Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T12:14:33.029Z Has data issue: false hasContentIssue false

Section 4 - Insemination/ICSI

Published online by Cambridge University Press:  07 August 2023

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Kindbody Inc, New York City
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Laboratory Set-Up, Training and Daily Operation
, pp. 159 - 206
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. and De Kruif, A. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol Reprod & Dev 2002; 61:414–24.CrossRefGoogle ScholarPubMed
McCulloh, D. H., Goorbarry, J., Shah, S. and Ahmad, K. Oocyte lysis following intracytoplasmic sperm injection: association with measures of oocyte quality and technician performance. J Reprod Stem Cell Biotech 2011; 2(1):4654.CrossRefGoogle Scholar
World Health Organization (WHO). Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction, 4th ed. (Cambridge: Cambridge University Press, 2004).Google Scholar
Keegan, B. R., Barton, S., Sanchez, S., et al. Isolated teratozoospermia does not affect in vitro fertilization outcome and is not an indication for intracytoplasmic sperm injection. Fertil Steril 2007; 88 (6):1583–8.Google Scholar

References

Huang, Z., Li, J., Wang, L., et al. Brief co-incubation of sperm and oocytes for in vitro fertilization techniques. Cochrane Database Syst Rev 2013; 4:CD009391.Google Scholar
Oehninger, S., Mahony, M., Ozgur, K., et al. Clinical significance of human sperm-zona pellucida binding. Fertil Steril 1997; 67:1121–7.CrossRefGoogle ScholarPubMed
Saleh, R. A. and Agarwal, A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl 2002; 23:737–52.Google Scholar
Aitken, R. J., Buckingham, D., West, K., et al. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 1992; 94:451–62.Google Scholar
Gavella, M. and Lipovac, V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl 1992; 28:135–41.CrossRefGoogle ScholarPubMed
Quinn, P., Lydic, M. L, Ho, M., et al. Confirmation of the beneficial effects of brief coincubation of gametes in human in vitro fertilization. Fertil Steril 1998; 69:399402.CrossRefGoogle ScholarPubMed
Dirnfeld, M., Bider, D., Koifman, M., Calderon, I. and Abramovici, H. Shortened exposure of oocytes to spermatozoa improves in-vitro fertilization outcome: a prospective, randomized, controlled study. Hum Reprod 1999; 14:2562–4.Google Scholar
Dumoulin, J. C., Bras, M., Land, J. A., et al. Effect of the number of inseminated spermatozoa on subsequent human and mouse embryonic development in vitro. Hum Reprod 1992; 7:1010–13.CrossRefGoogle ScholarPubMed
Coskun, S., Roca, G. L., Elnour, A. M., et al. Effects of reducing insemination time in human in vitro fertilization and embryo development by using sibling oocytes. J Assist Reprod Genet 1998; 15:605–8.Google Scholar
Dirnfeld, M., Shiloh, H., Bider, D., et al. A prospective randomized controlled study of the effect of short coincubation of gametes during insemination on zona pellucida thickness. Gynecol Endocrinol 2003; 17:397403.Google Scholar
Gianaroli, L., Cristina Magli, M., Ferraretti, A. P., et al. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum Reprod 1996; 11:166–71.Google Scholar
Kattera, S. and Chen, C. Short coincubation of gametes in in vitro fertilization improves implantation and pregnancy rates: a prospective, randomized, controlled study. Fertil Steril 2003; 80:1017–21.CrossRefGoogle ScholarPubMed
Chen, Z. Q., Wang, Y., Ng, E. H. Y., et al. A randomized triple blind controlled trial comparing the live birth rate of IVF following brief incubation versus standard incubation of gametes, Hum Reprod 2019; 34(1):100–8. https://doi.org/10.1093/humrep/dey333CrossRefGoogle ScholarPubMed
Xiong, S., Han, W., Liu, J. X., et al. Effects of cumulus cells removal after 6 h co-incubation of gametes on the outcomes of human IVF. J Assist Reprod Genet 2011; 28:1205–11.Google Scholar
Liu, Z., Liu, Q., Jiang, M., et al. Timing considerations for removal of early cumulus cells in short-term insemination strategies. Reprod Fertil Develop 2021; 33:881–5.CrossRefGoogle ScholarPubMed

