Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T13:38:56.178Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 March 2022

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S. and Gottesman, D.. Improved simulation of stabilizer circuits. Physical Review A, 70(5), 2004. doi: 10.1103/physreva.70.052328.Google Scholar
Abhijith, J., Adetokunbo, A., Ambrosiano, J., et al. Quantum algorithm implementations for beginners, 2020. arXiv:1804.03719v2 [cs.ET].Google Scholar
Altenkirch, T. and Green, A.. The quantum IO monad. Semantic Techniques in Quantum Computation, 2013. doi: 10.1017/CBO9781139193313.006.Google Scholar
Altman, E., Brown, K. R., Carleo, G., et al. Quantum simulators: Architectures and opportunities. PRX Quantum, 2(1), 2021. doi: 10.1103/prxquantum.2.017003.Google Scholar
Anders, S. and Briegel, H. J.. Fast simulation of stabilizer circuits using a graph-state representation. Physical Review A, 73(2), 2006. doi: 10.1103/physreva.73.022334.CrossRefGoogle Scholar
Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J.. The Traveling Salesman Problem: A Computational Study. Princeton University Press, 2006. URL www.jstor.org/stable/j.ctt7s8xg.Google Scholar
Arute, F., Arya, K., Babbush, R., et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505510, 2019. doi: 10.1038/s41586-019-1666-5.Google Scholar
Arute, F., Arya, K., Babbush, R, et al. Supplementary information: Quantum supremacy using a programmable superconducting processor. https://arxiv.org/pdf/1910.11333.pdf, 2020.Google Scholar
Barenco, A., Bennett, C. H., Cleve, R., et al. Elementary gates for quantum computation. Physical Review A, 52(5):34573467, 1995. doi: 10.1103/physreva.52.3457.CrossRefGoogle ScholarPubMed
Beauregard, S.. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Information and Compututation, 3(2):175185, 2003.Google Scholar
Bell, J. S.. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1:195200, 1964. doi: 10.1103/PhysicsPhysiqueFizika.1.195.Google Scholar
Bennett, C. H.. Logical reversibility of computation. IBM Journal of Research and Development, 17(6):525532, 1973. doi: 10.1147/rd.176.0525.Google Scholar
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K.. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical Review Letters, 70:18951899, 1993. doi: 10.1103/PhysRevLett.70.1895.CrossRefGoogle ScholarPubMed
Berry, D. W. and Sanders, B. C.. Quantum teleportation and entanglement swapping for systems of arbitrary spin. In 2002 Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, pp. 265–, 2002. doi: 10.1109/QELS.2002.1031404.Google Scholar
Bettelli, S., Calarco, T., and Serafini, L.. Toward an architecture for quantum programming. The European Physical Journal D – Atomic, Molecular and Optical Physics, 25(2):181200, 2003. doi: 10.1140/epjd/e2003-00242-2.Google Scholar
Bichsel, B., Baader, M., Gehr, T., and Vechev, M. T.. Silq: a high-level quantum language with safe uncomputation and intuitive semantics. In A. F. Donaldson and E. Torlak, eds., Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15–20, 2020, pp. 286–300. ACM, 2020. doi: 10.1145/3385412.3386007.Google Scholar
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., et al. Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6):595600, 2018. doi: 10.1038/s41567-018-0124-x.Google Scholar
Brassard, G., Høyer, P., Mosca, M., and Tapp, A.. Quantum amplitude amplification and estimation. Quantum Computation and Information, pp. 5374, 2002. doi: 10.1090/conm/ 305/05215.CrossRefGoogle Scholar
Buck, I., Foley, T., Horn, D., et al. Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on Graphics, 23:777786, 2004. doi: 10.1145/1186562.1015800.Google Scholar
Buhrman, H., Cleve, R., Watrous, J., and de Wolf, R.. Quantum fingerprinting. Physical Review Letters, 87(16), 2001. doi: 10.1103/physrevlett.87.167902.Google Scholar
Buhrman, H., Dürr, C., Heiligman, M., et al. Quantum algorithms for element distinctness. SIAM Journal on Computing, 34(6):13241330, 2005. doi: 10.1137/s0097539702402780.Google Scholar
