Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T18:29:51.860Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  04 May 2023

Kenneth I. Kellermann
Affiliation:
National Radio Astronomy Observatory, Charlottesville, Virginia
Ellen N. Bouton
Affiliation:
National Radio Astronomy Observatory, Charlottesville, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P. et al. 2016, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Let., 116, 061102.Google Scholar
Adams, W. S. 1941, Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory, ApJ, 93, 11.Google Scholar
Akiyama, K. et al. 2019, First M87 Event Horizon Telescope Results. II. Array and Instrumentation, ApJ, 875, L2.Google Scholar
Akiyama, K. et al. 2022, First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, ApJ, 930, L12.Google Scholar
Alexander, F. E. S. 1945, Report on the Investigation of the “Norfolk Island Effect,” Radio Development Laboratory, Department of Scientific & Industrial Research.Google Scholar
Alexander, F. E. S. 1946, The Sun’s Radio Energy, Radio Electron., 1(1), 16.Google Scholar
Alfvén, H. and Herlofson, N. 1950, Cosmic Radiation and Radio Stars, Phys. Rev., 78, 616.Google Scholar
Allen, L. R. et al. 1962a, Observations of 384 Radio Sources at a Frequency of 158 Mc/s with a Long Baseline Interferometer, MNRAS, 124, 477.CrossRefGoogle Scholar
Allen, L. R. et al. 1962b, An Analysis of the Angular Sizes of Radio Sources, MNRAS, 125, 57.Google Scholar
Alpher, R. A. and Herman, R. C. 1948, Evolution of the Universe, Nature, 162, 774.Google Scholar
Alpher, R. A. and Herman, R. C. 1949, Remarks on the Evolution of the Expanding Universe, Phys. Rev., 75, 1089.Google Scholar
Alpher, R. A. and Herman, R. C. 1951, Neutron-Capture Theory of Element Formation in an Expanding Universe, Phys. Rev., 84, 60.CrossRefGoogle Scholar
Alpher, R. A. and Herman, R. C. 1988, Reflections on Early Work on “Big Bang” Cosmology, Phys. Today, 41(8), 24.Google Scholar
Alpher, R. A. and Herman, R. C. 1990, Early Work on “Big-Bang” Cosmology and the Cosmic Blackbody Radiation. In Modern Cosmology in Retrospect, ed. Bertotti, B., Balbinot, R., and Bergia, S. (Cambridge: Cambridge University Press), 129.Google Scholar
Alpher, R. A., Bethe, H. A., and Gamow, G. 1948, The Origin of Chemical Elements, Phys. Rev., 73, 803.CrossRefGoogle Scholar
Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, Physical Conditions in the Initial Stages of the Expanding Universe, Phys. Rev., 92, 1347.CrossRefGoogle Scholar
Alpher, V. 2014, Ralph A. Alpher, George Antonovich Gamow, and the Prediction of the Cosmic Microwave Background Radiation, Asian J. Phys., 23, 17.Google Scholar
Alsop, L. E. et al. 1958, Observations Using a Maser Radiometer at 3-cm Wave Length, AJ, 63, 30.CrossRefGoogle Scholar
Altenhoff, W. et al. 1988, First Radio Astronomical Estimate of the Temperature of Pluto, A&A, 190, L15.Google Scholar
Altschuler, D. R. 2002, The National Astronomy and Ionospheric Center’s (NAIC) Arecibo Observatory in Puerto Rico. In ASPC 278, Single–Dish Radio Astronomy: Techniques and Applications, ed. Stanimirovic, S. et al. (San Francisco: Astronomical Society of the Pacific), 1.Google Scholar
Ambartsumian, V. 1958, On the Evolution of Galaxies. In La Structure et l’Evolution de l’Univers, ed. Stoops, R. (Brussels: Coudenberg), 266.Google Scholar
Amiri, M. et al. 2022, An Overview of CHIME, the Canadian Hydrogen Intensity Mapping Experiment, ApJS, 261, 29.Google Scholar
Anderson, B., Palmer, H. P., and Rowson, B. 1962, Brightness Distribution of the Radio Source 14N5A, Nature, 195, 165.Google Scholar
Antoniadis, J. et al. 2013, A Massive Pulsar in a Compact Relativistic Binary, Science, 340, 448.Google Scholar
Antoniadis, J. et al. 2022, The International Pulsar Timing Array Second Data Release: Search for an Isotropic Gravitational Wave Background, MNRAS, 510, 4873.Google Scholar
Appleton, E. 1945, Departure of Long-Wave Solar Radiation from Black-Body Intensity, Nature, 156, 534.Google Scholar
Appleton, E. and Hey, J. S. 1946, Solar Radio Noise, Phil. Mag., 7, 73.CrossRefGoogle Scholar
Arp, H. C. 1987, Quasars, Redshifts, and Controversies (Berkeley: Interstellar Media).Google Scholar
Arp, H. C. 1998, Seeing Red: Redshifts, Cosmology, and Academic Science (Montreal: Apeiron).Google Scholar
Baade, W. and Minkowski, R. 1954, Identification of the Radio Sources in Cassiopeia, Cygnus A, and Puppis A, ApJ, 119, 206.Google Scholar
Baade, W. and Zwicky, F. 1934, Remarks on Super-Novae and Cosmic Rays, Phys. Rev., 46, 76.CrossRefGoogle Scholar
Babcock, H. W. 1939, The Rotation of the Andromeda Nebula, Lick Observatory Bulletin, No. 498.Google Scholar
Backer, D. C. et al. 1983, A Millisecond Pulsar, Nature, 300, 615.Google Scholar
Bagchi, M., Nieves, A. C., and McLaughlin, M. 2012, A Search for Dispersed Radio Bursts in Archival Parkes Multibeam Pulsar Survey Data, MNRAS, 425, 250.Google Scholar
Bailes, M., Lyne, A., and Shemar, S. I. 1991a, A Planet Orbiting the Neutron Star PSR1829–10, Nature, 352, 311.CrossRefGoogle Scholar
Bailes, M., Lyne, A., and Shemar, S. 1991b, Radio Astronomers Claim Discovery of First Planet Outside Solar System, J. Brit. Astron. Assoc., 101, 256.Google Scholar
Balick, B. 2005, The Discovery of Sgr A*. In The New Astronomy: Opening the Electromagnetic Window and Expanding Our View of Planet Earth, ed. Orchiston, W. (Dordrecht: Springer), 183.Google Scholar
Balick, B. and Brown, R. L. 1974, Intense Sub-Arcsecond Structure in the Galactic Center, ApJ, 194, 265.CrossRefGoogle Scholar
Bannister, K. W. et al. 2019, A Single Fast Radio Burst Localized to a Massive Galaxy at Cosmological Distance, Science, 365, 565.Google Scholar
Barnothy, J. M. 1963, Astronomical Consequences of the FIB Theory, PASP, 75, 430.Google Scholar
Barnothy, J. M. 1965, Quasars and the Gravitational Image Intensifier, AJ, 70, 666.Google Scholar
Barnothy, J. M. 1966a, Two Observational Tests: Are Quasars Super-Luminous Objects or Optical Effects?, AJ, 71, 154.Google Scholar
Barnothy, J. M. 1966b, An Observational Test of the Hypothesis that Quasars Are Produced by Gravitational Lenses, Obs., 86, 115.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1966, Apparent Brightness of the Deflector Galaxy of Quasars Produced through Gravitational Lenses, AJ, 71, 378.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1967, Observations Supporting the Gravitational Lens Explanation of Quasars, AJ, 72, 291.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1968, Galaxies as Gravitational Lenses, Science, 162, 348.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1969a, Anomalous Hubble Plot of Quasi-stellar Objects, Nature, 222, 759.CrossRefGoogle Scholar
Barnothy, J. M. and Barnothy, M. F. 1969b, Concentration of QSO’s around z=2 Redshift, BAAS, 1, 181.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1971, Rapid Differential Proper Motion in the Radio Fine Structure of 3C 279, BAAS, 3, 472.Google Scholar
Barnothy, J. M. and Barnothy, M. F. 1972, Expected Density of Gravitational-Lens Quasars, ApJ, 174, 477.Google Scholar
Barrett, A. H. 1965, Passive Radio Observations of Mercury, Venus, Mars, Saturn, and Uranus, Radio Science, 69D, 1565.Google Scholar
Barrett, A. H. 1984, The Beginnings of Molecular Radio Astronomy. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 280.Google Scholar
Barrett, A. H. and Lilley, A. E. 1957, A Search for the 18-cm Line of OH in the Interstellar Medium, AJ, 62, 5.Google Scholar
Barrett, A. H. and Rogers, A. E. E. 1966, Observations of Circularly Polarized OH Emission and Narrow Spectral Features, Nature, 210, 188.Google Scholar
Barrett, A. H., Schwartz, P. R., and Waters, J. W. 1971, Detection of Methyl Alcohol in Orion at a Wavelength of ~1 Centimeter, ApJ, 168, L102.CrossRefGoogle Scholar
Bastian, T. S., Benz, A. O., and Gary, D. E. 1998, Radio Emission from Solar Flares, ARAA, 36, 131.Google Scholar
Bay, Z. 1946, Reflection of Microwaves from the Moon, Hungarian Physics Acta, 1, 1.Google Scholar
Beck, A. 1984, Personal Recollections of Karl Jansky. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 32.Google Scholar
Bell, S. J. 1968, The Measurement of Radio Source Diameters Using a Diffraction Method, PhD Dissertation, Cambridge University.Google Scholar
Bell, S. J. and Hewish, A. 1967, Angular Size and Flux Density of the Small Source in the Crab Nebula at 81.5 Mc/s, Nature, 213, 1214.Google Scholar
Bell Burnell, S. J. 1977, Petit Four. In Proceedings of the 8th Texas Symposium on Relativistic Astrophysics, ed. M. D. Papagiannis. Annals of the New York Academy of Science, 302, 685, reprinted under the title “Little Green Men, White Dwarfs or Pulsars,” Cosmic Search, 1, 16.Google Scholar
Bell Burnell, S. J. 1984, The Discovery of Pulsars. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 160.Google Scholar
Bell Burnell, S. J. 2015, Reflections on the Discovery of Pulsars. Paper presented at IAU General Assembly, Honolulu, HI, available at: https://rahist.nrao.edu/1-Bell_Hawaii_PSR_Refln.pptx (last accessed 23 November 2022).Google Scholar
Bennett, A. S. 1962, The Revised 3C Catalogue of Radio Sources, MNRAS, 68, 162.Google Scholar
Berge, G. L. 1966, An Interferometric Study of Jupiter’s Decimeter Radio Emission, ApJ, 146, 767.CrossRefGoogle Scholar
Berge, G. L. 1968, Recent Observations of Saturn, Uranus, and Neptune at 3.12 cm, Astrophys. Lett., 2, 127.Google Scholar
Berger, E. et al., 2001, Discovery of Radio Emission from the Brown Dwarf LP944–20, Nature, 410, 338.Google Scholar
Bethe, H. 2003, My Life in Astrophysics, ARAA, 41, 1.Google Scholar
Bigg, E. K. 1964, Influence of the Satellite Io on Jupiter’s Decametric Emission, Nature, 203, 1008.Google Scholar
Blaauw, A. et al. 1960, The New I.A.U. System of Galactic Coordinates (1958 Revision), MNRAS, 121, 123.Google Scholar
Blackett, P. M. S. and Lovell, A. C. B. 1941, Radio Echoes and Cosmic Ray Showers, Proc. R. Soc. A, 177, 183.Google Scholar
Blandford, R. D. (ed.) 2010, New Worlds, New Horizons (Washington: NAS Press).Google Scholar
Bochenek, C. D. et al. 2020, A Fast Radio Burst Associated with a Galactic Magnetar, Nature, 587, 59.CrossRefGoogle ScholarPubMed
Boischot, A. 1957, Caractѐres d’un Type d’Émission Herzienne Associé à Certaines Éruptions Chromosphériques, Comptes Rendus, 244, 1326 [Characteristics of a Herzian Emission Type Associated with Certain Chromospheric Eruptions].Google Scholar
Boischot, A. and Denisse, J.-F. 1957, Les Émissions de Type IV et l’Origine des Rayons Cosmiques Associés aux Éruptions Chromosphériques, Comptes Rendus, 245, 2194 [Type IV Emissions and the Origin of Cosmic Rays Associated with Chromospheric Eruptions].Google Scholar
Bolton, J. G. 1948, Discrete Sources of Galactic Radio Frequency Noise, Nature, 162, 141.Google Scholar
Bolton, J. G. 1955, Australian Work on Radio Stars, Vistas Astron., 1, 568.Google Scholar
Bolton, J. G. 1960, The Discrete Sources of Cosmic Radiation, Introductory Talk at the URSI General Assembly, London, reprinted in Observations of the California Institute of Technology Radio Observatory, no. 5.Google Scholar
Bolton, J. G. 1973, Prospects of Astronomy in Australia, Nature, 246, 282.Google Scholar
Bolton, J. G. 1982, Radio Astronomy at Dover Heights, Proc. Astron. Soc. Austrl., 4, 349. Reprinted in Kellermann and Sheets 1984, p. 312.Google Scholar
Bolton, J. G. 1990, The Fortieth Anniversary of Extragalactic Radio Astronomy: Radiophysics in Exile, Pub. Astron. Soc. Austrl., 8, 381.Google Scholar
Bolton, J. G. and Stanley, G. J. 1948a, Variable Source of Radio Frequency Radiation in the Constellation of Cygnus, Nature, 161, 312.Google Scholar
Bolton, J. G. and Stanley, G. J. 1948b, Observations on the Variable Source of Cosmic Radio Frequency Radiation in the Constellation of Cygnus, Austrl. J. Sci. Res. A, 1, 58.Google Scholar
Bolton, J. G. and Stanley, G. J. 1949, The Position and Probable Identification of the Source of Galactic Radio-Frequency Radiation Taurus-A, Austrl. J. Sci. Res. A, 2, 139.Google Scholar
Bolton, J. G. and Westfold, K. C. 1951, Galactic Radiation at Radio Frequencies: IV. The Distribution of Radio Stars in the Galaxy, Austrl. J. Sci. Res., 4, 476.Google Scholar
Bolton, J. G., Clarke, M. E., and Ekers, R. D. 1965, Identification of Extragalactic Radio Sources Between Declinations ‒20° and ‒44°, Austrl. J. Phys., 18, 627.Google Scholar
Bolton, J. G., Gardner, F. F., and Mackey, M. B. 1963, A Radio Source with a Very Unusual Spectrum, Nature, 199, 682.Google Scholar
Bolton, J. G., Gardner, F. F., and Mackey, M. B. 1964, The Parkes Catalogue of Radio Sources, Declination Zone ‒20° to ‒60°, Austrl. J. Phys., 17, 340.Google Scholar
Bolton, J. G., Stanley, G. J., and Slee, O. B. 1949, Positions of Three Discrete Sources of Galactic Radio-Frequency Radiation, Nature, 164, 101.Google Scholar
Bolton, J. G., Stanley, G. J., and Slee, O. B. 1954, Galactic Radiation at Radio Frequencies. VIII. Discrete Sources at 100 Mc/s between Declinations +50° and ‒50°, Austrl. J. Phys., 7, 110.Google Scholar
Bolton, J. G. et al. 1964a, Observations of OH Absorption Lines in the Radio Spectrum of the Galactic Centre, Nature, 201, 279.Google Scholar
Bolton, J. G. et al. 1964b, Distribution and Motions of OH Near the Galactic Centre, Nature, 204, 30.Google Scholar
Bolton, J. G. et al. 1965, Identifications of Six Faint Radio Sources with Quasi-Stellar Objects, ApJ, 142, 1289.Google Scholar
Bondi, H. and Gold, T. 1948, MNRAS, 108, 252.Google Scholar
Bosma, A. 1978, The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types, PhD Thesis, Groningen University.Google Scholar
