M. 2010. “Wave Theory.” English translation of notes for lecture “Bølgeteori,” University of Bergen.Google Scholar
Murphy, P., Lundquist, J. K. and Fleming, P.. 2020. “How Wind Speed Shear and Directional Veer Affect the Power Production of a Megawatt-Scale Operational Wind Turbine.Wind Energy Science 5 (3): 1169–90. https://doi.org/10.5194/wes-5-1169-2020.CrossRefGoogle Scholar
Myren, A. F. 2021. “Sensitivity Analysis in Key Parameters Related to Wind Power Production.” Master’s thesis, University of Bergen.Google Scholar
Næss, A. 1985. “On the Distribution of Crest to Trough Wave Heights.” Ocean Engineering 12 (3): 221–34. https://doi.org/10.1016/0029-8018(85)90014-9.CrossRefGoogle Scholar
Næss, A. and Moan, T.. 2013. Stochastic Dynamics of Marine Structures. Cambridge University Press.Google Scholar
Nayfeh, A. H. and Mook, D. T.. 1979. Nonlinear Oscillations. John Wiley & Sons.Google Scholar
Negro, V., López-Gutiérrez, J. S., Esteban, M. D., Alberdi, P., Imaz, M. and Serraclara, J. M.. 2017. “Monopiles in Offshore Wind: Preliminary Estimate of Main Dimensions.Ocean Engineering 133: 253–61. https://doi.org/10.1016/j.oceaneng.2017.02.011.CrossRefGoogle Scholar
Newman, J. N. 1962. “The Exciting Force on Fixed Bodies in Waves.Journal of Ship Research 6 (4): 1017.CrossRefGoogle Scholar
Newman, J. N. 1977. Marine Hydrodynamics. The MIT Press.CrossRefGoogle Scholar
Newman, J. N. 1985. “Algorithms for the Free-Surface Green Function.Journal of Engineering Mathematics 19: 5767.CrossRefGoogle Scholar
Newman, J. N. and Sclavounos, P. D.. 1988. “The Computation of Wave Loads on Large Offshore Structures.” Proceedings of the BOSS’ 88 Conference, Trondheim.Google Scholar
Niayifar, A. and Porté-Agel, F.. 2016. “Analytical Modeling of Wind Farms: A new Approach for Power Prediction.Energies 9 (9): 741. https://doi.org/10.3390/en9090741.CrossRefGoogle Scholar
Nielsen, F. G., Søreide, T. H. and Kvarme, S. O.. 2002. “VIV Response of Long Free Spanning Pipelines.” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, June 2328, Oslo. https://doi.org/10.1115/OMAE2002-28075.Google Scholar
Nielsen, F. G., Hanson, T. D. and Skaare, B.. 2006. “Integrated Dynamic Analysis of Floating Offshore Wind Turbines.” Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, June 49, Hamburg. https://doi.org/10.1115/OMAE2006-92291.Google Scholar
Nielsen, F. G. 2007. Lecture Notes in Marine Operations. Dept. of Marine Hydrodynamics, Faculty of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim.Google Scholar
NORSOK. 2017. Standard N-003:2017. Action and Action Effects. https://handle.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=873200 (accessed August 28, 2023).Google Scholar
Nybø, A., Nielsen, F. G. and Reuder, J.. 2019. “Processing of Sonic Anemometer Measurements for Offshore Wind Turbine Applications.” Journal of Physics: Conference Series 1356: 012006. https://doi.org/10.1088/1742-6596/1356/1/012006.Google Scholar
Nybø, A., Nielsen, F. G., Reuder, J., Churchfield, M. J. and Godvik, M.. 2020. “Evaluation of Different Wind Fields for the Investigation of the Dynamic Response of Offshore Wind Turbines.” Wind Energy 23 (9): 1810–30. https://doi.org/10.1002/we.2518.CrossRefGoogle Scholar