Butscher, B. and Weimer, H.. libquantum. www.libquantum.de/, 2013. Accessed: 2021-02-10.Google Scholar
Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., and Spielman, D. A.. Exponential algorithmic speedup by a quantum walk. Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing – STOC’03, 2003. doi: 10.1145/780542.780552.Google Scholar
Childs, A.M., Cleve, R., Jordan, S. P., and Yonge-Mallo, D.. Discrete-query quantum algorithm for nand trees. Theory of Computing, 5(1):119123, 2009. doi: 10.4086/toc.2009.v005a005.CrossRefGoogle Scholar
Chong, F. T., Franklin, D., and Martonosi, M.. Programming languages and compiler design for realistic quantum hardware. Nature, 549(7671):180187, 2017. doi: 10.1038/nature23459.Google Scholar
Coppersmith, D.. An approximate Fourier transform useful in quantum factoring. arXiv e-prints, art. quant-ph/0201067, Jan. 2002.Google Scholar
Cory, D. G., Price, M. D., Maas, W., et al. Experimental quantum error correction. Physical Review Letters, 81(10):21522155, 1998. doi: 10.1103/physrevlett.81.2152.Google Scholar
Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta, J. M.. Open quantum assembly language, 2017. arXiv:1707.03429.Google Scholar
Dawson, C. M. and Nielsen, M. A.. The Solovay–Kitaev algorithm. Quantum Information and Computation, 6(1):8195, 2006.CrossRefGoogle Scholar
De Raedt, H., Jin, F., Willsch, D., et al. Massively parallel quantum computer simulator, eleven years later. Computer Physics Communications, 237:4761, 2019. doi: 10.1016/j.cpc.2018. 11.005.Google Scholar
Dean, W.. Computational complexity theory. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.Google Scholar
Deutsch, D.. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Series A, 400(1818):97117, 1985. doi: 10.1098/ rspa.1985.0070.Google Scholar
Deutsch, D. and Jozsa, R.. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A, 439(1907):553–558, 1992. doi: 10.1098/rspa.1992. 0167.Google Scholar
Devitt, S. J., Munro, W. J., and Nemoto, K.. Quantum error correction for beginners. Reports on Progress in Physics, 76(7):076001, 2013. doi: 10.1088/0034-4885/76/7/076001.Google Scholar
Ding, Y. and Chong, F. T.. Quantum computer systems: Research for noisy intermediate-scale quantum computers. Synthesis Lectures on Computer Architecture, 15(2):1227, 2020. doi: 10.2200/S01014ED1V01Y202005CAC051.CrossRefGoogle Scholar
Ding, Y., Holmes, A., Javadi-Abhari, A., Franklin, D., Martonosi, M., and Chong, F.. Magicstate functional units: Mapping and scheduling multi-level distillation circuits for faulttolerant quantum architectures. 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018. doi: 10.1109/micro.2018.00072.Google Scholar
Ding, Y., Wu, X.-C., Holmes, A., Wiseth, A., Franklin, D., Martonosi, M., and Chong, F. T.. Square: Strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020. doi: 10.1109/isca45697.2020.00054.CrossRefGoogle Scholar
Douglas, B. L. and Wang, J. B.. Efficient quantum circuit implementation of quantum walks, Physical Review A, 79:10502947, 2009. doi: 10.1103/PHYSREVA.79.052335.CrossRefGoogle Scholar
Draper, T. G.. Addition on a quantum computer. arXiv e-prints, art. quant-ph/0008033, 2000.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N.. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47:777780, 1935. doi: 10.1103/PhysRev.47.777.Google Scholar
Farhi, E., Goldstone, J., and Gutmann, S.. A quantum approximate optimization algorithm, 2014. URL https://arxiv.org/abs/1411.4028.Google Scholar
Faye, J.. Copenhagen interpretation of quantum mechanics. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2019.Google Scholar
Feynman, R.. The Character of Physical Law. MIT Press, 1965.Google Scholar
Fleisch, D. A.. A Student’s Guide to the Schroedinger Equation. Cambridge University Press, 2020.Google Scholar
Frank, M. P., Meyer-Baese, U. H., Chiorescu, I., Oniciuc, L., and van Engelen, R. A.. Space-efficient simulation of quantum computers. Proceedings of the 47th Annual Southeast Regional Conference on – ACM-SE 47, 2009. doi: 10.1145/1566445.1566554.Google Scholar