Bosma, A. and van der Kruit, P. C. 1979, The Local Mass-to-Light Ratio in Spiral Galaxies, A&A, 79, 281.Google Scholar
Bourke, T. et al. (eds.) 2015, Advancing Astrophysics with the Square Kilometre Array, Proceedings of Science (Manchester: SKA Organization), available at: www.skatelescope.org/books/ (last accessed 30 November 2022).Google Scholar
Bowen, E. G. 1987, Radar Days (Bristol: A. Hilger).Google Scholar
Bowles, K. L. 1958, Observation of Vertical-Incidence Scatter from the Ionosphere at 41 Mc/sec., Phys. Rev. Let., 1, 454.Google Scholar
Bowman, J. D. et al. 2018, An Absorption Profile Centred at 78 Megahertz in the Sky-Averaged Spectrum, Nature, 555, 67.Google Scholar
Bown, R. 1927, Transatlantic Radio Telephony, Bell Syst. Tech. J., 6, 248.CrossRefGoogle Scholar
Boynton, P. E. and Partridge, R. B. 1973, Fine-Scale Anisotropy of the Microwave Background: An Upper Limit at λ = 3.5 Millimeters, ApJ, 181, 243.Google Scholar
Bracewell, R. N. 1960, Communication from Superior Galactic Communities, Nature, 186, 670.Google Scholar
Bracewell, R. N. 2000, The Fourier Transform and its Applications, 3rd ed. (New York: McGraw Hill).Google Scholar
Bracewell, R. N. 2002, The Discovery of Strong Extragalactic Polarization Using the Parkes Radio Telescope, J. Astron. Hist. Heritage, 5, 107.Google Scholar
Bracewell, R. N. 2005, Radio Astronomy at Stanford, J. Astron. Hist. Heritage, 8, 75.CrossRefGoogle Scholar
Bracewell, R. N. and Swarup, G. 1961, The Stanford Microwave Spectro Heliograph Antenna, A Microsteradian Pencil Beam Antenna, IRE Tr. Ant. Prop., AP-9, 22.Google Scholar
Bracewell, R. N., Cooper, B. F. C., and Cousins, T. E. 1962, Polarization in the Central Component of Centaurus A, Nature, 195, 1289.Google Scholar
Brans, C. and Dicke, R. H. 1961, Mach’s Principle and a Relativistic Theory of Gravitation, Phys. Rev., 124, 924.CrossRefGoogle Scholar
Briggs, F. H. and Drake, F. D. 1972, Interferometric Observations of Mars at 21-cm Wavelength, Icarus, 17, 543.Google Scholar
Broderick, J. 1984, The Buffalo Syndrome. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 221.Google Scholar
Broten, N. W. 1988, Early Days of Canadian Long-Baseline Interferometry: Reflections and Reminiscences, JRASC, 82, 233.Google Scholar
Brown, R. L. et al. 1978, Radio Recombination Lines, ARAA, 16, 445.Google Scholar
Buderi, C. 1996, The Invention that Changed the World (New York: Simon & Schuster).Google Scholar
Buhl, D. et al. 1969, An Investigation of the Spectra and Time Variations of Galactic Water-Vapor Sources, ApJ, 158, 97.Google Scholar
Burbidge, G. R. 1959a, The Theoretical Explanation of Radio Emission. In IAU Symposium No. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 541.Google Scholar
Burbidge, G. R. 1959b, Estimates of the Total Energy in Particles and Magnetic Field in the Non-Thermal Radio Sources, ApJ, 129, 849.Google Scholar
Burbidge, G. R. 1968, The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies, ApJ, 7, 41.Google Scholar
Burbidge, G. R. 1971, Was There Really a Big Bang?, Nature, 233, 36.Google Scholar
Burbidge, G. R. 1975, On the Masses and Relative Motions of Galaxies, ApJ, 196, L7.Google Scholar
Burbidge, G. R. and Burbidge, E. M. 1967, Quasi-stellar Objects (San Francisco: Freeman).Google Scholar
Burbidge, G. R. and Narlikar, J. V. 1976, The Log N-Log S Curve for 3CR Radio Galaxies and the Problem of Identifying Faint Radio Galaxies, ApJ, 205, 329.Google Scholar
Burke, B. F. 2006, Planetary Radio Astronomy, Fifty Years Ago and Fifty Years Hence. In Planetary Radio Emissions VI, Proceedings of the 6th International Workshop, ed. Rucker, H. O., Kurth, W. S., and Mann, G. (Wein: Austrian Academy of Sciences Press), 1.Google Scholar
Burke, B. F. 2009, Radio Astronomy from First Contacts to the CMBR. In Finding the Big Bang, ed. Peebles, J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 176.Google Scholar
Burke, B. F. and Franklin, K. L. 1955a, High Resolution Radio Astronomy at 13.5 m Wavelength, AJ, 60, 155.Google Scholar
Burke, B. F. and Franklin, K. L. 1955b, Observations of a Variable Radio Source Associated with the Planet Jupiter, J. Geophys. Res., 60, 213.CrossRefGoogle Scholar
Burke, B. F. et al. 1970, Studies of H2O Sources by Means of a Very-Long-Baseline Interferometer, ApJ, 160, L63.Google Scholar
Burke, B. F. et al. 1972, Observations of Maser Radio Sources with an Angular Resolution of 0″.0002, Sov. Astron., 16, 379; Russian original, Astron Zh., 49, 465.Google Scholar
Burke-Spolaor, S. et al. 2011, Radio Bursts with Extragalactic Spectral Characteristics Show Terrestrial Origins, AJ, 727, 18.CrossRefGoogle Scholar
Burke-Spolaor, S. et al. 2019, The Astrophysics of Nanohertz Gravitational Waves, A&A Rev., 27, 5.Google Scholar
Butrica, A. J. 1996, To See the Unseen: A History of Planetary Radar Astronomy (Washington: NASA).Google Scholar
Caputo, F., Marconi, M., and Musella, I. 2002, The Cepheid Period-Luminosity Relation and the Maser Distance to NGC 4258, ApJ, 566, 833.Google Scholar
Carilli, C. C. and Rawlings, S. (eds.) 2004, Science with the Square Kilometre Array (Amsterdam: Elsevier).Google Scholar
Carr, T. D. et al. 1958, 18-Megacycle Observations of Jupiter in 1957, ApJ, 127, 274.Google Scholar
Carr, T. D. et al. 1965, Post-Detector Correlation Interferometry of Jupiter at 18 Mc/s, IEEE NEREM Record, 7, 222.Google Scholar
Chae, K.-H. et al. 2002, Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey, Radio-Selected Gravitational Lens Statistics, Phys. Rev. Let., 89, 151301.Google Scholar
Chatterjee, S. et al. 2017, A Direct Localization of a Fast Radio Burst and Its Host, Nature, 541, 5.CrossRefGoogle ScholarPubMed
Cheung, A. et al. 1968, Detection of NH3 Molecules in the Interstellar Medium by Their Microwave Emission, Phys. Rev. Let., 21, 170.Google Scholar
Cheung, A. et al. 1969, Detection of Water in Interstellar Regions by Its Microwave Radiation, Nature, 221, 626.CrossRefGoogle Scholar
Chiu, H.-Y. 1964, Gravitational Collapse, Phys. Today, 17, 21.Google Scholar
Christiansen, W. N. 1984, The First Decade of Solar Radio Astronomy in Australia. In The Early Years of Radio Astronomy, ed. Sullivan, W. T. III (Cambridge: Cambridge University Press), 113.Google Scholar
Christiansen, W. N. and Hindman, J. V. 1952a, 21 cm Line Radiation from Galactic Hydrogen, Obs., 72, 149.Google Scholar
Christiansen, W. N. and Hindman, J. V. 1952b, A Preliminary Survey of 1420 Mc/s. Line Emission from Galactic Hydrogen, Austrl. J. Sci. Res., A5, 437.Google Scholar
Christiansen, W. N. and Warburton, J. A. 1953, The Distribution of Radio Brightness over the Solar Disk at a Wavelength of 21cm: I. A New Highly-Directional Aerial System, Austrl. J. Phys., 6, 190.Google Scholar
Christiansen, W. N. and Warburton, J. A. 1955, The Distribution of Radio Brightness over the Solar Disk at a Wavelength of 21cm: III. The Quiet Sun: Two Dimensional Observations, Austrl. J. Phys., 8, 474.Google Scholar
Christiansen, W. N., Mathewson, D. S., and Pawsey, J. L. 1957, Radio Pictures of the Sun, Nature, 180, 944.CrossRefGoogle Scholar
Churchill, W. S., 1950, The Second World War, Vol. 4, The Hinge of Fate (Boston: Houghton Mifflin Company).Google Scholar
Churchwell, E. and Mezger, P. G. 1970, On the Determination of Helium Abundance from Radio Recombination Lines, Astrophys. Lett., 5, 227.Google Scholar
Clancy, R. T., Grossman, A. W., and Muhleman, D. O. 1992, Mapping Mars Water Vapor with the Very Large Array, Icarus, 100, 48.CrossRefGoogle Scholar
Clark, D. 1980, How Diana Touched the Moon, IEEE Spectrum, 17, 44.Google Scholar
Clark, D. H. and Murdin, P. 1978, An Unusual Emission-Line Star/X-ray Source Radio Star, Possibly Associated with an SNR, Nature, 276, 44.Google Scholar
Clarke, M. E. 1964a, Two Topics in Radiophysics, PhD Dissertation, Cambridge University.Google Scholar
Clarke, M. E. 1964b, The Determination of the Positions of 88 Radio Sources, MNRAS, 127, 405.Google Scholar
Clarke, M. E. 1964c, Some Radio Source Flux Density Measurements at 178 MHz, Obs., 85, 67.Google Scholar
Clarke, M. E., Bolton, J. G., and Shimmins, A. J. 1966, Identification of Extragalactic Radio Sources between Declinations 0° and +20°, Austrl. J. Phys., 19, 375.Google Scholar
Claussen, M. J. and Lo, K. Y. 1986, Circumnuclear Water Vapor Masers in Active Galaxies, ApJ, 308, 592.Google Scholar
Cocconi, G. and Morrison, P. 1959, Searching for Interstellar Communications, Nature, 184, 844.Google Scholar
Cocke, W. J., Disney, M., and Taylor, D. J. 1969, Discovery of Optical Signals from Pulsar NP 0532, Nature, 221, 525.Google Scholar
Cohen, M. H. 1958a, The Cornell Radio Polarimeter, Proc. IRE, 46, 183.Google Scholar
Cohen, M. H. 1958b, Radio Astronomy Polarization Measurements, Proc. IRE, 46, 172.Google Scholar
Cohen, M. H. 1994, The Owens Valley Radio Observatory: Early Years, Eng. Sci., 57, 8.Google Scholar
Cohen, M. H. 2005, Dark Matter and the Owens Valley Radio Observatory. In The New Astronomy: Opening the Electromagnetic Window and Expanding Our View of the Planet Earth, ed. Orchiston, W. (Dordrecht: Springer), 169.Google Scholar
Cohen, M. H. 2007, A History of OVRO Part II, Eng. Sci., 70, 33.Google Scholar
Cohen, M. H. 2009, Genesis of the 1000-Foot Arecibo Dish, J. Astron. Hist. Heritage, 12, 141.Google Scholar
Cohen, M. H. et al. 1971, The Small-Scale Structure of Radio Galaxies and Quasi-Stellar Sources at 3.8 Centimeters, ApJ, 170, 207.Google Scholar
Cohen, M. H. et al. 1977, Radio Sources with Superluminal Velocities, Nature, 268, 405.Google Scholar
Cohen, M. H. et al. 2007, Relativistic Beaming and the Intrinsic Properties of Extragalactic Radio Jets, ApJ, 658, 232.Google Scholar
Colgate, S. A. 1975, Electromagnetic Pulse from Supernovae, ApJ, 198, 439.Google Scholar
Colombo, G. 1965, Rotational Period of the Planet Mercury, Nature, 208, 575.Google Scholar
Colombo, G. and Shapiro, I. I. 1966, The Rotation of the Planet Mercury, ApJ, 145, 296.Google Scholar
Comella, J. M. et al. 1969, Crab Nebula Pulsar NP 0532, Nature, 221, 453.Google Scholar
Condon, J. J. 2008, ZAPPED! … by Hostile Space Aliens! In ASPC 398, Frontiers of Astrophysics: A Celebration of NRAO 50th Anniversary, ed. Bridle, A. H., Condon, J. J., and Hunt, G. C. (San Francisco: Astronomical Society of the Pacific), 323.Google Scholar
Condon, J. J. and Mitchell, K. J. 1984, A Deeper VLA Survey of the α = 08h 52m 15s, δ = +17° 16’ Field, AJ, 89, 610.Google Scholar
Condon, J. J. et al. 1994, A 4.85 GHz Sky Survey. III. Epoch 1986 and Combined (1986–1987) Maps Covering 0o<δ<+75 o, AJ, 107, 1829.Google Scholar
Condon, J. J. et al. 2012, Resolving the Radio Source Background: Deeper Understanding through Confusion, ApJ, 768, 37.Google Scholar
Conklin, E. K. 1967, Isotropy of the Cosmic Background Radiation at 10 690 MHz, Phys. Rev. Let., 18, 614.Google Scholar
Conklin, E. K. 1969a, Anisotropy and Inhomogeneity in the Cosmic Background Radiation, PhD Dissertation, Stanford University.Google Scholar
Conklin, E. K. 1969b, Velocity of the Earth with Respect to the Cosmic Background Radiation, Nature, 222, 97.Google Scholar
Conklin, E. K. 1972, Observations of Large-Scale Anisotropy in the 3 K Background Radiation. In IAU Symposium no. 44, External Galaxies and Quasi-Stellar Objects, ed. Evans, D. E. (Dordrecht: Reidel), 518.Google Scholar
Conklin, E. K. and Bracewell, R. N. 1967, Limits on Small Scale Variations in the Cosmic Background Radiation, Nature, 216, 777.Google Scholar
Contopoulos, G. and Jappel, A. (eds.) 1974, Transactions of the IAU XV: B (Dordrecht: Reidel).Google Scholar
Conway, R. G., Kellermann, K. I., and Long, R. J. 1963, The Radio Frequency Spectra of Discrete Radio Sources, MNRAS, 125, 261.Google Scholar
Cook, J. J. et al. 1960, Radio Detection of the Planet Saturn, Nature, 188, 393.Google Scholar
Cooper, B. F. C. 1998, Parkes, Centaurus A, and All That, unpublished memo, NAA, Bracewell Papers, Stanford University, Centaurus A Research.Google Scholar
Cooper, B. F. C. and Price, R. M. 1962, Faraday Rotation Effects Associated with the Radio Source Centaurus A, Nature, 195, 1064.Google Scholar
Cotton, W. D. 1979, A Method of Mapping Compact Structure in Radio Sources Using VLBI Observations, AJ, 84, 1122.Google Scholar
Counselman III, C. C. et al. 1974, Solar Gravitational Deflection of Radio Waves Measured by Very-Long-Baseline Interferometry, Phys. Rev. Let., 33, 162.Google Scholar
Covington, A. E. 1947, Micro-Wave Solar Noise Observations during the Partial Eclipse of November 23, 1946, Nature, 159, 404.Google Scholar
Covington, A. E. 1948, Solar Noise Observations at 10.7 Centimeters, Proc. IRE, 36, 454.CrossRefGoogle Scholar
Covington, A. E. 1984a, Early Radar Research and a Beginning in Radio Astronomy. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 105.Google Scholar
Covington, A. E. 1984b, Beginnings of Solar Radio Astronomy in Canada. In The Early Years of Radio Astronomy, ed. Sullivan, W. T. III (Cambridge: Cambridge University Press), 317.Google Scholar
Covington, A. E. 1988, Origins of Canadian Radio Astronomy, JRASC, 82, 165.Google Scholar
Crawford, A. B., Hogg, D. C., and Hunt, L. E. 1961, Bell Syst. Tech. J., 40, 1095.Google Scholar
Crawford, D. F., Jauncey, D. L., and Murdoch, H. S. 1970, Maximum-Likelihood Estimation of the Slope from Number-Flux Counts of Radio Sources, ApJ, 162, 405.Google Scholar
Cromartie, H. T. et al. 2020, Relativistic Shapiro Delay Measurements of an Extremely Massive Millisecond Pulsar, Nat. Astron., 4, 72.Google Scholar
Cudaback, D. D., Read, R. B., and Rougoor, G. W. 1966, Diameters and Positions of Three Sources of 18-cm OH Emission, Phys. Rev. Let., 17, 452.CrossRefGoogle Scholar