Nybø, A., Nielsen, F. G and Godvik, M., 2021. “Analysis of Turbulence Models Fitted to Site, and Their Impact on the Response of a Bottom-Fixed Wind Turbine.” Journal of Physics: Conference Series 012028. https://doi.org/10.1088/1742-6596/2018/1/012028.Google Scholar
Nybø, A., Nielsen, F. G. and Godvik, M.. 2022. “Sensitivity of the Dynamic Response of a Multimegawatt Floating Wind Turbine to the Choice of Turbulence Model.” Wind Energy 25 (6): 1013–29. https://doi.org/10.1002/we.2712.CrossRefGoogle Scholar
Nybø, A., Nielsen, F. G., Reuder, J., Churchfield, M. and Godvik, M.. 2019. “Evaluation of Different Wind Fields for the Investigation of the Dynamic Response of Offshore Wind Turbines.” Wiley Wind Energy 23 (9): 1810–30. https://doi.org/10.1002/we.2518.Google Scholar
Nygaard, N. G., Steen, S. T., Poulsen, L. and Pedersen, J. G.. 2020. “Modelling Cluster Wakes and Wind Farm Blockage.Journal of Physics: Conference Series 1618: 062072. https://doi.org/10.1088/1742-6596/1618/6/062072.Google Scholar
Ogilvie, T. F. 1964. “Recent Progress toward the Understanding and Prediction of Ship Motions.Proceedings of the Fifth Symposium on Naval Hydrodynamics, September 1012, Bergen.Google Scholar
Orimolade, A. P., Haver, S. and Gudmestad, O. T.. 2016. “Estimation of Extreme Significant Wave Heights and the Associated Uncertainties: A Case Study Using NORA10 Hindcast Data for the Barents Sea.” Marine Structures 49: 117. https://doi.org/10.1016/j.marstruc.2016.05.004.CrossRefGoogle Scholar
Ormberg, H. and Bachynski, E. E.. 2012. “Global Analysis of Floating Wind Turbines: Code Development, Model Sensitivity and Benchmark Study.Proceedings of the 22nd International Offshore and Polar Engineering Conference, June 1722, Rhodes, 1: 366–73.Google Scholar
Paschen, M. and Laurat, S.. 2014. “Precision of Cup Anemometers: A Numerical Study.” European International Journal of Science and Technology 3 (5): 3945.Google Scholar
Pedersen, M. D. 2017. “Stabilization of Floating Wind Turbines.” PhD Thesis, NTNU.Google Scholar
Peire, K., Nonnemann, H. and Bosschen, E.. 2009. “Gravity Base Foundations for the Thornton Bank Offshore Wind Farm.” Terra et Aqua 115: 20–9.Google Scholar
Perez, T. and Fossen, T. I.. 2007. “Kinematic Models for Manoeuvring and Seakeeping of Marine Vessels.” Modeling, Identification and Control 28 (1): 1930. https://doi.org/10.4173/mic.2007.1.3.CrossRefGoogle Scholar
Porté-Agel, F., Bastankhah, M. and Shamsoddin, S.. 2020. “Wind-Turbine and Wind-Farm Flows: A Review.” Boundary-Layer Meteorology 174: 159. https://doi.org/10.1007/s10546-019-00473-0.CrossRefGoogle ScholarPubMed
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T.. 1989. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.Google Scholar
Reinholdtsen, S.-A., Mo, K. and Sandvik, P. C.. 2003. “Useful Force Models for Simulation of Multibody Offshore Marine Operations.Proceedings of The Thirteenth International Offshore and Polar Engineering Conference, May 2530, Honolulu.Google Scholar
Roddier, D., Peiffer, A., Aubault, A. and Weinstein, J.. 2011. “A Generic 5 MW Windfloat for Numerical Tool Validation & Comparison against a Generic Spar.” Proceedings of the ASME 2011 International Conference on Ocean, Offshore and Arctic Engineering, June 1924, Rotterdam.Google Scholar
Salzmann, D. J. C. and van der Tempel, J.. 2005. “Aerodynamic Damping in the Design of Support Structures for Offshore Wind Turbines.” Proceedings of the European Offshore Wind Conference, October 2628, Copenhagen.Google Scholar