Fu, P., Kishida, K., Ross, N. J., and Selinger, P.. A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper, 2020. URL https://arxiv.org/abs/2005. 08396.Google Scholar
Gambetta, J., Rodríguez, D. M., Javadi-Abhari, A., et al. Qiskit/qiskit-terra: Qiskit Terra 0.7.2, 2019. URL https://doi.org/10.5281/zenodo.2656592.Google Scholar
Garcia-Escartin, J. C. and Chamorro-Posada, P.. Equivalent quantum circuits, 2011. https://arxiv.org/abs/1110.2998.Google Scholar
Garhwal, S., Ghorani, M., and Ahmad, A.. Quantum programming language: A systematic review of research topic and top cited languages. Archives of Computational Methods in Engineering, 28(2):289310, 2021. doi: 10.1007/s11831-019-09372-6.Google Scholar
Ghirardi, G. and Bassi, A.. Collapse theories. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2020.Google Scholar
Gidney, C.. Asymptotically Efficient Quantum Karatsuba Multiplication, 2019. https://arxiv .org/abs/1904.07356.Google Scholar
Gidney, C.. Quirk online quantum simulator. https://algassert.com/quirk, 2021a. Accessed: 2021-02-10.Google Scholar
Gidney, C.. Breaking down the quantum swap. https://algassert.com/post/1717, 2021b. Accessed: 2021-02-10.Google Scholar
Gokhale, P., Javadi-Abhari, A., Earnest, N., Shi, Y., and Chong, F. T.. Optimized quantum compilation for near-term algorithms with OpenPulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 186200, 2020. doi: 10.1109/ MICRO50266.2020.00027.CrossRefGoogle Scholar
Google. Quantum supremacy using a programmable superconducting processor. https://ai .googleblog.com/2019/10/quantum-supremacy-using-programmable.html, 2019. Accessed: 2021-02-10.Google Scholar
Google. C++ style guide. http://google.github.io/styleguide/cppguide.html, 2021a. Accessed: 2021-02-10.Google Scholar
Google. Python style guide. http://google.github.io/styleguide/pyguide.html, 2021b. Accessed: 2021-02-10.Google Scholar
Google. Cirq. https://cirq.readthedocs.io/en/stable/, 2021c. Accessed: 2021-02-10.Google Scholar
Google. qsim and qsimh. https://quantumai.google/qsim, 2021d. Accessed: 2021-02-10.Google Scholar
Graphviz.org. Graphviz, 2021. Accessed: 2021-02-10.Google Scholar
Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P., and Valiron, B.. Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, p. 333–342, Seattle, Washington, USA, 2013. Association for Computing Machinery. doi: 10.1145/2491956.2462177.Google Scholar
Greenberger, D. M., Horne, M. A., and Zeilinger, A.. Going beyond Bell’s theorem, 2008. doi: 10.1007/978-94-017-0849-4_10.Google Scholar
Grover, L. K.. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC’96, pp. 212–219, New York, NY, 1996. Association for Computing Machinery. doi: 10.1145/237814.237866.Google Scholar
Guerreschi, G. G., Hogaboam, J., Baruffa, F., and Sawaya, N. P. D.. Intel quantum simulator: A cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology, 5(3):034007, 2020. doi: 10.1088/2058-9565/ab8505.CrossRefGoogle Scholar
Häner, T. and Steiger, D. S.. 0.5 petabyte simulation of a 45-qubit quantum circuit. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov 2017. doi: 10.1145/3126908.3126947.Google Scholar
Haroche, S. and Raimond, J.-M.. Quantum computing: Dream or nightmare? Physics Today, 49:5152, 1996.Google Scholar
Harrigan, M. P., Sung, K. J., Neeley, M., et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature Physics, 17(3):332336, 2021. doi: 10.1038/s41567-020-01105-y.Google Scholar
Harrow, A. W. and Montanaro, A.. Quantum computational supremacy. Nature, 549(7671): 203209, 2017. doi: 10.1038/nature23458.Google Scholar
Hundt, R., Mannarswamy, S., and Chakrabarti, D.. Practical structure layout optimization and advice. In International Symposium on Code Generation and Optimization, CGO 2006, 2006. doi: 10.1109/CGO.2006.29.Google Scholar
IARPA. Quantum Computer Science (QCS) Program Broad Agency Announcement (BAA). https://beta.sam.gov/opp/637e87ac1274d030ce2ab69339ccf93c/view, 2010. Accessed: 2021-02-10.Google Scholar