Davies, R. D. and Fennison, R. C. 1964, A Search for Intergalactic Neutral Hydrogen, I. The Observations, MNRAS, 128, 123.Google Scholar
Davies, R. D., De Jager, G., and Verschuur, G. L. 1966, Detection of Circular and Linear Polarization in the OH Emission Sources near W3 and W49, Nature, 209, 974.Google Scholar
Davis, R. J. et al. 1978, Interferometric Observations of Weak Radio Flares from a Red Dwarf Star, Nature, 273, 644.Google Scholar
de Pater, I. 1990, Radio Images of the Planets, ARAA, 28, 347.Google Scholar
de Pater, I., Schultz, M., and Brecht, H. 1997, Synchrotron Evidence for Amalthea’s Influence on Jupiter’s Electron Radiation Belt, J. Geophys. Res., 102, 22043.CrossRefGoogle Scholar
de Pater, I. et al. 2019, First ALMA Millimeter-Wavelength Maps of Jupiter, with a Multiwavelength Study of Convection, AJ, 158, 139.Google Scholar
Débarbat, S., Lequeux, J., and Orchiston, W., 2007, Highlighting the History of French Radio Astronomy. 1. Nordmann’s Attempt to Observe Solar Radio Emission in 1901, J. Astron. Hist. Heritage, 19, 3.CrossRefGoogle Scholar
Demorest, P. B. et al. 2010, A Two-Solar-Mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081.Google Scholar
Denisse, J. G. 1984, The Early Years of Radio Astronomy in France. In The Early Years of Radio Astronomy, ed. Sullivan, W. T. III (Cambridge: Cambridge University Press), 303.Google Scholar
Dent, W. A. 1965a, Variation in the Radio Emission of 3C273 and Other Quasi-Stellar Sources, AJ, 70, 672.Google Scholar
Dent, W. A. 1965b, Quasi-Stellar Sources: Variation in the Radio Emission of 3C 273, Science, 148, 1458.Google Scholar
Dent, W. A. 1966, Variation in the Radio Emission from the Seyfert Galaxy NGC 1275, ApJ, 144, 843.Google Scholar
Deslandres, H. and Décombre, L. 1902, On the Search for Hertzian Radiation Emanating from the Sun, Comptes Rendus, 134, 527 (In French). English translation 1982 in Classics in Radio Astronomy, ed. W. T. Sullivan III (Dordrecht: Reidel), 161.Google Scholar
DeSoto, C. B. 1936, 200 Meters and Down (West Hartford: American Radio Relay League).Google Scholar
Dewhurst, D. 1951, 12 October 1951 Meeting of the Royal Astronomical Society, Obs., 71, 209.Google Scholar
DeWitt, J. M. and Stodola, E. K. 1949, Detection of Radio Signals Reflected from the Moon, Proc. IRE, 37, 229.CrossRefGoogle Scholar
Dick, S. J. 1996, The Biological Universe (Cambridge: Cambridge University Press).Google Scholar
Dicke, R. H. 1946, The Measurement of Thermal Radiation at Microwave Frequencies, Rev. Sci. Instr., 17, 7.Google Scholar
Dicke, R. H. 1974, The Oblateness of the Sun and Relativity, Science, 184, 419.Google Scholar
Dicke, R. H. and Beringer, R. 1946, Microwave Radiation from the Sun and Moon, ApJ, 103, 375.Google Scholar
Dicke, R. H. et al. 1946, Atmospheric Absorption Measurements with a Microwave Radiometer, Phys. Rev., 70, 340.CrossRefGoogle Scholar
Dicke, R. H. et al. 1965, Cosmic Black-Body Radiation, ApJ, 142, 414.Google Scholar
Dieter, N. H. 1967, Observations of the Hydrogen Recombination Line 158α in Galactic H II Regions, ApJ, 150, 435.Google Scholar
Dieter, N. H., Weaver, H., and Williams, D. R. W. 1966, Secular Variations in the Radio-Frequency Emission of OH, AJ, 71, 160.Google Scholar
Djorgovski, G. 1982, Optical Identification of the Millisecond Pulsar 1937+214, Nature, 300, 618.Google Scholar
Dogel, B. A. et al. 2012, Radio Astronomy Studies at the Lebedev Physical Institute. In A Brief History of Radio Astronomy in the USSR, ed. Braude, S. and Kellermann, K. I. (Dordrecht: Springer), 1; English translation of 1985 Russian edition.Google Scholar
Dolfuss, A. 1953, Observation Visuelle et Photographique des Planètes Mercure et Vénus a L’observatoire du Pic du Midi, L’Astronomie, 67, 61.Google Scholar
Doroshkevich, A. G. and Novikov, I. D. 1964, Mean Density of Radiation in the Metagalaxy and Certain Problems in Relativistic Cosmology, Sov. Phys. Doklady, 9, 11.Google Scholar
Drake, F. 1962, 10 cm Observations of Venus Near Superior Conjunction, Nature, 195, 894.Google Scholar
Drake, F. 1964, Microwave Observations of Venus, 1962–1963, AJ, 69, 62.CrossRefGoogle Scholar
Drake, F. 1984, Discovery of Jupiter Radiation Belts. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 258.Google Scholar
Drake, F. 1986, The Search for Extraterrestrial Intelligence. In Proceedings of the NRAO Workshop on the Search for Extraterrestrial Intelligence, ed. Kellermann, K. I. and Seielstad, G. A. (Green Bank: NRAO/AUI), 17.Google Scholar
Drake, F. and Ewen, H. I. 1958, A Broad-Band Microwave Source Comparison Radiometer for Advanced Research in Radio Astronomy, Proc. IRE, 46, 53.CrossRefGoogle Scholar
Drake, F. and Hvatum, H. 1959, Non-thermal Microwave Radiation from Jupiter, AJ, 645, 329.Google Scholar
Drake, F. D. and Sobel, D. 1992, Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence (New York: Delacorte Press).Google Scholar
Dravskikh, A. F. et al. 1966, Investigation of the Radio Line of Excited Hydrogen at a Wavelength of 5 cm Using a Quantum Paramagnetic Amplifier, Sov. Phys. Dokl., 10, 627; Russian original: Dokl. Akad. Nauk SSSR, 163, 332, 1960.Google Scholar
Dupree, A. K. and Goldberg, L. 1970, Radio Frequency Recombination Lines, ARAA, 8, 231.Google Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C. 1920, A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919, Phil. Trans. Roy. Soc. A, 220, 291.Google Scholar
Dyson, R. 1960, Search for Artificial Stellar Sources of Infrared Radiation, Science, 131, 1667.Google Scholar
Eddington, A. S. 1913, On a Formula for Correcting Statistics for the Effects of a Known Error of Observation, MNRAS, 73, 359.Google Scholar
Edge, D. O. and Mulkay, J. M. 1976, Astronomy Transformed (New York: Wiley)Google Scholar
Edge, D. O., Scheuer, P. A. G., and Shakeshaft, J. R. 1958, Evidence on the Spatial Distribution of Radio Sources Derived from a Survey at a Frequency of 159 Mcs‒1, MNRAS, 118, 183.Google Scholar
Edge, D. O. et al. 1959, A Survey of Radio Sources at a Frequency of 159 Mc/s, Mem. RAS, 68, 37.Google Scholar
Edlén, B. 1946, Untitled Letter, Nature, 157, 297.Google Scholar
Edmondson, F. 1956, Review of “The Changing Universe. The Story of the New Astronomy,” Science, 124, 541.Google Scholar
Ehman, J. R. 1998, The Big Ear Wow! Signal, available at: www.bigear.org/wow20th.htm (last accessed 1 December 2022).Google Scholar
Ehrenstein, G., Townes, C. H., and Stevenson, M. J. 1959, Ground State Λ-Doubling Transitions of OH Radical, Phys. Rev Let., 3, 40.Google Scholar
Einasto, J., Kaasik, A., and Saar, E. 1974, Dynamic Evidence on Massive Coronas of Galaxies, Nature, 250, 309.Google Scholar
Einasto, J. et al. 1974, Missing Mass around Galaxies: Morphological Evidence, Nature, 252, 111.Google Scholar
Einstein, A. 1911, Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes, Annalen der Physik, 35, 898; English translation, On the Influence of Gravitation on the Propagation of Light, in 1952, The Principle of Relativity (New York: Dover) 97.Google Scholar
Einstein, A. 1916, The Foundation of the General Theory of Relativity, Annalen der Physik, 49, 769 (in German).Google Scholar
Einstein, A. 1936, Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field, Science, 84, 506.CrossRefGoogle ScholarPubMed
Ekers, R. D. 2013, The History of the Square Kilometer Array (SKA) Born Global. In Resolving the Sky: Radio Interferometry: Past, Present, and Future, ed. Garrett, M. A. and Greenwood, J. C. (Manchester: SKA Organization), 68.Google Scholar
Ekers, R. D. 2014, Non-Thermal Radio Astronomy, Astropar. Phys., 53, 152.Google Scholar
Elbers, A. 2017, The Rise of Radio Astronomy in the Netherlands (Cham: Switzerland).CrossRefGoogle Scholar
Elder, F. R., Langmuir, R. V. and Pollock, H. C. 1948, Radiation from Electrons Accelerated in a Synchrotron, Phys. Rev., 74, 52.Google Scholar
Elsmore, B., Ryle, M., and Leslie, P. R. R. 1959, The Positions, Flux Densities and Angular Diameters of 64 Radio Sources Observed at a Frequency of 178 Mc/s, Mem. RAS, 68, 61.Google Scholar
Evans, D. S. 1949, Photometry of NGC 5128, MNRAS, 109, 94.Google Scholar
Evans, J. V. and Taylor, G. N. 1959, Radio Echo Observations of Venus, Nature, 184, 1358.Google Scholar
Ewen, H. I. and Purcell, E. M. 1951a, Radiation from Hyperfine Levels of Interstellar Hydrogen, Phys. Rev., 83, 881.Google Scholar
Ewen, H. I. and Purcell, E. M. 1951b, Radiation from Hyperfine Levels of Interstellar Hydrogen, AJ, 56, 125.Google Scholar
Ewen, H. I. and Purcell, E. M. 1951c, Observation of a Line in the Galactic Radio Spectrum, Nature, 168, 356.Google Scholar
Faber, S. M. and Gallagher, J. S. 1979, Masses and Mass-to-Light Ratios of Galaxies, ARAA, 17, 135.Google Scholar
Fabian, A. C. and Rees, M. J. 1979, SS 433: A Double Jet in Action?, MNRAS, 187, 13.Google Scholar
Feain, I. J. et al. 2011, The Radio Continuum Structure of Centaurus A at 1.4 GHz, ApJ, 740, 17.Google Scholar
Field, G. 1962a, Absorption by Intergalactic Hydrogen, ApJ, 135, 684.Google Scholar
Field, G. 1962b, Atmosphere of Mercury, AJ, 67, 575.Google Scholar
Field, G. 2009, Cyanogen and the CMBR. In Finding the Big Bang, ed. Peebles, P. J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 75.Google Scholar
Field, G. and Hitchcock, J. L. 1966, Cosmic Black-Body Radiation at λ=2.6 mm, Phys. Rev. Let., 16, 817.Google Scholar
Field, G., Arp, H., and Bahcall, J. N. 1973, The Redshift Controversy (Reading: Benjamin).Google Scholar
Field, G., Herbig, G. H., and Hitchcock, J. 1966, Radiation Temperature of Space at λ2.6 mm, AJ, 71, 161.Google Scholar
Findlay, J. W., Hvatum, H., and Waltman, W. B. 1965, An Absolute Flux-Density Measurement of Cassiopeia A, ApJ, 141, 873.Google Scholar
Fixsen, D. J. et al. 2011, ARCADE 2 Measurement of the Absolute Sky Brightness at 3–90 GHz, ApJ, 734, 5.Google Scholar
Fomalont, E. B. and Sramek, R. A. 1975, A Confirmation of Einstein’s General Theory of Relativity by Measuring the Bending of Microwave Radiation in the Gravitational Field of the Sun, ApJ, 199, 749.Google Scholar
Fomalont, E. B. and Sramek, R. A. 1976, Measurements of the Solar Gravitational Deflection of Radio Waves in Agreement with General Relativity, Phys. Rev. Let., 36, 147.Google Scholar
Fomalont, E. B. et al. 1964, Accurate Right Ascensions for 226 Radio Sources, AJ, 69, 772.Google Scholar
Fomalont, E. B. et al. 2009, Progress in Measurements of the Gravitational Bending of Radio Waves Using the VLBA, ApJ, 699, 1395.Google Scholar
Franklin, K. L. 1959, An Account of the Discovery of Jupiter as a Radio Source, AJ, 64, 37.Google Scholar
Franklin, K. L. 1984, The Discovery of Jupiter Bursts. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 252.Google Scholar
Franklin, K. L. and Burke, B. F. 1956, Radio Observations of Jupiter, AJ, 61, 177.Google Scholar
Fränz, K. 1942, Measurement of the Sensitivity of Short Wave Receivers, Hochfrequenztechnik. und Elektroakustik, 59, 105 (in German).Google Scholar
Frater, R. H. and Ekers, R. D. 2012, John Paul Wild 1923–2008, Mem. Roy. Soc., 58, 327.Google Scholar
Frater, R. H., Goss, W. M., and Wendt, H. W. 2017, Four Pillars of Radio Astronomy: Mills, Christiansen, Wild, Bracewell (Cham: Springer).Google Scholar
Friis, H. T. 1965, Karl Jansky: His Career at Bell Telephone Laboratories, Science, 149, 841.Google Scholar
Friis, H. T. 1971, Seventy-Five Years in an Exciting World (San Francisco: San Francisco Press).Google Scholar
Friis, H. T. and Feldman, C. B. 1937, A Multiple Unit Steerable Antenna for Short-Wave Radio Reception, Proc. IRE, 25, 841.Google Scholar
Gamow, G. 1948, The Evolution of the Universe, Nature, 162, 680.CrossRefGoogle ScholarPubMed
Gamow, G. 1949, On Relativistic Cosmology, Rev. Mod. Phys., 21, 367.Google Scholar
Gamow, G. 1950, Half an Hour of Creation, Phys. Today, 3, 16.Google Scholar
Gardner, F. F. and McGee, R. X. 1967, Detection of β-Transitions in the Recombination Spectrum of Hydrogen Near 9 cm Wavelength, Nature, 213, 480.Google Scholar
Gardner, F. F. and Whiteoak, J. B. 1962, Polarization of 20-cm Wavelength Radiation from Radio Sources, Phys. Rev. Let., 9, 197.Google Scholar
Gardner, F. F. et al. 1964, Detection of the Interstellar OH Lines at 1612 and 1720 Mc/sec, Phys. Rev. Let., 13, 3.Google Scholar
Garwin, R. L. 1974, Detection of Gravity Waves Challenged, Phys. Today, 27, 9.Google Scholar
Geller, M. J. and Huchra, J. P. 1989, Mapping the Universe, Science, 246, 897.Google Scholar
George, M., Orchiston, W., and Wielebinski, R. 2017, The History of Early Low Frequency Radio Astronomy in Australia. 8: Grote Reber and the ‘Square Kilometre Array’ near Bothwell, Tasmania, in the 1960s and 1970s, J. Astron. Hist. Heritage, 20, 195.Google Scholar
Getmantsev, G. G. 1952, Cosmic Electrons as a Source of Radio Emission from the Galaxy, Dokl. Akad. Nauk SSSR, 83, 557 (in Russian).Google Scholar
Ginzburg, V. L. 1946, On Solar Radiation in the Radio Spectrum, Dokl. Akad. Nauk, SSSR, 52, 487 (in Russian).Google Scholar
Ginzburg, V. L. 1951, Cosmic Rays as a Source of Galactic Radio Emission, Dokl. Akad. Nauk SSSR, 76, 377 (in Russian). English translation in Classics in Radio Astronomy, ed. W. T. Sullivan III (Dordrecht: Reidel), 93.Google Scholar
Ginzburg, V. L. 1961, On the Nature of the Radio Galaxies, Sov. Astron., 5, 282; English translation of Astron. Zh., 38, 380.Google Scholar
Gold, T. 1951, The Origin of Cosmic Radio Noise. In Proceedings of the Conference on Dynamics of Ionized Media, ed. Boyd, R. I. (London: University College London), 105. Reprinted in 1979 in A Source Book in Astronomy and Astrophysics, 1900–1975, ed. K. R. Lang and O. Gingerich (Cambridge, MA: Harvard University Press), 783.Google Scholar