Sanderse, B. 2009. “Aerodynamics of Wind Turbine Wakes: Literature Review.” Energy Research Centre of the Netherlands, 146.Google Scholar
Sarpkaya, T. and Isaacson, M.. 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold Company.Google Scholar
Sathe, A., Gryning, S.-E. and Peña, A.. 2011Comparison of the Atmospheric Stability and Wind Profiles at Two Wind Farm Sites over a Long Marine Fetch in the North Sea.” Wind Energy 14(6): 767–80. https://doi.org/10.1002/we.456.CrossRefGoogle Scholar
Skaare, B., Hanson, T. D. and Nielsen, F. G.. 2007. “Importance of Control Strategies on Fatigue Life of Floating Wind Turbines.” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, San Diego. https://doi.org/10.1115/OMAE2007-29277.CrossRefGoogle Scholar
Skaare, B., Hanson, T. D., Yttervik, R. and Nielsen, F. G.. 2011. “Dynamic Response and Control of the Hywind Demo Floating Wind Turbine.Proceedings of the European Wind Energy Association (EWEA), March 1417, Brussels.Google Scholar
Skaare, B., Nielsen, F. G., Hanson, T. D., Yttervik, R., Havmøller, O. and Rekdal, A.. 2015. “Analysis of Measurements and Simulations from the Hywind Demo Floating Wind Turbine.Wind Energy 18 (6): 1105–22 https://doi.org/10.1002/we.1750.CrossRefGoogle Scholar
Skjoldan, P. F. and Hansen, M. H.. 2009On the Similarity of the Coleman and Lyapunov-Floquet Transformations for Modal Analysis of Bladed Rotor Structures.Journal of Sound and Vibration 327 (3–5): 424–39. doi:10.1016/j.jsv.2009.07.007.CrossRefGoogle Scholar
Solbrekke, I. M., Kvamstø, N. G. and Sorteberg, A.. 2020. “Mitigation of Offshore Wind Power Intermittency by Interconnection of Production Sites.Wind Energy Science 5 (4): 1663–78. https://doi.org/10.5194/wes-5-1663-2020.CrossRefGoogle Scholar
Souza, C. E. S. and Bachynski, E. E.. 2019. “Changes in Surge and Pitch Decay Periods of Floating Wind Turbines for Varying Wind Speed.” Ocean Engineering 180 (April): 223–37. https://doi:10.1016/j.oceaneng.2019.02.075.CrossRefGoogle Scholar
Stansberg, C.T. 2011. “Characteristics of Steep Second-Order Random Waves in Finite and Shallow Water.” Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2010, June 1924, Rotterdam.Google Scholar
Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Springer Netherlands.CrossRefGoogle Scholar
Suja-Thauvin, L., Krokstad, J. R., Bachynski, E. E. and de Ridder, E.-J.. 2017. “Experimental Results of a Multimode Monopile Offshore Wind Turbine Support Structure Subjected to Steep and Breaking Irregular Waves.Ocean Engineering 146 (October): 339–51. https://doi.org/10.1016/j.oceaneng.2017.09.024.CrossRefGoogle Scholar
Theodorsen, T. 1935. “General Theory of Aerodynamic Instability and the Mechanism of Flutter.” NACA Report No. 496. 19930090935.Google Scholar
Triantafyllou, M. S. 1990. “Cable Mechanics with Marine Applications, Lecture Notes.” Department of Ocean Engineering, Massachusetts Institute of Technology.Google Scholar
University of Strathclyde. 2015. “The Practicality and Challenges of Using XL Monopiles for Offshore Wind Turbine Substructures.” www.esru.strath.ac.uk/EandE/Web_sites/14-15/XL_Monopiles/index.html (accessed August 28, 2023).Google Scholar