IBM. IBM Q 16 Rueschlikon V1.x.x. https://github.com/Qiskit/ibmq-device-information/tree/master/backends/rueschlikon/V1, 2021a. Accessed: 2021-02-10.Google Scholar
IBM. Quantum Computation Center. www.ibm.com/blogs/research/2019/09/quantum-computation-center /, 2021b. Accessed: 2021-02-10.Google Scholar
Intel. Intel quantum simulator. https://github.com/iqusoft/intel-qs, 2021. Accessed: 2021-02-10.Google Scholar
Javadi-Abhari, A., Patil, S., Kudrow, D., et al. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers, CF’14, New York, NY, 2014. Association for Computing Machinery. doi: 10. 1145/2597917.2597939.Google Scholar
Jones, T. and Benjamin, S.. QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator. Quantum Science and Technology, 5(3):034012, 2020. doi: 10.1088/ 2058-9565/ab8506.CrossRefGoogle Scholar
Jones, T., Brown, A., Bush, I., and Benjamin, S. C.. Quest and high performance simulation of quantum computers. Scientific Reports, 9(1):10736, 2019. doi: 10.1038/ s41598–019-47174-9.CrossRefGoogle ScholarPubMed
Jordan, S.. Quantum algorithm zoo. https://quantumalgorithmzoo.org/, 2021. Accessed: 2021-02-10.Google Scholar
Kaye, P., Laflamme, R., and Mosca, M.. An Introduction to Quantum Computing. Oxford University Press, Inc., 2007.CrossRefGoogle Scholar
Kempe, J.. Quantum random walks: An introductory overview. Contemporary Physics, 44(4):307327, 2003. doi: 10.1080/00107151031000110776.Google Scholar
Khammassi, N., Ashraf, I., Fu, X., Almudever, C. G., and Bertels, K.. QX: A high-performance quantum computer simulation platform. In Design, Automation Test in Europe Conference Exhibition, 2017, pp. 464469, 2017. doi: 10.23919/DATE.2017.7927034.Google Scholar
Khammassi, N., Guerreschi, G. G., Ashraf, I., et al. cQASM v1.0: Towards a common quantum assembly language, 2018.Google Scholar
Kitaev, A. Y., Shen, A. H., and Vyalyi, M. N.. Classical and Quantum Computation. American Mathematical Society, 2002.Google Scholar
Kliuchnikov, V., Bocharov, A., Roetteler, M., and Yard, J.. A framework for approximating qubit unitaries, 2015. arXiv:1510.03888v1 [quant-ph]Google Scholar
Knill, E.. Conventions for quantum pseudocode, 1996. doi: 10.2172/366453.Google Scholar
Knuth, D. E.. Computer science and its relation to mathematics. The American Mathematical Monthly, 81(4):323343, 1974. doi: 10.1080/00029890.1974.11993556.Google Scholar
Landauer, D.. Wikipedia: Landauer’s principle, 1973. URL https://en.wikipedia.org/wiki/Landauer’s%27s%95principle. [Online; accessed 09-Jan-2021].Google Scholar
Lattner, C. and Adve, V.. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization, CGO’04, p. 75, 2004. IEEE Computer Society.Google Scholar
Leao, T.. Shor’s algorithm in Qiskit. https://github.com/ttlion/ShorAlgQiskit, 2021. Accessed: 2021-02-10.Google Scholar
Liu, J., Bello, L., and Zhou, H.. Relaxed peephole optimization: A novel compiler optimization for quantum circuits. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2021, pp. 301314, doi: 10.1109/CGO51591.2021.9370310.Google Scholar
Lucas, A.. Ising formulations of many NP problems. Frontiers in Physics, 2, 2014. doi: 10.3389/ fphy.2014.00005.Google Scholar
Magniez, F., Santha, M., and Szegedy, M.. Quantum algorithms for the triangle problem. In Proceedings of SODA’05, pp. 11091117, 2005.Google Scholar
Markov, I. L., Fatima, A., Isakov, S. V., and Boixo, S.. Quantum supremacy is both closer and farther than it appears, 2018. arXiv:1807.10749v3 [quant-ph]Google Scholar
McKeeman, W. M.. Peephole optimization. Communications of the ACM, 8(7):443444, 1965. doi: 10.1145/364995.365000.Google Scholar
Mermin, N. David. What’s wrong with this pillow? Physics Today, 42(4):9, 1989. doi: 10.1063/ 1.2810963.Google Scholar
Mermin, N. D.. Quantum Computer Science: An Introduction. Cambridge University Press, 2007. doi: 10.1017/CBO9780511813870.Google Scholar
Microsoft Q#. Q#. https://docs.microsoft.com/en-us/quantum/, 2021. Accessed: 2021-02-10.Google Scholar
Microsoft QDK Simulators. Microsoft QDK Simulators. https://docs.microsoft.com/en-us/ azure/quantum/user-guide/machines/, 2021. Accessed: 2021-02-10.Google Scholar