Gold, T. 1968, Rotating Neutron Stars as the Origin of the Pulsating Radio Sources, Nature, 218, 731.Google Scholar
Gold, T. 1984, The Reception of New Ideas by the Scientific Community. Paper Presented at the Third Annual Meeting of the Society for Scientific Exploration, October 1984.Google Scholar
Goldreich, P. and Lynden-Bell, D. 1969, Io, a Jovian Unipolar Inductor, ApJ, 156, 59.CrossRefGoogle Scholar
Goldstein, R. M. and Carpenter, R. L. 1963, Rotation of Venus: Period Estimated from Radar Measurements, Science, 139, 910.Google Scholar
Goldstein, S. et al. 1964, OH Absorption Spectra in Sagittarius, Nature, 203, 65.Google Scholar
Gordon, M. A. and Sorochenko, R. L. 2002, Radio Recombination Lines (Dordrecht: Kluwer).Google Scholar
Gordon, W. E. 1958, Incoherent Scattering of Radio Waves by Free Electrons with Applications to Space Exploration by Radar, Proc. IRE, 46, 1824.CrossRefGoogle Scholar
Gordon, W. E. and LaLonde, L. 1961, The Design and Capabilities of an Ionospheric Radar Probe, Trans. IRE, AP-9, 17.Google Scholar
Gorenstein, M. V. and Smoot, G. 1981, Large-Angular-Scale Anisotropy in the Cosmic Background Radiation, ApJ, 244, 361.CrossRefGoogle Scholar
Goss, W. M. 2013, Making Waves: The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer (Berlin: Springer).Google Scholar
Goss, W. M. and McGee, R. X. 1996, The Discovery of the Radio Source Sagittarius A (Sgr A). In ASPC 102, The Galactic Center, ed. Gredel, R. (San Francisco: Astronomical Society of the Pacific), 369.Google Scholar
Goss, W. M. and McGee, R. X. 2010. Under the Radar: The First Woman in Radio Astronomy: Ruby Payne-Scott (Berlin: Springer).Google Scholar
Goss, W. M., Brown, R. L., and Lo, K. Y. 2003, The Discovery of Sgr A*. In Proceedings of the Galactic Center Workshop 2002: The Central 300 Parsecs of the Milky Way, ed. A. Cotera et al. Astron. Nachtr., 324, 497.Google Scholar
Goss, W. M., Hooker, C., and Ekers, R. D. 2023, Joe Pawsey and the Founding of Australian Radio Astronomy: Early Discoveries, from the Sun to the Cosmos (Cham: Springer).Google Scholar
Gottesman, S. T., Davies, R. D., and Reddish, V. C. 1966, A Neutral Hydrogen Survey of the Southern Regions of the Andromeda Nebula, MNRAS, 133, 359.Google Scholar
Gower, J. F. R. 1966, The Source Counts from the 4C Survey, MNRAS, 133, 151.Google Scholar
Gower, J. F. R., Scott, P. F., and Wills, D. 1967, A Survey of Radio Sources in the Declination Ranges ‒07° to 20° and 40° to 80°, Mem. RAS, 71, 4.Google Scholar
Graham-Smith, F. 1950, Origin of the Fluctuations in the Intensity of Radio Waves from Galactic Sources: Cambridge Observations, Nature, 165, 422.Google Scholar
Graham-Smith, F. 1951, An Accurate Determination of the Positions of Four Radio Stars, Nature, 168, 555.Google Scholar
Graham-Smith, F. 1952, Apparent Angular Sizes of Discrete Radio Sources: Observations at Cambridge, Nature, 170, 1065.Google Scholar
Graham-Smith, F. 1986, Martin Ryle 1918–1984, Mem. Roy. Soc., 32, 495.Google Scholar
Gray, R. H. 2012, The Elusive WOW: Search for Extraterrestrial Intelligence (Chicago: Palmer Square Press).Google Scholar
Gray, R. H. and Marvel, K. B. 2001, A VLA Search for the Ohio State “Wow,” ApJ, 546, 1171.CrossRefGoogle Scholar
Green, P. E. and Pettengill, G. H. 1960, Exploring the Solar System by Radar, Sky Tel., 20, 9.Google Scholar
Greenfield, P. D., Roberts, D. H., and Burke, B. F. 1985, The Gravitationally Lensed Quasar 0957+561: VLA Observations and Mass Models, ApJ, 293, 356.Google Scholar
Greenstein, J. L. 1961, The First True Radio Star. Eng. Sci., 24, 18.Google Scholar
Greenstein, J. L. 1984, Optical and Radio Astronomers in the Early Years. In Serendipitous Discoveries in Radio Astronomy, ed. Kellerman, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 79.Google Scholar
Greenstein, J. L. and Matthews, T. A. 1963, Redshift of the Radio Source 3C 48, Nature, 197, 1041.Google Scholar
Greenstein, J. L. and Schmidt, M. 1963, The Quasi-Stellar Radio Sources 3C 48 and 3C 273, ApJ, 140, 1.Google Scholar
Güdel, M. 2002, Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants, ARAA, 40, 217.Google Scholar
Gundermann, E. 1965, Observations of the Interstellar Hydroxyl Radical, PhD Dissertation, Harvard University.Google Scholar
Gurvits, L., Kellermann, K. I., and Frey, L. 1999, The “Angular Size–Redshift Relation” for Compact Radio Structures in Quasars and Radio Galaxies, A&A, 342, 378.Google Scholar
Gush, H. P., Halpern, M., and Wisnow, E. H. 1990, Rocket Measurement of the Cosmic-Background Radiation mm Wave Spectrum, Phys. Rev. Let., 65, 537.Google Scholar
Haddock, F. 1984, U.S. Radio Astronomy Following World War II. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 115.Google Scholar
Hagen, J. P. 1951, Naval Research Laboratory Eclipse Expedition to Attu, Alaska, September 12, 1950, AJ, 56, 39.Google Scholar
Hagen, J. P., Haddock, F. T., and Reber, G., 1951, NRL Aleutian Radio Eclipse Expedition, Sky Tel., 10, 111.Google Scholar
Hagen, J. P. et al., 1948, Observations on the May 20, 1947, Total Eclipse of the Sun, NRL Report, March 1948.Google Scholar
Hall, P. (ed.) 2005, The SKA; An Engineering Perspective (Dordrecht: Springer).Google Scholar
Ham, R. A. 1975, The Hissing Phenomena, J. Br. Astron. Assoc., 85, 317.Google Scholar
Hanbury Brown, R. 1984, The Development of Michelson and Intensity Long Baseline Interferometry. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 133.Google Scholar
Hanbury Brown, R. and Hazard, C. 1950, Radio-Frequency Radiation from the Great Nebula in Andromeda (M.31), Nature, 166, 901.Google Scholar
Hanbury Brown, R. and Hazard, C. 1952, Radio-Frequency Radiation from Tycho Brahe’s Supernova (A.D. 1572), Nature, 170, 364.Google Scholar
Hanbury Brown, R. and Hazard, C. 1953a, Radio-Frequency Radiation from the Spiral Nebula Messier 81, Nature, 172, 853.Google Scholar
Hanbury Brown, R. and Hazard, C. 1953b, A Survey of 23 Localized Radio Sources in the Northern Hemisphere, MNRAS, 113, 123.Google Scholar
Hanbury Brown, R. and Twiss, R. Q. 1956, A Test of a New Type of Stellar Interferometer on Sirius, Nature, 178, 1046.CrossRefGoogle Scholar
Hanbury Brown, R., Jennison, R. C., and Das Gupta, M. K. 1952, Apparent Angular Sizes of Discrete Radio Source, Nature, 170, 1061.Google Scholar
Hargrave, P. J. and Ryle, M. 1974, Observations of Cygnus A with the 5-km Radio Telescope, MNRAS, 166, 305.Google Scholar
Harp, G. R. et al. 2020, An ATA Search for a Repetition of the Wow Signal, AJ, 160, 162.Google Scholar
Harris, D. E. and Roberts, J. A. 1960, Radio Source Measurements at 960 Mc/s, PASP, 72, 237.Google Scholar
Harris, M. 2019, Untitled, Radio Science Bulletin, 371, 91.Google Scholar
Harwit, M. 1981, Cosmic Discovery (New York: Basic Books).Google Scholar
Harwit, M. 1984, Observational Discovery vs. Theoretical Discovery. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 197.Google Scholar
Harwit, M. 2013, In Search of the True Universe (New York: Cambridge University Press).Google Scholar
Harwit, M. 2019, Cosmic Discovery, revised issue (Cambridge: Cambridge University Press).Google Scholar
Harwit, M. 2021, Cosmic Messengers (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Haynes, M. P. and Giovanelli, R. 1986, The Connection between Pisces–Perseus and the Local Supercluster ApJ, 306, L55.CrossRefGoogle Scholar
Haynes, R. F. and Haynes, D. H. 1993, 3C 273: The Hazards of Publication, PASA, 10 355.Google Scholar
Haynes, R. et al. 1996, Explorers of the Southern Sky: A History of Australian Radio Astronomy (Cambridge: Cambridge University Press).Google Scholar
Hazard, C. 1962, The Method of Lunar Occultations and Its Application to a Survey of Radio Source 3C 212, MNRAS, 124, 343.Google Scholar
Hazard, C. and Walsh, D. 1959, An Experimental Investigation of the Effects of Confusion in a Survey of Localized Radio Sources, MNRAS, 119, 648.Google Scholar
Hazard, C., Mackey, M. B., and Shimmins, A. J. 1963, Investigation of the Radio Source 3C 273 by the Method of Lunar Occultations, Nature, 197, 1037.CrossRefGoogle Scholar
Hazard, C. et al. 2018, The Sequence of Events that Led to the 1963 Publication in Nature of 3C 273, the First Quasar and the First Extragalactic Radio Jet, PASA, 35, 6.Google Scholar
Heightman, D. W. 1946, Signals from the Sun, Wireless World, March, 99.Google Scholar
Helfand, D. J. 1982, A Superfast New Pulsar, Nature, 300, 573.CrossRefGoogle Scholar
Henyey, L. G. and Keenan, P. C. 1940, Interstellar Radiation from Free Electrons and Hydrogen Atoms, ApJ, 91, 625.CrossRefGoogle Scholar
Hernstein, J. R. et al. 1999, A Geometric Distance to the Galaxy NGC 4258 from Orbital Motions in a Nuclear Gas Disk, Nature, 400, 539.Google Scholar
Hewish, A. 1961, Extrapolation of the Number-Flux Density Relation of Radio Stars by Scheuer’s Statistical Methods, MNRAS, 123, 167.Google Scholar
Hewish, A. 1974, Pulsars and High Density Physics, 1974 Nobel Lecture. In Nobel Lectures, Physics 1971–1980, ed. Lundqvist, S. (Singapore: World Scientific Publishing).Google Scholar
Hewish, A. 2008, Background to Discovery: Some Recollections. In 40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More, ed. Bassa, C. G. et al. (New York: American Institute of Physics), 3.Google Scholar
Hewish, A. and Okoye, S. E. 1965, Evidence for an Unusual Source of High Radio Brightness Temperature in the Crab Nebula, Nature, 207, 59.Google Scholar
Hewish, A. and Wyndham, J. D. 1963, The Solar Corona in Interplanetary Space, MNRAS, 126, 469.CrossRefGoogle Scholar
Hewish, A., Scott, P. F., and Wills, D. 1964, Interplanetary Scintillation of Small Diameter Radio Source, Nature, 203, 1214.Google Scholar
Hewish, A. et al. 1968, Observations of a Rapidly Pulsating Radio Source, Nature, 217, 709.CrossRefGoogle Scholar
Hewitt, J. N. et al. 1988, Unusual Radio Source MG1131+0456: A Possible Einstein Ring, Nature, 333, 537.CrossRefGoogle Scholar
Hey, J. S. 1946, Solar Radiation in the 4–6 Metre Radio Wave-Length Band, Nature, 157, 47.Google Scholar
Hey, J. S. 1973, The Evolution of Radio Astronomy (New York: Science History Publications).Google Scholar
Hey, J. S., Parsons, S. J., and Phillips, J. W. 1946, Fluctuations in Cosmic Radiation at Radio Frequencies, Nature, 158, 234.Google Scholar
Hey, J. S., Phillips, J. W., and Parsons, S. J. 1946, Cosmic Radiations at 5 Metre Wavelength, Nature, 157, 296.Google Scholar
Hills, R. et al. 2018, Concerns about Modelling of the EDGES Data, Nature, 564, 32.CrossRefGoogle ScholarPubMed
Hirabayashi, H., Edwards, P. G., and Murphy, D. W. (eds.) 2000, Astrophysical Phenomena Revealed by Space VLBI (Sagamihara: Institute of Space and Astronautical Science).Google Scholar
Hjellming, R. M. 1988, Radio Stars. In Galactic and Extragalactic Radio Astronomy, ed. Verschuur, G. L. and Kellermann, K. I. (Berlin: Springer), 384.Google Scholar
Hjellming, R. M. and Johnston, K. J. 1981, An Analysis of the Proper Motions of SS 433 Radio Jets, Nature, 290, 100.Google Scholar
Hjellming, R. M. and Wade, C. M. 1970, Radio Novae, ApJ, 162, L1.Google Scholar
Högbom, J. A. and Shakeshaft, J. R. 1961, Secular Variations of the Flux Density of the Radio Source Cassiopeia A, Nature, 189, 561.Google Scholar
Hoglund, B. and Mezger, P. G. 1965a, The Detection of the Hydrogen Emission Line N110–N109 at the Frequency 5009 Mc/Sec in Galactic H II Regions, AJ, 70, 678.Google Scholar
Hoglund, B. and Mezger, P. G. 1965b, Hydrogen Emission Line n110→n109: Detection at 5009 Megahertz in Galactic H II Regions, Science, 150, 339.Google Scholar
Horowitz, P. and Sagan, C. 1993, Five Years of Project Meta: An All-Sky Narrow-Band Radio Search for Extraterrestrial Signals, ApJ, 415, 218.Google Scholar
Hotan, A. W. 2021, Australian Square Kilometre Array Pathfinder: I. System Description, PASA, 38, 9.CrossRefGoogle Scholar
Howard, W. E., Barrett, A. H., and Haddock, F. T. 1962, Measurement of the Microwave Radiation from the Planet Mercury, ApJ, 136, 995.Google Scholar
Howell, T. F. and Shakeshaft, J. R. 1966, Measurement of the Minimum Cosmic Background Radiation at 20.7-cm Wave-Length, Nature, 210, 1318.Google Scholar
Howell, T. F. and Shakeshaft, J. R. 1967, Spectrum of the 3° K Cosmic Microwave Radiation, Nature, 216, 753.Google Scholar
Hoyle, F. 1948, A New Model for the Expanding Universe, MNRAS, 108, 372.Google Scholar
Hoyle, F. 1959, The Relation of Radio Astronomy to Cosmology. In IAU Symposium no. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 529.Google Scholar
Hoyle, F. 1968, The Bakerian Lecture: Review of Recent Developments in Cosmology, Proc. Roy. Soc. London, 308, 1.Google Scholar
Hoyle, F. 1981, The Quasar Controversy Resolved (Cardiff: University College Cardiff Press).Google Scholar
Hoyle, F. 1982, The Universe Past and Present, ARAA, 220, 1.Google Scholar
Hoyle, F. and Burbidge, G. 1966, On the Nature of the Quasi-Stellar Objects, ApJ, 144, 534.Google Scholar
Hoyle, F. and Fowler, W. A. 1963, Nature of Strong Radio Sources, Nature, 197, 533.Google Scholar
Hoyle, F. and Narlikar, J. 1961, On the Counting of Radio Sources in the Steady-State Cosmology, MNRAS, 123, 133.CrossRefGoogle Scholar
Hoyle, F. and Narlikar, J. 1962, On the Counting of Radio Sources in the Steady-State Cosmology, II, MNRAS, 125, 13.Google Scholar
Hoyle, F., Burbidge, G., and Narlikar, J. V. 1994, Astrophysical Deductions from the Quasi-Steady-State Cosmology, MNRAS, 267, 1007.Google Scholar
Hubble, E. 1936a, The Realm of the Nebulae (New Haven: Yale University Press), reprinted 1958 by Dover Publications Inc.Google Scholar
Hubble, E. 1936b, Effects of Red Shifts on the Distribution of Nebulae, PNAS, 22, 621.Google Scholar
Hulse, R. A. 1994a, The Discovery of the Binary Pulsar, Rev. Mod. Phys., 66, 699.Google Scholar