Van der Laan, M. P., Anderson, S. J., Ramos García, N. et al. 2019. “Power Curve and Wake Analyses of the Vestas Multi-Rotor Demonstrator.Wind Energy Science Discussions 1932: 130. https://doi.org/10.5194/wes-2018-77.Google Scholar
Van Wijk, A. J., Beljaars, A. C., Holtslag, A. A. and Turkenburg, W. C., 1990. “Evaluation of Stability Corrections in Wind Speed Profiles over the North Sea.” Journal of Wind Engineering and Industrial Aerodynamics 33(3): 551–66. https://doi.org/10.1016/0167-6105(90)90007-Y.CrossRefGoogle Scholar
Veers, P. S. 1984. “Modeling Stochastic Wind Loads on Vertical Axis Wind Turbines.” Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.1984-910.CrossRefGoogle Scholar
Veers, P. S. 1988. “Three-Dimensional Wind Simulation.” Sandia National Laboratories, Albuquerque, New Mexico. Vol. SAND88–015.Google Scholar
Vik, I. and Kleiven, G.. 1985. “Wave Statistics for Offshore Operations.” 8th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC85), September, Narssarssuaq.Google Scholar
Vinje, T. and Brevig, P.. 1980. “Breaking Waves on Finite Water Depths: A Numerical Study.” Report from “Skip i Sjøgang,” Norwegian Institute of Technology, Division of Marine Hydrodynamics and Norwegian Hydrodynamic Laboratories, Division Ship and Ocean Laboratories.Google Scholar
Vinje, T., Kaalstad, J. P. and Daniel, D. W.. 1991. “A Statistical Method for Evaluation of Heavy Lift Operations Offshore.” Proceedings of the First International Offshore and Polar Engineering Conference (ISOPE), August 1116, Edinburgh.Google Scholar
Von Kármán, T. 1929. “The Impact of Seaplane Floats during Landing.” NACA, Technical Note 321, Washington, DC.Google Scholar
Wagner, H. 1932. “Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten.Zeitschrift. für Angewandte Mathematik und Mechanic, 12 (4): 193235.CrossRefGoogle Scholar
WAMIT. 2016. User Manual Version 7.2. Theory. http://wamit.com/ (accessed June 5, 2018).Google Scholar
Wehausen, J. V. and Laitone, E. V.. 1960. “Surface Waves.” In Truesdell, C. (ed.), Fluid Dynamics/Strömungsmechanik. Springer Verlag, 446778.Google Scholar
Wenske, J. (ed.). 2022. Wind Turbine System Design, Volume 1: Nacelles, Drivetrains and Verification. The Institution of Engineering and Technology, Division Wind Turbine and System Technology.CrossRefGoogle Scholar
Werle, M. J. 2008. “A New Analytical Model for Wind Turbine Wakes.” Report, FloDesign Inc., 200801, Wilbraham.Google Scholar
Wind Europe. 2020. “Offshore Wind in Europe: Key Trends and Statistics 2019.” https://windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-statistics-2019/ (accessed August 17, 2023).Google Scholar
World Meteorological Organization. 2018. Guide to Wave Analysis and Forecasting. WMO-No. 702. Geneva.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Finn Gunnar Nielsen, Universitetet i Bergen, Norway
  • Book: Offshore Wind Energy
  • Online publication: 07 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781009341455.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Finn Gunnar Nielsen, Universitetet i Bergen, Norway
  • Book: Offshore Wind Energy
  • Online publication: 07 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781009341455.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Finn Gunnar Nielsen, Universitetet i Bergen, Norway
  • Book: Offshore Wind Energy
  • Online publication: 07 March 2024
  • Chapter DOI: https://doi.org/10.1017/9781009341455.016
Available formats
×