Mosca, M. Quantum algorithms, 2008. arXiv:0808.0369v1 [quant-ph]Google Scholar
Murali, P., Linke, N. M., Martonosi, M., et al. Full-stack, real-system quantum computer studies: Architectural comparisons and design insights, Association for Computing Machinery, New York, NY, USA 2019. doi: 10.1145/3307650.3322273.Google Scholar
Nam, Y., Ross, N. J., Su, Y., Childs, A. M., and Maslov, D.. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information, 4(1), 2018. doi: 10.1038/s41534-018-0072-4.Google Scholar
Nickolls, J., Buck, I., Garland, M., and Skadron, K.. Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for? Queue, 6(2):4053, 2008. doi: 10.1145/1365490.1365500.Google Scholar
Nielsen, M. A. and Chuang, I. L.. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 10th edition, 2011.Google Scholar
Norsen, T.. Foundations of Quantum Mechanics. Springer International Publishing, 2017.Google Scholar
Oak Ridge National Laboratory. Summit Supercomputer. www.olcf.ornl.gov/summit/, 2021. Accessed: 2021-02-10.Google Scholar
Ömer, B.. QCL – A programming language for quantum computers, Unpublished Master’s thesis, Technical University of Vienna, 2000. http://tph.tuwien.ac.at/oemer/doc/quprog.pdf.Google Scholar
Ömer, B.. Classical concepts in quantum programming. International Journal of Theoretical Physics, 44(7):943955, 2005. doi: 10.1007/s10773-005-7071-x.Google Scholar
Paler, A., Wille, R., and Devitt, S. J.. Wire recycling for quantum circuit optimization. Physical Review A, 94(4), 2016. doi: 10.1103/physreva.94.042337.Google Scholar
PanZhang, F. P.. Simulating the Sycamore quantum supremacy circuits, 2021. arXiv:2103.03074v1 [quant-ph].Google Scholar
Patel, R. B., Ho, J., Ferreyrol, F., Ralph, T. C., and Pryde, G. J.. A quantum Fredkin gate. Science Advances, 2(3), 2016. doi: 10.1126/sciadv.1501531.Google Scholar
Patra, B., van Dijk, J. P. G., Subramanian, S., et al. A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4x32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers. In 2020 IEEE International Solid-State Circuits Conference – (ISSCC), pp. 304306, 2020. doi: 10.1109/ISSCC19947.2020.9063109.Google Scholar
Pednault, E., Gunnels, J. A., Nannicini, G., Horesh, L., and Wisnieff, R.. Leveraging secondary storage to simulate deep 54-qubit Sycamore circuits, 2019. arXiv:1910.09534.Google Scholar
Peruzzo, A., McClean, J., Shadbolt, P., et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, 2014. doi: 10.1038/ncomms5213.Google Scholar
Preskill, J.. Quantum computing and the entanglement frontier, 2012. arXiv:1203.5813v3 [quant-ph].Google Scholar
Preskill, J.. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018. doi: 10. 22331/q-2018-08-06-79.Google Scholar
PSI Online. PSI. http://psilang.org/, 2021. Accessed: 2021-02-10.Google Scholar
QCL Online. QCL. http://tph.tuwien.ac.at/∼oemer/qcl.html, 2021.Google Scholar
I. Qiskit. IBM qiskit simulators. https://qiskit.org/documentation/tutorials/simulators/1_aer_provider.html, 2021. Accessed: 2021-02-10.Google Scholar
Quantiki. List of simulators. https://quantiki.org/wiki/list-qc-simulators, 2021. Accessed: 2021-02-10.Google Scholar
Quipper Online. Quipper. www.mathstat.dal.ca/∼selinger/quipper/, 2021. Accessed: 2021-02-10.Google Scholar
Rios, F. and Selinger, P.. A categorical model for a quantum circuit description language (extended abstract). Electronic Proceedings in Theoretical Computer Science, 266:164178, 2018. doi: 10.4204/eptcs.266.11.Google Scholar
Rivest, R. L., Shamir, A., and Adleman, L.. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21:120126, 1978.Google Scholar
Rolf, L.. Is quantum mechanics useful? Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 353:367376, 1995. doi: 10.1098/ rsta.1995.0106.Google Scholar
Ross, N. J.. Algebraic and logical methods in quantum computation, 2017. URL https://arxiv.org/abs/1510.02198.Google Scholar
Ross, N. J. and Selinger, P.. Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Information and Computation, 11–12:901953, 2016.Google Scholar