Hulse, R. A. 1994b, The Discovery of the Binary Pulsar, BAAS, 26, 971.Google Scholar
Hulse, R. A. and Taylor, J. H. 1974a, A High Sensitivity Pulsar Survey, ApJ, 191, L59.Google Scholar
Hulse, R. A. and Taylor, J. H. 1974b, Discovery of a Pulsar in a Close Binary System, BAAS, 6, 453.Google Scholar
Hulse, R. A. and Taylor, J. H. 1975, Discovery of a Pulsar in a Binary System, ApJ, 195, L51.Google Scholar
Humphreys, E. M. L. et al. 2013, Toward a New Geometric Distance to the Active Galaxy NGC 4258. III. Final Results and the Hubble Constant, ApJ, 775, 13.Google Scholar
Hyman, S. D. et al. 2005, A Powerful Bursting Radio Source toward the Galactic Center, Nature, 434, 50.Google Scholar
Jaffe, A. H. et al. 2001, Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background Observations, Phys. Rev. Let., 86, 3475.Google Scholar
Jakes, W. C. 1963, Participation of the Holmdel Station in the Telstar Project, Bell Syst. Tech. J., 42, 1421.Google Scholar
Jansky, C. M, Jr. 1958, The Discovery and Identification by Karl Guthe Jansky of Electromagnetic Radiation of Extraterrestrial Origin in the Radio Spectrum, Proc. IRE, 46, 13.Google Scholar
Jansky, K. G. 1932, Directional Studies of Atmospherics at High Frequencies, Proc. IRE, 20, 1920.Google Scholar
Jansky, K. G. 1933a, Electrical Disturbances Apparently of Extraterrestrial Origin, Proc. IRE, 21, 1387.Google Scholar
Jansky, K. G. 1933b, Radio Waves from Outside the Solar System, Nature, 132, 66.CrossRefGoogle Scholar
Jansky, K. G. 1933c, Electrical Phenomena that Apparently Are of Interstellar Origin, Popular Astronomy, 41, 548.Google Scholar
Jansky, K. G. 1935, A Note on the Source of Interstellar Interference, Proc. IRE, 23, 1158.Google Scholar
Jansky, K. G. 1937, Minimum Noise Levels Obtained on Short Wave Receiving Systems, Proc. IRE, 25, 1517.Google Scholar
Jansky, K. G. 1939, An Experimental Investigation of the Characteristics of Certain Types of Noise, Proc. IRE, 27, 763.Google Scholar
Jarosik, N. et al. 2007, Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits, ApJS, 170, 263.Google Scholar
Jauncey, D. 1967, Re-Examination of the Source Counts for the 3C Revised Catalogue, Nature, 216, 877.Google Scholar
Jauncey, D. J. 1975, Radio surveys and Source Counts, ARAA, 13, 23.Google Scholar
Jeans, J. 1929, Astronomy and Cosmogony (Cambridge: The University Press).Google Scholar
Jeffrey, R. M. et al. 2016, Fast Launch Speeds in Radio Flares, From a New Determination of the Intrinsic Motions of SS 433’s Jet Bolides, MNRAS, 461, 312.Google Scholar
Jennison, R. C. and Das Gupta, M. K. 1953, Fine Structure in the Extraterrestrial Radio Source Cygnus I, Nature, 172, 996.Google Scholar
Jones, D. E. 1961, The Microwave Temperature of Venus, Planet. Space Sci., 5, 166.Google Scholar
Kaidanovsky, N. I. 2012, The Department of Radio Astronomy of the Main Astrophysical Observatory. In A Brief History of Radio Astronomy in the USSR (English ed.), ed. Kellermann, K. I. (Dordrecht: Springer), 127.Google Scholar
Kapahi, V. K. 1987, The Angular Size-Redshift Relation as a Cosmological Tool. In IAU Symposium no. 124, Observational Cosmology, ed. Hewitt, A., Burbidge, G., and Fang, L. Z. (Dordrecht: Reidel), 251.Google Scholar
Kardashev, N. 1959, On the Possibility of Detection of Allowed Lines of Atomic Hydrogen in the Radio Frequency Spectrum, Sov. Astron., 3, 813; Russian original, Astron. Zh., 36, 838.Google Scholar
Kardashev, N. 1962, Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission, Sov. Astron., 6, 317; Russian original: Astron. Zh., 39, 393.Google Scholar
Kardashev, N. et al. 2013, RadioAstron-A Telescope with a Size of 300 000 km: Main Parameters and First Observational Results, Astron. Rpts., 57, 153. Russian original, Astron. Zh. 2013, 90, 179.Google Scholar
Kaspi, V. M. and Beloborodov, A. M. 2017, Magnetars, ARAA, 55, 261.Google Scholar
Kauffman, H. 1946, A DX Record: To the Moon and Back, QST, 30, 65.Google Scholar
Kaufman, M. 1965, Limits on the Density of Intergalactic Ionized Hydrogen, Nature, 207, 736.Google Scholar
Kellermann, K. I. 1964, The Spectra of Non-Thermal Radio Sources, ApJ, 140, 969.Google Scholar
Kellermann, K. I. 1965a, 11 cm Observations of the Temperature of Mercury, Nature, 205, 1091.Google Scholar
Kellermann, K. I. 1965b, Radio Observations of Mars, Nature, 206, 1034.Google Scholar
Kellermann, K. I. 1966, The Thermal Radio Emission from Mercury, Venus, Mars, Saturn, and Uranus, Icarus, 5, 478.Google Scholar
Kellermann, K. I. 1972, Radio Galaxies, Quasars, and Cosmology, AJ, 77, 531.Google Scholar
Kellermann, K. I. 1993, The Cosmological Deceleration Parameter Estimated from the Angular-Size/Redshift Relation for Compact Radio Sources, Nature, 361, 134.Google Scholar
Kellermann, K. I. 1996, John Gatenby Bolton (1922–1993), PASP, 108, 729.Google Scholar
Kellermann, K. I. 1999, Grote Reber’s Observations on Cosmic Static, ApJ, 525, 37.Google Scholar
Kellermann, K. I. 2003, Grote Reber (1911–2002), Nature, 421, 596.CrossRefGoogle ScholarPubMed
Kellermann, K. I. 2004, Grote Reber (1911–2002), PASP, 116, 703.Google Scholar
Kellermann, K. I. 2014, The Discovery of Quasars and Its Aftermath, J. Astron. Hist. Heritage, 17, 267.Google Scholar
Kellermann, K. I., and Cohen, M. H. 1988, The Origin and Evolution of the NRAO-Cornell VLBI System, JRASC, 82, 248.Google Scholar
Kellermann, K. I. and Moran, J. M. 2001, The Development of High-Resolution Imaging in Radio Astronomy, ARAA, 29, 457.Google Scholar
Kellermann, K. I. and Pauliny-Toth, I. I. K. 1966a, Observations of the Radio Emission from Uranus, Neptune, and Other Planets at 1.9 cm, ApJ, 145, L954.Google Scholar
Kellermann, K. I. and Pauliny-Toth, I. I. K. 1966b, A Search for Radio Emission from the Star Alpha Orionis, ApJ, 145, 953.Google Scholar
Kellermann, K. I. and Pauliny-Toth, I. I. K. 1968, Variable Radio Sources, ARAA, 6, 417.CrossRefGoogle Scholar
Kellermann, K. I. and Pauliny-Toth, I. I. K. 1969, The Spectra of Opaque Radio Sources, ApJ, 155, 71.CrossRefGoogle Scholar
Kellermann, K. I. and Sheets, B. 1984, Serendipitous Discoveries in Radio Astronomy (Green Bank: NRAO).Google Scholar
Kellermann, K. I. and Wall, J. V. 1987, Radio Source Counts and Their Interpretation. In IAU Symposium 124, Observational Cosmology, ed. Hewett, A. et al. (Dordrecht: Reidel), 545.Google Scholar
Kellermann, K. I., Bouton, E. N., and Brandt, S. S. 2020, Open Skies: The National Radio Astronomy Observatory and Its Impact on US Radio Astronomy (Cham: Springer).Google Scholar
Kellermann, K. I., Davis, M. M., and Pauliny-Toth, I. I. K. 1971, Counts of Radio Sources at 6-Centimeter Wavelength, ApJ, 170, L1.CrossRefGoogle Scholar
Kellermann, K. I., Orchiston, W., and Slee, B. 2005, Gordon James Stanley and the Early Development of Radio Astronomy in Australia and the United States, PASA, 22, 13.Google Scholar
Kellermann, K. I., Pauliny-Toth, I. I. K., and Williams, P. J. 1969, The Spectra of Radio Sources in the Revised 3C Catalogue, ApJ, 157, 1.Google Scholar
Kellermann, K. I. et al. 1962, A Correlation between the Spectra of Non-thermal Radio Sources and Their Brightness Temperatures, Nature, 195, 692.Google Scholar
Kellermann, K. I. et al. 1977, The Small Radio Source at the Galactic Center, ApJ, 214, L61.Google Scholar
Kellermann, K. I. et al. 1989, VLA Observations of Objects in the Palomar Bright Quasar Survey, AJ, 96, 1195.Google Scholar
Kellermann, K. I. et al. 2004, Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. III. Kinematics of Parsec-scale Radio Jets, ApJ, 609, 539.Google Scholar
Kellermann, K. I. et al. 2016, Radio-Loud and Radio-Quiet QSOs, ApJ, 831, 168.Google Scholar
Kennefick, D. 2009, Testing Relativity from the 1919 Eclipse: A Question of Bias, Phys. Today, 62, 37.Google Scholar
Khaikin, S. E. and Chikhachev, B. M. 1948, Investigation of Radio Emission from the Sun during the Total Solar Eclipse of May 20, 1947, Izvestiya Akad. Nauk SSSR, 12, 38 (in Russian).Google Scholar
Kiepenheuer, K. O. 1950, Cosmic Rays As the Source of General Galactic Radio Emission, Phys. Rev., 79, 738.CrossRefGoogle Scholar
Kinman, T. D. 1965, The Nature of the Fainter Haro-Luyten Objects, ApJ, 142, 1241.Google Scholar
Klein, M. J. and Seling, T. V. 1966, Radio Emission from Uranus at 8 Gc/s, ApJ, 146, 599.Google Scholar
Kleppner, D. and Horowitz, P. 2016, A Perfect Proposal, Phys. Today, 69, 48.Google Scholar
Knight, C. A. et al. 1971, Quasars: Millisecond-of-Arc Structure Revealed by Very-Long-Baseline Interferometry, Science, 172, 52.Google Scholar
Knowles, S. G. et al. 1969a, Spectra, Variability, Size, Polarization of H2O Microwave Emission in the Galaxy, Science, 163, 1055.Google Scholar
Knowles, S. G. et al. 1969b, Galactic Water Vapor Emission: Further Observations of Variability, Science, 166, 221.Google Scholar
Kotelnikov, V. 1961, Radar Contact with Venus, J. Br. Inst. Radio Eng., 22, 293.Google Scholar
Kotelnikov, V. 1963, Radar Observations of the Planet Venus in the Soviet Union in April, 1963, Science Report of the Institute of Radio Engineering and Electronics, Moscow. English translation by the Defense Documentation Center.Google Scholar
Kozyrev, N. A. 1964, The Atmosphere of Mercury, Sky Tel., 27, 339.Google Scholar
Kragh, H. 1996, Cosmology and Controversy (Princeton: Princeton University Press).Google Scholar
Kragh, H. 2017, The Nobel Prize System and the Astronomical Sciences, J. Hist. Astron., 48, 257.CrossRefGoogle Scholar
Kramer, M. et al. 2021, Strong-Field Gravity Tests with the Double Pulsar, Phys. Rev. X, 11, 041050.Google Scholar
Kraus, J. D. 1956, Impulsive Radio Signals from the Planet Venus, Nature, 178, 33; Radio Observations of the Planet Venus at a Wave-length of 11 m., Nature, 178, 103; Class II Radio Signals from Venus at a Wave-length of 11 Metres, Nature, 178, 159.CrossRefGoogle Scholar
Kraus, J. 1984, Karl Guthe Jansky’s Serendipity, Its Impact on Astronomy and Its Lessons for the Future. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 57.Google Scholar
Kraus, J. 1995, Big Ear Two Listening for Other Worlds (Powell: Cygnus-Quasar Books).Google Scholar
Kuiper, G. P. 1952, The Atmospheres of the Earth and Planets (Chicago: University of Chicago Press).Google Scholar
Kulkarni, S. R. et al. 2014, Giant Sparks at Cosmological Distances?, ApJ, 797, 70.Google Scholar
Kusch, P. and Prodell, A. G. 1950, On the Hyperfine Structure of Hydrogen and Deuterium, Phys. Rev., 79, 1009.Google Scholar
Langer, R. M. 1936, Radio Noise from the Galaxy, Phys. Rev., 49, 209.Google Scholar
Lebach, D. E. et al. 1995, Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry, Phys. Rev. Let., 75, 1439.CrossRefGoogle ScholarPubMed
Legg, T. H. 1970, Redshift and the Size of Double Radio Sources, Nature, 226, 64.CrossRefGoogle ScholarPubMed
Lequeux, J. 1962, Mesures Interférométriques a Haute Résolution du Diamétre et de la Structure des Principales Radiosources, Ann. Astrophys., 25, 221.Google Scholar
Levine, J. L. 2004, Early Gravity-Wave Detection Experiments, 1960–1975, Phys. Pers., 6, 42.Google Scholar
Levy, D. H. 1993, The Man Who Sold the Milky Way: A Biography of Bart Bok (Tucson: University of Arizona Press), 45.Google Scholar
Levy, G. S. et al. 1986, Very Long Baseline Interferometric Observations Made with an Orbiting Radio Telescope, Science, 234, 187.Google Scholar
Lilley, A. E. and McClain, E. F. 1956, The Hydrogen-Line Red Shift of Radio Source Cygnus A, ApJ, 123, 127.Google Scholar
Lilley, A. E. et al. 1966, Radio Astronomical Detection of Helium, Nature, 211, 174.Google Scholar
Lissauer, J. J. and de Pater, I. 2013, Fundamental Planetary Science: Physics, Chemistry, and Habitability (New York: Cambridge).CrossRefGoogle Scholar
Lister, M. et al. 2018, MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017, ApJS, 234, 12.CrossRefGoogle Scholar
Little, A. and Bracewell, R. N. 1961, The Central Component of Centaurus A, AJ, 66, 290.Google Scholar
Little, C. G. and Lovell, A. C. B. 1950, Origin of the Fluctuations in the Intensity of Radio Waves from Galactic Sources: Jodrell Bank Observations, Nature, 165, 423.Google Scholar
Litvak, M. M. et al. 1966, Maser Model for Interstellar OH Microwave Emission, Phys. Rev. Let., 17, 821.Google Scholar
Livingston, M. S. 1954, High-Energy Accelerators (New York: Interscience Publishers).Google Scholar
Longair, M. 1966, On the Interpretation of Radio Source Counts, MNRAS, 133, 421.Google Scholar
Longair, M. 2009, The Discovery of Pulsars and the Aftermath, Proc. Am. Phil. Soc., 155, 147.Google Scholar
Lopez-Corredoira, M. 2011, Pending Problems in QSOs, Int. J. Astron. Astrophys., 1, 73.Google Scholar
Lorimer, D. et al. 2007, Bright Millisecond Radio Burst of Extragalactic Origin, Science, 318, 777.Google Scholar
Lovell, A. C. B. 1964, Joseph Lade Pawsey, Mem. Roy. Soc., 228, 229.Google Scholar
Lovell, A. C. B. 1969, Observation of Prolonged Radio Emission from a Red Dwarf Star, Nature, 222, 1126.Google Scholar
Lovell, A. C. B. 1977, The Effects of Defense Science on the Advance of Astronomy, J. Hist. Astron., 8, 151.Google Scholar
Lovell, A. C. B. 1984, Impact of World War II on Radio Astronomy. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K.I. and Sheets, B. (Green Bank: NRAO/AUI), 89.Google Scholar
Lovell, A. C. B. 1987, Voice of the Universe: Building the Jodrell Bank Telescope (New York: Praeger).Google Scholar
Lovell, A. C. B. 1990, Astronomer by Chance (New York: Basic Books).Google Scholar
Low, F. 1964, Infrared Brightness Temperatures of Saturn, AJ, 69, 550.Google Scholar
Low, F. 1966, The Infrared Brightness Temperature of Uranus, ApJ, 146, 326.Google Scholar