References

Cohen, J., Edwards, R. G., Fehilly, C. B., et al. Treatment of male infertility by in vitro fertilization: factors affecting fertilization and pregnancy. Acta Eur Fertil 1984; 15:455–65.Google ScholarPubMed
Nyboe Andersen, A., Carlsen, E. and Loft, A. Trends in the use of intracytoplasmatic sperm injection marked variability between countries. Hum Reprod Update 2008; 14:593604.CrossRefGoogle ScholarPubMed
Adamson, G. D., de Mouzon, J., Chambers, G. M., et al. International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil Steril 2018; 110:1067–80.CrossRefGoogle ScholarPubMed
Fishel, S., Aslam, I., Lisi, F., et al. Should ICSI be the treatment of choice for all cases of in-vitro conception? Hum Reprod 2000; 15:1278–83.Google Scholar
Aboulghar, M. A., Mansour, R. T., Serour, G. I., Sattar, M. A. and Amin, Y. M. Intracytoplasmic sperm injection and conventional in vitro fertilization for sibling oocytes in cases of unexplained infertility and borderline semen. J Assist Reprod Genet 1996; 13:3842.CrossRefGoogle ScholarPubMed
Palermo, G. D., Neri, Q. V., Monahan, D., Kocent, J. and Rosenwaks, Z. Development and current applications of assisted fertilization. Fertil Steril 2012; 97:248–59.Google Scholar
Moomjy, M., Sills, E. S., Rosenwaks, Z. and Palermo, G. D. Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod 1998; 13:2212–6.Google Scholar
Van Steirteghem, A. C., Nagy, Z., Joris, H., et al. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod 1993; 8:1061–6.Google Scholar
Nagy, Z. P., Liu, J., Joris, H., et al. The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod 1995; 10:1123–9.CrossRefGoogle ScholarPubMed
Tournaye, H., Liu, J., Nagy, Z., et al. The use of testicular sperm for intracytoplasmic sperm injection in patients with necrozoospermia. Fertil Steril 1996; 66:331–4.Google Scholar
Nagy, Z. P., Verheyen, G., Liu, J., et al. Results of 55 intracytoplasmic sperm injection cycles in the treatment of male-immunological infertility. Hum Reprod 1995; 10:1775–80.CrossRefGoogle ScholarPubMed
Liu, J., Nagy, Z., Joris, H., et al. Successful fertilization and establishment of pregnancies after intracytoplasmic sperm injection in patients with globozoospermia. Hum Reprod 1995; 10:626–9.Google Scholar
Lundin, K., Sjogren, A., Nilsson, L. and Hamberger, L. Fertilization and pregnancy after intracytoplasmic microinjection of acrosomeless spermatozoa. Fertil Steril 1994; 62:1266–7.Google Scholar
Bourne, H., Richings, N., Harari, O., et al. The use of intracytoplasmic sperm injection for the treatment of severe and extreme male infertility. Reprod Fertil & Dev 1995; 7:237–45.Google Scholar
Palermo, G. D., O’Neill, C. L., Chow, S., et al. Intracytoplasmic sperm injection: state of the art in humans. Reproduction 2017; 154(6):F93110.Google Scholar
O’Neill, C. L., Parrella, A., Keating, D., et al. A treatment algorithm for couples with unexplained infertility based on sperm chromatin assessment. J Assist Reprod Genet 2018; 35:1911–17.Google Scholar
Casanovas, A., Ribas-Maynou, J., Lara-Cerrillo, S., et al. Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. Fertil Steril 2019; 111:699707.CrossRefGoogle ScholarPubMed
Parella, A., Keating, D., Cheung, S., et al. A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J Assist Reprod Genet 2019; 36(10):2057–66.Google Scholar
Maggiulli, R., Neri, Q. V., Monahan, D., et al. What to do when ICSI fails. Syst Biol Reprod Med 2010; 56:376–87.Google Scholar
Pereira, N., Neri, Q. V., Lekovich, J. P., Palermo, G. D. and Rosenwaks, Z. The role of in-vivo and in-vitro maturation time on ooplasmic dysmaturity. Reprod Biomed Online. 2016; 32(4):401–6.Google Scholar
Palermo, G. D., Cohen, J., Alikani, M., Adler, A. and Rosenwaks, Z. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil Steril 1995; 63:1231–40.Google Scholar
World Health Organization (WHO). Laboratory Manual for the Examination and Processing of Human Semen, 5th ed. (Cambridge: Cambridge University Press, 2010).Google Scholar
Pereira, N., Reichman, D. E., Goldschlag, D. E., Lekovich, J. P. and Rosenwaks, Z. Impact of elevated peak serum estradiol levels during controlled ovarian hyperstimulation on the birth weight of term singletons from fresh IVF-ET cycles. J Assist Reprod Genet 2015; 32:527–32.CrossRefGoogle ScholarPubMed
Huang, J. Y. and Rosenwaks, Z. In vitro fertilisation treatment and factors affecting success. Best Pract Res Clin Obstet Gynaecol 2012; 26:777–88.CrossRefGoogle ScholarPubMed
Palermo, G. D., Schlegel, P. N., Colombero, L. T., et al. Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Hum Reprod 1996; 11:1023–9.CrossRefGoogle ScholarPubMed