Ross, N. J. and Selinger, P.. Exact and approximate synthesis of quantum circuits. www.mathstat.dal.ca/selinger/newsynth/, 2021. Accessed: 2021-02-10.Google Scholar
Rudiak-Gould, B.. The sum-over-histories formulation of quantum computing. arXiv e-prints, art. quant-ph/0607151, 2006.Google Scholar
Shende, V. V., Markov, I. L., and Bullock, S. S.. Minimal universal two-qubit controlled-NOT-based circuits. Physical Review A, 69(6):062321, 2004. doi: 10.1103/physreva.69.062321.Google Scholar
Shor, P. W.. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124134, 1994. doi: 10.1109/SFCS.1994.365700.Google Scholar
Shor, P. W.. Scheme for reducing decoherence in quantum computer memory. Physics Review A, 52:R2493–R2496, 1995. doi: 10.1103/PhysRevA.52.R2493.Google Scholar
Simon, D.. On the power of quantum computation. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 116123, 1994. doi: 10.1109/SFCS.1994.365701.Google Scholar
SmelyanskiySawayaAspuru-Guzik, M. N. P. D. A.. qHiPSTER: The quantum high performance software testing environment, 2016. arXiv:1601.07195v2 [quant-ph].Google Scholar
Soeken, M., Frehse, S., Wille, R., and Drechsler, R.. RevKit: An open source toolkit for the design of reversible circuits. In Reversible Computation 2011, vol. 7165 of Lecture Notes in Computer Science, pp. 64–76, 2012. RevKit is available at www.revkit.org.Google Scholar
Soeken, M., Riener, H., Haaswijk, W., et al. The EPFL logic synthesis libraries, 2019. arXiv:1805.05121v2.Google Scholar
Steane, A.. Multiple particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996. doi: 10.1098/rspa.1996.0136.Google Scholar
Steiger, D. S., Häner, T., and Troyer, M.. ProjectQ: An open source software framework for quantum computing. Quantum, 2:49, 2018. doi: 10.22331/q-2018-01-31-49.Google Scholar
Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I., and Markov, I. L.. A layered software architecture for quantum computing design tools. Computer, 39(1):7483, 2006. doi: 10. 1109/MC.2006.4.Google Scholar
van Tonder, A.. A lambda calculus for quantum computation. SIAM Journal on Computing, 33(5):11091135, 2004. doi: 10.1137/s0097539703432165.CrossRefGoogle Scholar
Whitfield, J. D., Biamonte, J., and Aspuru-Guzik, A.. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109(5):735750, 2011. doi: 10.1080/00268976.2011.552441.Google Scholar
Wikipedia. KD-Trees. https://en.wikipedia.org/wiki/K-d_tree, 2021a. Accessed: 2021-02-10.342Google Scholar
Wikipedia. ECC, Error correction code memory. https://en.wikipedia.org/wiki/ECC_memory, 2021b. Accessed: 2021-02-10.Google Scholar
Wikipedia. Extended Euclidean algorithm. https://en.wikipedia.org/wiki/Extended_Euclidean_ algorithm, 2021c. Accessed: 2021-02-10.Google Scholar
Wikipedia. Gradient descent. https://en.wikipedia.org/wiki/Gradient_descent, 2021d. Accessed: 2021-02-10.Google Scholar
Williams, C. P.. Explorations in Quantum Computing. Springer-Verlag, London, 2011. doi: 10. 1007/978-1-84628-887-6.Google Scholar
Wilson, E., Singh, S., and Mueller, F.. Just-in-time quantum circuit transpilation reduces noise, 2020. DOI: 10.1109/QCE49297.2020.00050.Google Scholar
Wootters, W. K. and Zurek, W. H.. A single quantum cannot be cloned. Nature, 299(5886):802803, 1982. doi: 10.1038/299802a0.Google Scholar
Xue, X., Patra, B., van Dijk, J. P. G., et al. Cmos-based cryogenic control of silicon quantum circuits. Nature, 593(7858):205210, 2021. doi: 10.1038/s41586-021-03469-4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert Hundt
  • Book: Quantum Computing for Programmers
  • Online publication: 28 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099974.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert Hundt
  • Book: Quantum Computing for Programmers
  • Online publication: 28 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099974.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert Hundt
  • Book: Quantum Computing for Programmers
  • Online publication: 28 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781009099974.012
Available formats
×