Lynden-Bell, D., 1969, Galactic Nuclei as Collapsed Old Quasars, Nature, 223, 690.Google Scholar
Lynden-Bell, D. and Rees, M. 1971, On Quasars, Dust and the Galactic Centre, MNRAS, 152, 461.CrossRefGoogle Scholar
Lynds, C. R. and Villere, G. 1965, On the Interpretation of the Integral Count–Apparent Magnitude Relation for the Haro-Luyten Objects, ApJ, 142, 1296.Google Scholar
Lyne, A. and Bailes, M. 1992, No Planet Orbiting 1829-10, Nature, 355, 325.Google Scholar
Lyne, A. et al. 2004, A Double Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics, Science, 303, 1153.Google Scholar
Maltby, P. and Moffet, A. T. 1965, Time Dependence of the Radio Emission from CTA 21 and CTA 102, ApJ, 142, 1699.Google Scholar
Maltby, P., Matthews, T. A., and Moffet, A. T. 1963, Brightness Distribution in Discrete Radio Sources. IV. A Discussion of 24 Identified Sources, ApJ, 137, 153.Google Scholar
Marcy, G. W. and Butler, R. P. 1998, Detection of Extrasolar Planets, ARAA, 36, 57.CrossRefGoogle Scholar
Margon, B. et al. 1979, Enormous Periodic Doppler Shifts in SS433, ApJ, 233, 63.Google Scholar
Martyn, D.F. 1946, Temperature Radiation from the Quiet Sun in the Radio Spectrum, Nature, 158, 632.Google Scholar
Masui, K. 2015, Dense Magnetic Plasma Associated with Fast Radio Burst, Nature, 528, 523.Google Scholar
Mather, J.C. 2006, Les Prix Nobel. The Nobel Prizes 2006, ed. Grandin, Karl (Stockholm: Nobel Foundation).Google Scholar
Matthews, T. A. and Sandage, A. 1963, Optical Identification of 3C 48, 3C 196, and 3C 286 with Stellar Objects, ApJ, 138, 30.Google Scholar
Matthews, T. A., Bolton, J. G., Greenstein, J. L., Münch, G., and Sandage, A. R. 1960, Unpublished paper presented at the 107th meeting of the AAS, December 1960.Google Scholar
Matthews, T. A., Morgan, W. W., and Schmidt, M. 1964, A Discussion of Galaxies Identified with Radio Sources, ApJ, 140, 35.CrossRefGoogle Scholar
Matveyenko, L. I. 2013, Early VLBI in the USSR. In Resolving the Sky: Radio Interferometry: Past, Present and Future, ed. Garrett, M. A. and Greenwood, J. C. (Manchester: SKA Observatory), 43.Google Scholar
Matveyenko, L. I., Kardashev, N. S., and Sholomitsky, G. V. 1965, Large Baseline Radio Interferometers, Radiophysica, 8, 651; English translation, 1966, Sov. Radiophys., 8, 46.Google Scholar
Maxwell, A., Swarup, G., and Thompson, A. R. 1958, The Radio Spectrum of Solar Activity, Proc. IRE, 46, 142.Google Scholar
Mayer, C. H. 1959, Planetary Radiation at Centimeter Wavelengths, AJ, 64, 43.Google Scholar
Mayer, C. H. 1984, Early Observations of Planetary Radio Emission. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 266.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1957, Evidence for Polarized Radio Emission from the Crab Nebula, ApJ, 126, 468.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1958a, Observations of Venus at 3.15-CM Wave Length, ApJ, 127, 1.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1958b, Observation of Mars and Jupiter at a Wave Length of 3.15 cm, ApJ, 127, 11.CrossRefGoogle Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1958c, Observation of Mars and Jupiter at a Wave Length of 3.15 cm, Proc. IRE, 46, 260.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1962a, Evidence for Polarized 3.5-CM Radiation from the Radio Galaxy Cygnus A, ApJ, 135, 656.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1962b, Polarization of the Radio Emission of Taurus A, Cygnus A, and Centaurus A, AJ, 67, 581.Google Scholar
Mayer, C. H., McCullough, T. P., and Sloanaker, R. M. 1964, Linear Polarization of the Centimeter Radiation of Discrete Sources, ApJ, 139, 248.Google Scholar
Mayor, M. and Queloz, D. 1995, A Jupiter-Mass Companion to a Solar-Type Star, Nature, 378, 355.Google Scholar
McClain, E. 1960, The 600-Foot Radio Telescope, SciAm, 202, 45.Google Scholar
McClain, E. and Sloanaker, R. 1959, Preliminary Observations at 10-cm Wavelength Using the NRL 84-ft Radio Telescope. In IAU Symposium no. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 61.Google Scholar
McCrea, W. 1984, The Influence of Radio Astronomy on Cosmology. In The Early Years of Radio Astronomy, ed. Sullivan, W. T. III (Cambridge: Cambridge University Press), 272.Google Scholar
McCready, L. L., Pawsey, J. L., and Payne-Scott, R. 1947, Solar Radiation at Radio Frequencies and Its Relation to Sunspots, Proc. Roy. Soc. London A, 190, 357.Google Scholar
McGee, R. X. and Bolton, J. G. 1954, Probable Observation of the Galactic Nucleus at 400 Mc/s, Nature, 173, 985.CrossRefGoogle Scholar
McGee, R. X. et al. 1965, Anomalous Intensity Ratios of the Interstellar Lines of OH in Absorption and Emission, Nature, 208, 1193.Google Scholar
McGovern, W. E., Gross, S. H., and Rasool, S. I. 1965, Rotation Period of the Planet Mercury, Nature, 208, 375.Google Scholar
McGuire, B. et al. 2018, First Results of an ALMA Band 10 Spectral Line Survey of NGC 6334I: Detections of Glycolaldehyde (HC(O)CH2OH) and a New Compact Bipolar Outflow in HDO and CS, ApJL, 863, L35.Google Scholar
McKellar, A. 1940, Evidence for the Molecular Origin of Some Hitherto Unidentified Interstellar Lines, PASP, 52, 187.Google Scholar
McKellar, A. 1941, Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space, Publ. Dominion Astrophysical Observatory, 7, 251.Google Scholar
McLaughlin, M. A. et al. 2006, Transient Radio Bursts from Rotating Neutron Stars, Nature, 439, 817.Google Scholar
Menzel, D. 1937, Physical Processes in Gaseous Nebulae. I., ApJ, 85, 330.CrossRefGoogle Scholar
Merton, R. K. and Barber, E. 2004, The Travels and Adventures of Serendipity (Princeton: Princeton University Press).Google Scholar
Mezger, P. G. and Palmer, P. 1968, Radio Recombination Lines: A New Observational Tool in Astrophysics, Science, 160, 29.Google Scholar
Michelson, A. A. 1890, On the Application of Interference Methods to Astronomical Measurements, Phil. Mag. Ser. 5, 30, 1.Google Scholar
Michelson, A. A. 1920, On the Application of Interference Methods to Astronomical Measurements, ApJ, 51, 257.Google Scholar
Michelson, A. A. and Pease, F. G. 1921, Measurement of the Diameter of α Orionis with the Interferometer, ApJ, 53, 249.Google Scholar
Mickaliger, M. B. et al. 2012, A Giant Sample of Giant Pulses from the Crab Pulsar, ApJ, 760, 64.Google Scholar
Miley, G. 1971, The Radio Structure of Quasars: A Statistical Investigation, MNRAS, 152, 477.Google Scholar
Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365.Google Scholar
Milgrom, M. 2002, Does Dark Matter Really Exist?, SciAm, 287, 42.Google Scholar
Mills, B. Y. 1952a, The Positions of Six Discrete Sources of Cosmic Radio Radiation, Austrl. J. Sci. Res. A, 5, 456.Google Scholar
Mills, B. Y. 1952b, The Distribution of the Discrete Sources of Cosmic Radio Radiation, Austrl. J. Sci. Res. A, 5, 266.Google Scholar
Mills, B. Y. 1952c, Apparent Angular Sizes of Discrete Radio Sources: Observations at Sydney, Nature, 170, 1063.Google Scholar
Mills, B. Y. 1956, Letter to the Editor, SciAm, 195, 8.Google Scholar
Mills, B. Y. 1959, A Survey of Radio Sources at 3.5-m Wavelength. In IAU Symposium no. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 498.Google Scholar
Mills, B. Y. 1984, Radio Source Counts and the Log N–Log S Controversy. In The Early Years of Radio Astronomy, ed. Sullivan III, W. T. (Cambridge: Cambridge University Press), 147.Google Scholar
Mills, B. Y. and Slee, O. B. 1957, A Preliminary Survey of Radio Sources in a Limited Region of the Sky at a Wavelength of 3.5m, Austrl. J. Phys., 10, 162.Google Scholar
Mills, B. Y. and Thomas, A. B. 1951, Observations of the Source of Radio-Frequency Radiation in the Constellation of Cygnus, Austrl. J. Sci. Res. A, 4, 158.Google Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1958, A Catalogue of Radio Sources between Declinations +10° and ‒20°, Austrl. J. Phys., 11, 360.Google Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1960, A Catalogue of Radio Sources between Declinations ‒20° and ‒50°, Austrl. J. Phys., 13, 676.CrossRefGoogle Scholar
Mills, B. Y., Slee, O. B., and Hill, E. R. 1961, A Catalogue of Radio Sources between Declinations ‒50° and ‒80°, Austrl. J. Phys., 14, 497.Google Scholar
Minkowski, R. 1942, The Crab Nebula, ApJ, 96, 199.Google Scholar
Minkowski, R. 1959, Optical Observations of Nonthermal Galactic Radio Sources. In IAU Symposium No. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 315.Google Scholar
Minkowski, R. 1960a, A New Distant Cluster of Galaxies, PASP, 72, 354.Google Scholar
Minkowski, R. 1960b, A New Distant Cluster of Galaxies, ApJ, 132, 908.CrossRefGoogle Scholar
Mirabel, I. F. and Rodriguez, L. F. 1994, A Superluminal Source in the Galaxy, Nature, 371, 46.Google Scholar
Mitchell, D. L. and de Pater, I. 1994, Microwave Imaging of Mercury’s Thermal Emission at Wavelengths from 0.3 to 20.5 cm, Icarus, 110, 2.Google Scholar
Mitton, S. 2005, Conflict in the Cosmos: Fred Hoyle’s Life in Science (Washington: Joseph Henry Press).Google Scholar
Miyoshi, M. et al. 1995, Evidence for a Black Hole from High Rotation Velocities in a Sub-Parsec Region of NGC 4258, Nature, 373, 127.Google Scholar
Moffet, A. T. 1966, The Structure of Radio Galaxies, ARAA, 4, 145.Google Scholar
Moran, J. M. 1967a, Observations of OH Emissions in the HII Region W3 with a 74,400λ Interferometer, ApJ, 148, L69.Google Scholar
Moran, J. M. 1967b, Spectral Line Interferometry with Independent Time Standards at Stations Separated by 845 Kilometers, Science, 157, 676.Google Scholar
Moran, J. M. et al. 1968, The Structure of the OH Source in W3, ApJ, 152, L97.CrossRefGoogle Scholar
Moran, J. M. et al. 1973, Very Long Baseline Interferometric Observations of the H2O Sources in W49N, W3(OH), Orion A, and VY Canis Majoris, ApJ, 185, 535.Google Scholar
Moran, J. M. et al. 1978, Evidence for the Zeeman Effect in the OH Maser Emission from W3(OH), ApJ, 224, 67.Google Scholar
Morris, D. and Berge, G. L. 1962, Measurements of the Polarization and Angular Extent of the Decimetric Radiation of Jupiter, ApJ, 136, 276.Google Scholar
Morris, D., Palmer, H. P., and Thompson, A. R. 1957, Five Radio Sources of Small Angular Diameter, Obs., 77, 103.Google Scholar
Morrison, D. and Klein, M. J. 1970, The Microwave Spectrum of Mercury, ApJ, 160, 325.Google Scholar
Morrison, D. and Sagan, C. 1967, The Microwave Phase Effect of Mercury, ApJ, 150, 1105.Google Scholar
Morrison, D., Sagan, C., and Pollack, J. 1969, Martian Temperatures and Thermal Properties, Icarus, 11, 36.CrossRefGoogle Scholar
Muhleman, D. O., Ekers, R. D., and Fomalont, E. B. 1970, Radio Interferometric Test of the General Relativistic Light Bending Near the Sun, Phys. Rev. Let., 24, 1377.Google Scholar
Muller, C. A. and Oort, J. H. 1951, The Interstellar Hydrogen Line at 1,420 Mc./sec and an Estimate of Galactic Rotation, Nature, 168, 356.Google Scholar
Murray, B. C. and Wildey, R. L. 1963, Stellar and Planetary Observations at 10 Microns, ApJ, 137, 692.Google Scholar
Nakagami, M. and Miya, K. 1939, On the Incident Angle of Short Radio Waves during the “Dellinger Effect,” J. Inst. Elec. Eng. Japan, 59, 176 (in Japanese).Google Scholar
Nakai, N., Inoue, M., and Miyoshi, M. 1993, Extremely-High-Velocity H2O Maser Emission in the Galaxy, NGC 4258, Nature, 361, 45.Google Scholar
Napier, P. J., Thompson, A. R., and Ekers, R. D. 1983, The Very Large Array: Design and Performance of a Modern Synthesis Radio Telescope, Proc. IEEE, 71, 1295.CrossRefGoogle Scholar
Noordam, J. 2013, The Dawn of the SKAI: What Really Happened. In Resolving the Sky: Radio Interferometry: Past, Present, and Future, ed. Garrett, M. A. and Greenwood, J. C. (Manchester: SKA Organization), 68.Google Scholar
Nordmann, C. 1902, A Search for Hertzian Waves Emanating from the Sun, Comptes Rendus, 134, 273 (in French). English translation 1982 in Classics in Radio Astronomy, ed. W. T. Sullivan (Dordrecht: Reidel), 158.Google Scholar
Novikov, I. 2009, Cosmology in the Soviet Union in the 1960s. In Finding the Big Bang, ed. Peebles, P. J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 99.Google Scholar
Ohm, E. A. 1961, Receiving System, Bell Syst. Tech. J., 40, 1065.Google Scholar
Oke, J. B. 1963, Absolute Energy Distribution in the Optical Spectrum of 3C 273, Nature, 197, 1040.Google Scholar
Oort, J. H. and Walraven, Th. 1956, Polarization and Composition of the Crab Nebula, BAN, 12, 285.Google Scholar
Oort, J. H., Kerr, F. J., and Westerhout, G. 1958, The Galactic System as a Spiral Nebula, MNRAS, 118, 379.Google Scholar
Öpik, E. J. 1962, Jupiter: Chemical Composition, Structure, and Origin of a Giant Planet, Icarus, 1, 200.Google Scholar
Orchiston, W. 2004, From the Solar Corona to Clusters of Galaxies: The Radio Astronomy of Bruce Slee, PASA, 21, 23.Google Scholar
Orchiston, W. 2005a, Dr. Elizabeth Alexander: First Female Radio Astronomer. In The New Astronomy: Opening the Electromagnetic Window and Expanding Our View of Planet Earth, ed. Orchiston, W. (Dordrecht: Springer), 71.Google Scholar
Orchiston, W. 2005b, Sixty Years in Radio Astronomy: A Tribute to Bruce Slee, J. Astron. Hist. Heritage, 8, 30.Google Scholar
Orchiston, W. and Slee, O. B. 2002, The Australasian Discovery of Solar Radio Emission, AAO Newsletter, November 2002, 25.Google Scholar
Orchiston, W. and Steinberg, J.-L. 2007, Highlighting the History of French Radio Astronomy. 2: The Solar Eclipse Observations of 1949–1954, J. Astron. Hist. Heritage, 10, 11.CrossRefGoogle Scholar
Orchiston, W., Nakamura, T., and Ishiguro, M. 2016, Highlighting the History of Japanese Radio Astronomy. 4: Early Solar Research at Osaka, J. Astron. Hist. Heritage, 19, 240.Google Scholar