References

Palermo, G., Joris, H., Devroey, P. and Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992; 340 (8810):1718.Google Scholar
Kimura, Y. and Yanagimachi, R. Intracytoplasmic sperm injection in the mouse. Biol Reprod 1995; 52(4):709–20.CrossRefGoogle ScholarPubMed
Huang, T., Kimura, Y. and Yanagimachi, R. The use of piezo micromanipulation for intracytoplasmic sperm injection of human oocytes. J Assist Reprod Genet 1996; 13(4):320–8.Google Scholar
Yanagida, K., Katayose, H., Yazawa, H., et al. The usefulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans. Hum Reprod 1999; 14(2):448–3.Google Scholar
Takeuchi, S., Minoura, H., Shibahara, T., et al. Comparison of piezo-assisted micromanipulation with conventional micromanipulation for intracytoplasmic sperm injection into human oocytes. Gyn Obstet Invest 2001; 52(3):158–62.Google Scholar
Hiraoka, K. and Kitamura, S. Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm. J Assist Reprod Genet 2015; 32(12):1827–33.CrossRefGoogle Scholar
Furuhashi, K., Saeki, Y., Enatsu, N., et al. Piezo-assisted ICSI improves fertilization and blastocyst development rates compared with conventional ICSI in women aged more than 35 years. Reprod Med Biol 2019; 18(4):357–61.CrossRefGoogle Scholar
Fujii, Y., Endo, Y., Mitsuhata, S., Hayashi, M. and Motoyama, H. Evaluation of the effect of piezo-intracytoplasmic sperm injection on the laboratory, clinical, and neonatal outcomes. Reprod Med Biol 2020; 19(2):198205.Google Scholar
Setti, A. S., Ferreira, R. C., Braga, D., et al. Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online 2010; 21(4):450–5.Google Scholar
Montag, M., Schimming, T. and van der Ven, H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online 2006; 12(4):442–6.CrossRefGoogle ScholarPubMed
Menz, D. H., Feltgen, T., Menz, H., et al. How to ward off retinal toxicity of perfluorooctane and other perfluorocarbon liquids? Invest Ophtalmol Vis Sci 2018; 59(12):4841–6.Google Scholar