Orchiston, W. et al. 2009, Highlighting the History of French Radio Astronomy. 4: Early Solar Research at the École Normale Supérieure, Narcoussis and Nançay, J. Astron. Hist. Heritage, 12, 175.CrossRefGoogle Scholar
Ostriker, J. P., Peebles, P. J. E., and Yahil, A. 1974, The Size and Mass of Galaxies, and the Mass of the Universe, ApJ, 193, L1.Google Scholar
Ozernoy, L. M. and Sazonov, V. N. 1969, The Spectrum and Polarization of a Source of Synchrotron Emission with Components Flying Apart at Relativistic Velocities, Astrophys. Space Sci., 3, 395.CrossRefGoogle Scholar
Pacini, F. 1967, Energy Emission from a Neutron Star, Nature, 216, 567.Google Scholar
Palmer, H. et al. 1967, Radio Diameter Measurements with Interferometer Baselines of One Million and Two Million Wavelengths, Nature, 213, 789.Google Scholar
Parijisky, Yu. N. 1992, Radio Astronomy of the Next Century, Astron. Astrophys. Trans., 1, 85.Google Scholar
Partridge, R. B. 1980, Fluctuations in the Cosmic Microwave Background at Small Angular Scales. In The Universe at Large Redshifts, ed. J. Kalckar, O. Ulfbeck, and N. R. Nelson, Physica Scripta, 21, 624.Google Scholar
Pauliny-Toth, I. I. K. and Kellermann, K. I. 1966, Variations in the Radio-Frequency Spectra of 3C 84, 3C 273, 3C 279, and Other Radio Sources, ApJ, 146, 634.Google Scholar
Pauliny-Toth, I. I. K. et al. 1972, The NRAO 5-GHz Radio Source Survey. II. The 140-Ft “Strong,” “Intermediate,” and “Deep” Source Surveys, AJ, 77, 265.Google Scholar
Pauliny-Toth, I. I. K. et al. 1978, The 5 GHz Strong Source Surveys. IV. Survey of the Area between Declination 35 and 70 Degrees and Summary of Source Counts, Spectra and Optical Identifications, AJ, 83, 451.Google Scholar
Pawsey, J. L. 1946, Observations of Million Degree Thermal Radiation from the Sun at a Wavelength of 1.5 Metres, Nature, 158, 633.Google Scholar
Pawsey, J. L. 1957, Preliminary Statistics of Discrete Sources Obtained with the “Mills Cross,” In IAU Symposium no. 4, Radio Astronomy, ed. Van de Hulst, H. C. (Cambridge: Cambridge University Press), 228.Google Scholar
Pawsey, J. L. and Bracewell, R. N. 1955, Radio Astronomy (Oxford: Clarendon Press).Google Scholar
Pawsey, J. L., Payne-Scott, R., and McCready, L. L. 1946, Radio Frequency Energy from the Sun, Nature, 157, 158.Google Scholar
Payne-Gaposchkin, C. 1954, Introduction to Astronomy (New York: Prentice-Hall).Google Scholar
Payne-Scott, R., Yabsley, D. E., and Bolton, J. G. 1947, Relative Times of Arrival of Bursts of Solar Noise on Different Radio Frequencies, Nature, 160, 256.Google Scholar
Peale, S. J. and Gold, T. 1965, Rotation of the Planet Mercury, Nature, 206, 1240.Google Scholar
Pearson, T. J. 1974, Variation of Radio Source Counts With Direction, for the 3CR and 4C SurveysMNRAS166, 249.Google Scholar
Pearson, T. J. and Kus, A. J. 1978, The 5C 6 and 5C 7 Surveys of Radio SourcesMNRAS182, 273.Google Scholar
Peebles, P. J. E. 2014, Discovery of the Hot Big Bang: What Happened in 1948, Eur. Phys. J. H, 39, 205.Google Scholar
Peebles, P. J. E., Page, L. A. and Partridge, R. B. (eds.) 2009, Finding the Big Bang (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Penzias, A. A. 1965, Helium‐Cooled Reference Noise Source in a 4‐kMc Waveguide, Rev. Sci. Instr., 36, 68.Google Scholar
Penzias, A. A. 1992, The Origin of the Elements. In Nobel Lectures in Physics 1971–1980, ed. Lundqvist, S. (Singapore: World Scientific), 444.Google Scholar
Penzias, A. A. 2009, Encountering Cosmology. In Finding the Big Bang, ed. Peebles, J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 144.Google Scholar
Penzias, A. A. and Wilson, R. W. 1965, A Measurement of Excess Antenna Temperature at 4080 Mc/s, ApJ, 142, 419.Google Scholar
Penzias, A. A. and Wilson, R. W. 1967, A Measurement of the Background Temperature at 1415 MHz, AJ, 72, 315.Google Scholar
Penzias, A. A., Schraml, J., and Wilson, R. 1969, Observational Constraints on a Discrete-Source Model to Explain the Micro-Wave Background, ApJ, 157, L49.Google Scholar
Perkins, F., Gold, T., and Salpeter, E. E. 1966, Maser Action in Interstellar OH, ApJ, 145, 361.Google Scholar
Perley, R. A. and Meisenheimer, K. 2017, High-Fidelity VLA Imaging of the Radio Structure of 3C 273, A&A, 601, 35.Google Scholar
Perley, R. A., Dreher, J. W., and Cowan, J. J. 1984, The Jet and Filaments in Cygnus A, ApJ, 285, 35.Google Scholar
Perlmutter, A. et al. 1999, Measurements of Omega and Lambda from 42 High Redshift Supernovae, ApJ, 517, 565.Google Scholar
Pesce, D. W. et al. 2020, The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints, ApJ, 891, L1.Google Scholar
Petroff, E. et al. 2015, Identifying the Source of Perytons at the Parkes Radio Telescope, MNRAS, 451, 393.Google Scholar
Pettengill, G. H. 1984, Discovery of Mercury’s Rotation. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 275.Google Scholar
Pettengill, G. H. and Dyce, R. B. 1965, A Radar Determination of the Rotation of the Planet Mercury, Nature, 206, 1240.Google Scholar
Pettengill, G. H. and Price, R. 1961, Radar Echoes from Venus and a New Determination of the Solar Parallax, Planet. Space Sci., 5, 71.Google Scholar
Pettengill, G. H. et al. 1962, A Radar Investigation of Venus, AJ, 67, 181.Google Scholar
Pettit, E. and Nicholson, S. B. 1936, Radiation from the Planet Mercury, ApJ, 83, 84.Google Scholar
Pfeiffer, J. 1956, The Changing Universe: The Story of the New Astronomy (New York: Random House).Google Scholar
Pick, M. et al. 2011, Highlighting the History of French Radio Astronomy. 6: The Multi-Element Grating Arrays at Nançay, J. Astron. Hist. Heritage, 14, 57.Google Scholar
Piddington, J. H. and Minnett, H. C. 1949, Microwave Thermal Radiation from the Moon, Austrl. J. Sci. Res. A, 2, 63.Google Scholar
Piddington, J. H. and Minnett, H. C. 1951, Observations of Galactic Radiation at Frequencies of 1200 and 3000 Mc/s, Austrl. J. Sci. Res. A, 4, 495.Google Scholar
Pilkington, J. D. H. and Scott, J. F. 1965, A Survey of Radio Sources between Declinations 20° and 40°, MNRAS, 60, 183.Google Scholar
Pilkington, J. D. H. et al. 1968, Observations of Some Further Pulsed Radio Sources, Nature, 218, 126.Google Scholar
Pollack, J. B. and Sagan, C. 1965, The Microwave Phase Effect of Venus, Icarus, 4, 62.Google Scholar
Pooley, G. G. 1968, Counts of Radio Sources at 2,700 MHz, Nature, 218, 152.Google Scholar
Porcas, R. W. et al. 1980, Radio Positions and Optical Identifications for Radio Sources Selected at 966 MHz – II, MNRAS, 191, 607.Google Scholar
Porcas, R. W. et al. 1981, VLBI Structures of the Images of the Double QSO 0957+561, Nature, 289, 758.CrossRefGoogle Scholar
Pound, R. V. and Rebka, G. A. 1960, Apparent Weight of Photons, Phys. Rev. Let., 4, 337.Google Scholar
Price, R. M. 1969, A Measurement of the Sky Brightness Temperature at 408 MHz, Austrl. J. Phys., 22, 641.Google Scholar
Price, R. M. 1984, The First Years at Parkes. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 300.Google Scholar
Price, R. et al. 1959, Radar Echoes from Venus, Science, 129, 751.Google Scholar
Radhakrishnan, V. and Roberts, J. A. 1960, Polarization and Angular Extent of the 960-Mc/sec Radiation from Jupiter, Phys. Rev. Let., 4, 493.CrossRefGoogle Scholar
Read, R. B., 1962, Accurate Measurement of the Declinations of Radio Sources, PhD Dissertation, California Institute of Technology.Google Scholar
Read, R. B. 1963, Accurate Measurement of the Declinations of Radio Sources, ApJ, 138, 1.CrossRefGoogle Scholar
Readhead, A. C. S. and Wilkinson, P. N. 1978, The Mapping of Compact Radio Sources from VLBI Data, ApJ, 223, 25.Google Scholar
Reasenberg, R. D. et al. 1979, Viking Relativity Experiment: Verification of Signal Retardation by Solar Gravity, ApJ, 234, L219.CrossRefGoogle Scholar
Reber, G. 1940a, Cosmic Static, ApJ, 91, 621.Google Scholar
Reber, G. 1940b, Cosmic Static, Proc. IRE, 28, 68.Google Scholar
Reber, G. 1942, Cosmic Static, Proc. IRE, 30, 367.Google Scholar
Reber, G. 1944, Cosmic Static, ApJ, 100, 279.Google Scholar
Reber, G. 1946, Solar Radiation at 480 Mc, Nature, 158, 945.Google Scholar
Reber, G. 1948a, Cosmic Static, Proc. IRE, 36, 1215.Google Scholar
Reber, G. 1948b, Cosmic Radio Noise, Radio-Electronic Eng., 11, 3.Google Scholar
Reber, G. 1948c, Solar Intensity at 408 Mc, Proc. IRE, 36, 88.Google Scholar
Reber, G. 1949a, Galactic Radio Waves, Sky Tel., 8, 139.Google Scholar
Reber, G. 1949b, Radio Astronomy, SciAm, 181, 34.Google Scholar
Reber, G. 1950, Galactic Radio Waves, Astron. Soc. Pacific Leaflet, No. 259.Google Scholar
Reber, G. 1958, Early Radio Astronomy in Wheaton, Illinois, Proc. IRE, 46, 15.Google Scholar
Reber, G. 1964, Reversed Bean Vines, J. Genet., 59, 37.Google Scholar
Reber, G. 1966, Ground-Based Astronomy: The NAS 10-Year Program, Science, 152, 150.Google Scholar
Reber, G. 1982, A Timeless, Boundless, Equilibrium Universe, Publ. Astron. Soc. Austrl., 4, 482.Google Scholar
Reber, G. 1984, Radio Astronomy between Jansky and Reber. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 71.Google Scholar
Reber, G. and Beck, E. 1951, The Measurement of 65 Centimeter Radiation during the Total Solar Eclipse of September 12, 1960, AJ, 56, 47.Google Scholar
Reber, G. and Ellis, W. 1956, Cosmic Radio-Frequency Radiation Near One Megacycle, J. Geophys. Res., 61, 1.Google Scholar
Reber, G. and Greenstein, J. L. 1947, Radio Frequency Investigations of Astronomical Interest, Obs., 67, 15.Google Scholar
Rees, M. J. 1966, Appearance of Relativistically Expanding Radio Sources, Nature, 211, 468.Google Scholar
Rees, M. J. 1967, Studies in Radio Source Structure: I. A Relativistically Expanding Model for Variable Quasi-Stellar Radio Sources, MNRAS, 135, 345.Google Scholar
Rees, M. J. 1977, A Better Way of Searching for Black-Hole Explosions, Nature, 266, 333.Google Scholar
Rees, M. J. and Sciama, D. W., 1968, Large-Scale Density Inhomogeneities in the Universe, Nature, 217, 511.Google Scholar
Rees, M. J. and Setti, G. 1968, Model for the Evolution of Extended Radio Sources, Nature, 219, 127.CrossRefGoogle Scholar
Refsdal, S. 1964, On the Possibility of Determining Hubble’s Parameter and the Masses of Galaxies from the Gravitational Lens Effect, MNRAS, 128, 307.Google Scholar
Refsdal, S. and Surdej, J. 1994, Gravitational Lenses, Rpts. Prog. Phys., 57, 117.Google Scholar
Reid, M. J. and Honma, M. 2014, Microarcsecond Radio Astrometry, ARAA, 52, 339.Google Scholar
Reid, M. J., Pesce, D. W., and Riess, A. G. 2019, An Improved Distance to NGC 4258 and Its Implications for the Hubble Constant, ApJ, 886, 27.Google Scholar
Reifenstein, E. C. et al. 1970, A Survey of H109α Recombination Line Emission in Galactic HII Regions of the Northern Sky, A&A, 4, 357.Google Scholar
Reiss, A. G. et al. 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009.Google Scholar
Rickard, J. R. and Cronyn, W. M. 1979, Interstellar Scattering, the North Polar Spur, and a Possible New Class of Compact Galactic Radio Sources, ApJ, 228, 755.CrossRefGoogle Scholar
Rieke, G. and Low, F. 1973, Infrared Maps of the Galactic Nucleus, ApJ, 184, 415.Google Scholar
Roberts, J. A. and Stanley, G. J. 1959, Radio Emission from Jupiter at a Wavelength of 31 Centimeters, PASP, 71, 485.Google Scholar
Roberts, M. S. 1966, A High-Resolution 21-cm Hydrogen-Line Survey of the Andromeda Nebula, ApJ, 144, 639.CrossRefGoogle Scholar
Roberts, M. S. 1975a, Radio Observations of Neutral Hydrogen in Galaxies. In Galaxies and the Universe, ed. Sandage, A., Sandage, M., and Kristian, J. (Chicago: University of Chicago Press), 321.Google Scholar
Roberts, M. S. 1975b, The Rotation Curve of Galaxies. In IAU Symposium no. 69, Dynamics of Stellar Systems, ed. Hayli, A. (Dordrecht: Reidel), 331.CrossRefGoogle Scholar
Roberts, M. S. 2008, M31 and a Brief History of Dark Matter. In ASPC 395, A Celebration of NRAO’s 50th Anniversary, 2008, ed. Bridle, A. H., Condon, J. J., and Hunt, G. C. (San Francisco: Astronomical Society of the Pacific), 283.Google Scholar
Roberts, M. S. and Rots, A. H., 1973, Comparison of Rotation Curves of Different Galaxy Types, A&A, 26, 483.Google Scholar
Roberts, M. S. and Whitehurst, R. N. 1975, The Rotation Curve and Geometry of M31 at Large Galactocentric Distances, ApJ, 201, 327.CrossRefGoogle Scholar
Robertson, D. S., Carter, W. E., and Dillinger, W. H. 1991, New Measurement of Solar Gravitational Deflection of Radio Signals Using VLBI, Nature, 349, 768.CrossRefGoogle Scholar
Robertson, P. 1992, Beyond Southern Skies: Radio Astronomy and the Parkes Telescope (Cambridge: Cambridge University Press).Google Scholar
Robertson, P. 2017, Radio Astronomer: John Bolton and a New Window on the Universe (Sydney: New South).Google Scholar
Robertson, P., Orchiston, W., and Slee, B. 2014, John Bolton and the Discovery of Discrete Radio Sources, J. Astron. Hist. Heritage, 17, 283.CrossRefGoogle Scholar
Robinson, B. J. et al. 1964, An Intense Concentration of OH Near the Galactic Centre, Nature, 202, 989.Google Scholar
Rogers, A. A. E. and Morrison, P. 1972, Long-Baseline Interferometry, Science, 175, 218.Google Scholar
Rogers, A. E. E. et al. 1966, Interferometric Study of Cosmic Line Emission at OH Frequencies, Phys. Rev. Let., 17, 50.CrossRefGoogle Scholar
Roll, P. G. and Wilkinson, D. T. 1966, Cosmic Background Radiation at 3.2 cm: Support for Cosmic Black-Body Radiation, Phys. Rev. Let., 16, 405.Google Scholar
Rowson, B. 1962, High Resolution Observations with a Tracking Radio Interferometer, MNRAS, 125, 177.CrossRefGoogle Scholar
Rubin, V. C. 2000, One Hundred Years of Rotating Galaxies, PASP, 112, 747.Google Scholar
Rubin, V. C. and Ford, W. K. 1970, Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, ApJ, 159, 379.CrossRefGoogle Scholar