References

Palermo, G., Joris, H., Devroey, P. and Van Steirteghem, A. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992; 340:1718.CrossRefGoogle ScholarPubMed
Coutton, C., Escoffier, J., Martinez, G., Arnoult, C. and Ray, P. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455–85.CrossRefGoogle ScholarPubMed
Jenkins, T., Aston, K., Hotaling, J., et al. Teratozoospermia and asthenozoospermia are associated with specific epigenetic signatures. Andrology 2016; 4:843–9.Google Scholar
Vanderzwalmen, P., Bach, M., Gaspard, O., et al. Motile-sperm organelle-morphology examination and intracytoplasmic morphologically selected sperm injection: clinical and technical aspects, in A Practical Guide to Selecting Gametes and Embryos, ed. Montag, M., pp. 5980 (Boca Raton, FL: CRC Press, 2014).Google Scholar
Bartoov, B., Berkovitz, A. and Eltes, F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med 2001; 345:1067–8.Google Scholar
Boitrelle, F., Albert, M., Petit, J.-M., et al. Small human sperm vacuoles observed under high magnification are pocket-like nuclear concavities linked to chromatin condensation failure. Reprod Biomed Online 2013; 27:201–11.Google Scholar
Knez, K., Zorn, B., Tomazevic, T., Vrtacnik–Bokal, E. and Virant-Klun, I. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: A comparative prospective randomized study. Reprod Biol Endocrinol 2011; 9:123–30.CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Hiemer, A., Rubner, P., et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online 2008; 17:617–27.Google Scholar
Yurchuk, T., Petrushkо, M., Gapon, A. , Piniaiev, V. and Kuleshova, L. The impact of cryopreservation on the morphology of spermatozoa in men with oligoasthenoteratozoospermia. Cryobiology 2021; 100:117–24.Google Scholar
Vaughan, D., Leung, A., Resetkova, N., et al. How many oocytes are optimal to achieve multiple live births with one stimulation cycle? The one-and-done approach. Fertil Steril 2017; 107:397404.CrossRefGoogle ScholarPubMed
Setti, A., Braga, D., Provenza, R., Iaconelli, A. and Borges, E. Oocyte ability to repair sperm DNA fragmentation: the impact of maternal age on intracytoplasmic sperm injection outcomes. Fertil Steril 2021; 116(1):123–9.Google Scholar
Berkovitz, A., Dekel, Y., Goldstein, R., et al. The significance of human spermatozoa vacuoles can be eleucidated by a novel procedure of array comparative genomic hybridization. Hum Reprod 2018; 3:563–71.Google Scholar
Neyer, A., Zintz, M., Stecher, A., et al. The impact of paternal factors on cleavage stage and blastocyst development analyzed by time-lapse imaging: a retrospective observational study. J Assist Reprod Genet 2015; 32:1607–14.Google Scholar

References

Oliveira, N. M., Sanchez, R. V., Fiesta, S. R., et al. Pregnancy with frozen–thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum Reprod 2004; 19:262–5.CrossRefGoogle ScholarPubMed
Jeyendran, R. S., van der Ven, H. H., Perez- Pelaez, M., Crabo, B. G. and Zaneveld, L. J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil 1984; 70:219–28.Google Scholar
Ved, S., Montag, M., Schmutzler, A., et al. Pregnancy following intracytoplasmic sperm injection of immotile spermatozoa selected by the hypo-osmotic swelling-test: a case report. Andrologia 1997; 29:241–2.Google Scholar
Sallam, H., Farrag, A., Agameya, A., et al. The use of a modified hypo-osmotic swelling test for the selection of viable ejaculated and testicular immotile spermatozoa in ICSI. Hum Reprod 2001; 16:272–6.CrossRefGoogle ScholarPubMed
Montag, M., Rink, K., Delacrétaz, G. and van der Ven, H. Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum Reprod 2000; 15:846–52.Google Scholar
Aktan, T. M., Montag, M., Duman, S., et al. Use of a laser to detect viable but immotile spermatozoa. Andrologia 2004; 36:366–9.Google Scholar
Nordhoff, V., Schüring, A. N., Krallmann, C., et al. Optimizing TESE-ICSI by laser-assisted selection of immotile spermatozoa and polarization microscopy for selection of oocytes. Andrology 2013; 1:6774.CrossRefGoogle ScholarPubMed
Yovich, J. L. Pentoxifylline: actions and applications in assisted reproduction. Hum Reprod 1993; 8:1786–91.CrossRefGoogle Scholar
Ebner, T., Tews, G., Mayer, R. B., et al. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril 2011; 96:1331–6.CrossRefGoogle ScholarPubMed

References

Saunders, C. M., Larman, M. G., Parrington, J., et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 2002; 129:3533–44.CrossRefGoogle ScholarPubMed
Berridge, M. J. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 2009; 1793:933–40.Google Scholar
Ozil, J. P. and Huneau, D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development 2001; 128:917–28.CrossRefGoogle ScholarPubMed
Montag, M., Köster, M., van der Ven, K., Bohlen, U. and van der Ven, H. The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod Biomed Online 2012; 24:521–6.Google Scholar
Vanden Meerschaut, F., Nikiforaki, D., Heindryckx, B. and De Sutter, P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 2014; 28:560–71.Google Scholar
Ebner, T., Köster, M., Shebl, O., et al. Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil Steril 2012; 98:1432–7.CrossRefGoogle ScholarPubMed
Ebner, T. and Montag, M. Oocyte Activation Study Group. Live birth after artificial oocyte activation using a ready-to use ionophore: a prospective multicentre study. Reprod Biomed Online 2015; 30:359–65.CrossRefGoogle Scholar
Ebner, T., Oppelt, P., Wöber, M., et al. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod 2015; 30:97102.CrossRefGoogle ScholarPubMed
Ebner, T., Moser, M., Sommergruber, M., Jesacher, K. and Tews, G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod 2004; 19: 1837–41.Google Scholar
Baltaci, V., Ayvaz, O. U., Unsal, E., et al. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril 2010; 94: 900–4.CrossRefGoogle ScholarPubMed
Kashir, J., Heindryckx, B., Jones, C., et al. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 2010; 16:690703.Google Scholar
Heindryckx, B., De Gheselle, S., Gerris, J., Dhont, M. and De Sutter, P. Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online 2008; 17:662–8.Google Scholar
Markoulaki, S., Matson, S., Abbott, A. L. and Ducibella, T. Oscillatory CaMKII activity in mouse egg activation. Dev Biol 2003; 258:464–74.Google Scholar
Ebner, T. and Montag, M. Artificial oocyte activation: evidence for clinical readiness. Reprod Biomed Online 2016; 32:271–3.Google Scholar
Ebner, T., Shebl, O. and Parmegiani, L. Oldie but goldie or opening Pandora´s box? Curr Trends Clin Embryol 2015; 2:149–52.Google Scholar
Santella, L. and Dale, B. Assisted yes, but where do we draw the line? Reprod Biomed Online 2015; 31:476–8.Google Scholar
van Blerkom, J., Cohen, J. and Johnson, M. A plea for caution and more research in the ‘experimental’ use of ionophores in ICSI. Reprod Biomed Online 2015; 30:323–4.Google Scholar
Kim, J. W., Yang, S. H., Yoon, S. H., et al. Successful pregnancy and delivery after ICSI with artificial oocyte activation by calcium ionophore in in-vitro matured oocytes: a case report. Reprod Biomed Online 2015; 30:373–7.CrossRefGoogle ScholarPubMed
Ferrer-Buitrago, M., Dhaenens, D., Lu, Y., et al. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2018; 33:416–25.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×