Rudy, D. J. et al. 1987, Mars: VLA Observations of the Northern Hemisphere and the North Polar Region at Wavelengths of 2 and 6 cm, Icarus, 71, 159.Google Scholar
Ryle, M. 1949, Evidence for the Stellar Origin of Cosmic Rays, Proc. Phys. Soc. A, 62, 491.Google Scholar
Ryle, M. 1950, Radio Astronomy, Rpts. Prog. Phys., 13, 184.Google Scholar
Ryle, M. 1955, Halley Lecture: Radio Stars and Their Cosmological Significance, Obs., 74, 137.Google Scholar
Ryle, M. 1956a, Radio Galaxies, SciAm, 195, 205.Google Scholar
Ryle, M. 1956b, Letter to the Editor, SciAm, 195, 10.Google Scholar
Ryle, M. 1957, The Spatial Distribution of Radio Stars. In IAU Symposium no. 4, Radio Astronomy, ed. Van de Hulst, H. C. (Cambridge: Cambridge University Press), 110.Google Scholar
Ryle, M. 1958, Bakerian Lecture: The Nature of Cosmic Radio Sources, Proc. R. Soc. London, 248, 289.Google Scholar
Ryle, M. 1959, The Nature of Radio Sources. In IAU Symposium no. 9, Paris Symposium on Radio Astronomy, ed. Bracewell, R. N. (Stanford: Stanford University Press), 523.Google Scholar
Ryle, M. 1961, Radio Astronomy and Cosmology, Nature, 190, 852.CrossRefGoogle Scholar
Ryle, M. 1962, The Radio Luminosity Function and the Number Flux-Density Relationship for the Discrete Sources. In IAU Symposium no. 15, Problems of Extra-Galactic Research, ed. McVittie, G. C. (New York: Macmillan), 326.Google Scholar
Ryle, M. 1963, Radio Astronomical Tests of Cosmological Models. In Radio Astronomy Today, ed. Palmer, H. P. and Large, M. I. (Manchester: Manchester University Press), 228.Google Scholar
Ryle, M. 1968, Counts of Radio Sources, ARAA, 6, 249.CrossRefGoogle Scholar
Ryle, M. and Clark, R. W. 1961, An Examination of the Steady-State Model in the Light of Some Recent Observations of Radio Sources, MNRAS, 122, 349.CrossRefGoogle Scholar
Ryle, M. and Neville, A. C. 1962, A Radio Survey of the North Polar Region with a 4.5 Minute of Arc Pencil-Beam System, MNRAS, 125, 39.Google Scholar
Ryle, M. and Scheuer, P. A. G. 1955, The Spatial Distribution and the Nature of Radio Stars, Proc. R. Soc. London, 230, 448.Google Scholar
Ryle, M. and Smith, F. G. 1948, A New Intense Source of Radio-Frequency Radiation in the Constellation of Cassiopeia, Nature, 162, 462.Google Scholar
Ryle, M. and Vonberg, D. D. 1946, Solar Radiation on 175 Mc./s, Nature, 158, 339.Google Scholar
Ryle, M., Smith, F. G., and Elsmore, B. 1950, A Preliminary Survey of the Radio Stars in the Northern Hemisphere, MNRAS, 110, 50.CrossRefGoogle Scholar
Ryle, M. et al. 1965, High-Resolution Observations of the Radio Sources in Cygnus and Cassiopeia, Nature, 205, 1259.Google Scholar
Sachs, R. K. and Wolfe, A. M. 1967, Perturbations of a Cosmological Model and Angular Variations of the Microwave Background, ApJ, 147, 73.Google Scholar
Sagan, C. 1960, The Surface Temperature of Venus, AJ, 65, 352.Google Scholar
Saha, M. N. 1946, Origin of Radio Waves from the Sun and the Stars, Nature, 158, 717.Google Scholar
Sandage, A. 1961, The Ability of the 200-Inch Telescope to Discriminate between Selected World Models, ApJ, 133, 355.Google Scholar
Sandage, A. 1965, The Existence of a Major New Constituent of the Universe: The Quasi-Stellar Galaxies, ApJ, 141, 1560.Google Scholar
Sandage, A. R. 1970, Cosmology: A Search for Two Numbers, Phys. Today, 23, 34.Google Scholar
Sandage, A. R. 1999, The First 50 Years at Palomar, ARAA, 37, 445.CrossRefGoogle Scholar
Sander, K. F. 1946, Measurement of Galactic Noise at 60 Mc/s, J. Inst. Elec. Eng., 93, 1487.Google Scholar
Sander, W. 1963, The Planet Mercury (London: Faber and Faber).Google Scholar
Scheuer, P. A. G. 1957, A Statistical Method for Analyzing Observations of Faint Radio Stars, Math. Proc. Cambridge Phil. Soc., 53, 764.CrossRefGoogle Scholar
Schiaperelli, G. 1890, Sulla Rotazione di Mercurio, Astron. Nach., 123, 241.Google Scholar
Schilizzi, R. D. et al. 2023, The Square Kilometre Array: A Mega-Science Project in the Making 1993–2012 (Cham: Springer).Google Scholar
Schisler, C. 2008, An Independent 1967 Discovery of Pulsars. In 40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More, ed. Bassa, C. G. et al. (New York: American Institute of Physics), 462.Google Scholar
Schmidt, M. 1963, 3C 273: A Star-Like Object with Large Redshift, Nature, 197, 1040.Google Scholar
Schmidt, M. 1968, Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources, ApJ, 151, 393.Google Scholar
Schmidt, M. 1970, Space Distribution and Luminosity Functions of Quasars, ApJ, 162, 371.Google Scholar
Schmidt, M. 1984, Discovery of Quasars. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I., and Sheets, B. (Green Bank: NRAO/AUI), 171.Google Scholar
Schmidt, M. 2011, The Discovery of Quasars, Proc. Am. Phil. Soc., 155, 142.Google Scholar
Schmidt, M. and Green, R. 1983, Quasar Evolution Derived from the Palomar Bright Quasar Survey and Other Complete Quasar Surveys, ApJ, 269, 352.Google Scholar
Schmidt, M., Schneider, D. P., and Gunn, J. E. 1995, Spectrscopic CCD Surveys for Quasars at Large Redshift. IV. Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission, AJ, 110, 68.CrossRefGoogle Scholar
Schott, E. 1947, Radiation from the Sun, Physikalische Blätter, 3, 159 (in German).Google Scholar
Schott, G. A. 1912, Electromagnetic Radiation and Mechanical Reactions Arising from It (Cambridge: Cambridge University Press).Google Scholar
Schwinger, J. 1949, On the Classical Radiation of Accelerated Electrons, Phys. Rev., 75, 1912.Google Scholar
Scott, P. F. and Ryle, M. 1961, The Number-Flux Density Relation for Radio Sources Away from the Galactic Plane, MNRAS, 122, 389.Google Scholar
Scott, P. F., Ryle, M., and Hewish, A. 1961, First Results of Radio Star Observations Using the Method of Aperture Synthesis, MNRAS, 122, 95.Google Scholar
Seaquist, E. R. 1967, Radio Emission from Stellar Coronas, ApJ, 148, 23.CrossRefGoogle Scholar
Seielstad, G. A., Sramek, R. A., and Weiler, K. W. 1970, Measurement of the Deflection of 9.602-GHz Radiation from 3C279 in the Solar Gravitational Field, Phys. Rev. Let., 24, 1373.Google Scholar
Seling, T. V. 1970, Observations of Saturn at λ3.75 cm, AJ, 75, 67.Google Scholar
Seyfert, C. 1943, Nuclear Emission in Spiral Nebulae, ApJ, 97, 28.Google Scholar
Shain, C. A. 1955, Location on Jupiter of a Source of Radio Noise, Nature, 176, 836.Google Scholar
Shain, C. A. 1956, 18.3 Mc/s Radiation from Jupiter, Austrl. J. Phys. 9, 61.Google Scholar
Shakeshaft, J. et al. 1955, A Survey of Radio Sources between Declinations ‒38° and +83°, Mem. RAS, 67, 106.Google Scholar
Shapiro, I. I. 1964, Fourth Test of General Relativity, Phys. Rev. Let., 13, 789.Google Scholar
Shapiro, I. I. 1968, Fourth Test of General Relativity: Preliminary Results, Phys. Rev. Let., 20, 1265.CrossRefGoogle Scholar
Shapiro, I. I. 1971, Fourth Test of General Relativity: New Radar Result, Phys. Rev. Let., 26, 1132.Google Scholar
Shapiro, I. I. et al. 2004, Measurement of the Solar Gravitational Deflection of Radio Waves Using Geodetic Very-Long-Baseline Interferometry Data, 1979–1999, Phys. Rev. Let., 92, 11101.Google Scholar
Shaver, P. A. and Pierre, M. 1989, Large-Scale Anisotropy in the Sky Distribution of Extragalactic Radio Sources, A&A, 220, 35.Google Scholar
Shaver, P. A. et al. 1996, Decrease in the Space Density of Quasars at High Redshift, Nature, 384, 439.Google Scholar
Shimmins, A. J., Bolton, J. G., and Wall, J. V. 1968, Counts of Radio Sources at 2,700 MHz, Nature, 217, 818.Google Scholar
Shimmins, A. J., Clarke, M. E., and Ekers, R. D. 1966, Accurate Positions of 644 Radio Sources, Austrl. J. Phys., 19, 649.Google Scholar
Shklovsky, I. S. 1946, On the Radiation of Radio Waves by the Galaxy and the Upper Layers of the Solar Atmosphere, Astron. Zh., 23, 333.Google Scholar
Shklovsky, I. S. 1949, Monochromatic Radio Emission from the Galaxy and the Possibility of Its Observation, Astron. Zh., 26, 10. English translation in W. T. Sullivan, III 1982, Classics in Radio Astronomy (Cambridge: Cambridge University Press), 318.Google Scholar
Shklovsky, I. S. 1952, On the Nature of Radio Emission from the Galaxy, Astron. Zh., 29, 418.Google Scholar
Shklovsky, I. S. 1953a, On the Nature of the Radiation from the Crab Nebula, Akad. Nauk Doklady, 90, 983 (in Russian). English translation 1979 in A Source Book in Astronomy and Astrophysics, 1900–1975, ed. K. R. Lang and O. Gingerich (Cambridge, MA: Harvard University Press), 490.Google Scholar
Shklovsky, I. S. 1953b, Possibility of Observing Monochromatic Radio Emission from Interstellar Molecules, Dokl. Akad. Nauk SSSR, 92, 25 (in Russian).Google Scholar
Shklovsky, I. S. 1960a, Secular Variation of the Flux and Intensity of Radio Emission from Discrete Sources, Sov. Astron., 4, 243; English translation of Astron. Zh., 37, 256.Google Scholar
Shklovsky, I. S. 1960b, Cosmic Radio Waves, English ed., translated by R. B. Rodman and C. M. Varsavsky (Cambridge: Harvard University Press).Google Scholar
Shklovsky, I. S. 1962, Radio Galaxies. Sov. Phys. Usp., 5, 365; Russian original: Uspekhi Fizicheskikh Nauk, 77, 60.Google Scholar
Shklovsky, I. S. 1965a, Possible Secular Variation of the Flux and Spectrum of Radio Emissions of Source 1934–63, Nature, 206, 176.Google Scholar
Shklovsky, I. S. 1965b, A Possible Secular Variation of the Flux and Spectrum of the Radio Source 1934–63, Sov. Astron., 9, 22; Russian original: Astron. Zh., 42, 30.Google Scholar
Shklovsky, I. S. 1966, Astron. Circ. No. 364, USSR Acad. Sci.Google Scholar
Shklovsky, I. S. 1982, On the History of the Development of Radio Astronomy in the USSR. In News on Life, Science, and Technology, No. 11 (Moscow: Izd. Znanie), 82 (in Russian).Google Scholar
Shmaonov, T. 1957, Prbori I Tekhnika Experimenta, 1, 84 (in Russian).Google Scholar
Shobbrook, R. R. and Robinson, B. J. 1967, 21 cm Observations of NGC 300, Austrl. J. Phys., 20, 131.Google Scholar
Sholomitsky, G. B. 1965a, Variability of Radio Source CTA-102, IAU Info. Bull. Var. Stars, No. 83.Google Scholar
Sholomitsky, G. B. 1965b, Fluctuations in the 32.5-cm Flux of CTA 102, Sov. Astron., 9, 516; Russian original: Astron. Zh., 42, 673.Google Scholar
Sholomitsky, G. B. 1966, Flux Density Variations of CTA 102 at the Frequency 920 Mc/s, Astron. Circ. (Astronomical Council, USSR Academy of Sciences), No. 359 (in Russian).Google Scholar
Silk, J. 1967, Fluctuations in the Primordial Fireball, Nature, 215, 1155.Google Scholar
Singal, J. et al. 2018, The Radio Synchrotron Background: Conference Summary and Report, PASP, 130, 036001.Google Scholar
Slee, B. 1994, Memories of the Dover Heights Field Station, Austrl. J. Phys., 47, 517.Google Scholar
Slipher, V. M. 1914, The Detection of Nebular Rotation, Lowell Obs. Bull., 2, 66.Google Scholar
Slysh, V. I. 1963, Angular Size of Radio Stars, Nature, 199, 682.Google Scholar
Smith, H. and Hoffleit, D. 1963, Light Variations in the Superluminous Radio Galaxy 3C273, Nature, 198, 630.Google Scholar
Smith, W. B. 1963, Radar Observations of Venus, 1961 and 1959, AJ, 68, 158.Google Scholar
Smolders, A. B. and van Haarlem, M. P. 1999, Perspectives on Radio Astronomy: Technologies for Large Antenna Arrays (Dwingeloo: ASTRON).Google Scholar
Smoot, G. F. 2006, Nobel Lecture: Cosmic Microwave Background Radiation Anisotropies: Their Discovery and Utilization, The Nobel Prize in Physics. NobelPrize.org, available at: www.nobelprize.org/prizes/physics/2006/summary/ (last accessed 1 December 2022).Google Scholar
Smoot, G. F. and Davidson, K. 1993, Wrinkles in Time (New York: Avon Books).Google Scholar
Smoot, G. F., Gorenstein, M. V., and Muller, R. A. 1977, Detection of Anisotropy in the Cosmic Blackbody Radiation, Phys. Rev. Let., 39, 898.Google Scholar
Snyder, L. E. and Buhl, D. 1969a, On the Possibility of Detecting Interstellar Water Vapor Using a Radio Telescope, BAAS, 1S, 204.Google Scholar
Snyder, L. E. and Buhl, D. 1969b, Water-Vapor Clouds in the Interstellar Medium, ApJ, 155, L65.CrossRefGoogle Scholar
Snyder, L. E. and Buhl, D. 1974, Detection of Possible Maser Emission Near 3.48 Millimeters from an Unidentified Molecular Species in Orion, ApJ, 189, L31.Google Scholar
Snyder, L. E. et al. 1969, Microwave Detection of Interstellar Formaldehyde, Phys. Rev. Let., 22, 679.Google Scholar
Sofue, Y. and Rubin, V. 2001, Rotation Curves of Spiral Galaxies, ARAA, 39, 137.Google Scholar
Sorochenko, R. L. and Borodzich, E. V. 1966, Detection of Radio Emission from the Excited Hydrogen Line in in NGC 6618 (Omega Nebula), Sov. Phys. Dokl., 10, 588; Russian original: Dokl. Akad. Nauk SSSR, 163, 603, 1965.Google Scholar
Southworth, G. C. 1945, Microwave Radiation from the Sun, J. Franklin Institute, 239, 285.Google Scholar
Southworth, G. C. 1956, Early History of Radio Astronomy, Scientific Monthly, 82, 55.Google Scholar
Southworth, G. C. 1962, Forty Years of Radio Research (New York: Gordon and Breach).Google Scholar
Spitler, L. G. et al. 2014, Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey, ApJ, 101, 1.Google Scholar
Spitler, L. G. et al. 2016, A Repeating Fast Radio Burst, Nature, 531, 202.Google Scholar
Spitzer, L. and Baade, W. 1951, Stellar Populations and Collisions of Galaxies, ApJ, 113, 413.Google Scholar
Sramek, R. A. 1970, A Measurement of the Gravitational Deflection of Microwave Radiation Near the Sun, 1970 October, ApJ, 167, L5.Google Scholar
Staelin, D. H. and Reifenstein, III, E. C. 1968, Pulsating Radio Sources Near the Crab Nebula, Science, 162, 1481.Google Scholar
Staff of the Millstone Radar Observatory 1961, The Scale of the Solar System, Nature, 190, 592.Google Scholar
Stanley, G. J. 1994, Recollections of John G. Bolton at Dover Heights and Caltech, Austrl. J. Phys., 47, 507.Google Scholar
Stanley, G. J. and Slee, O. B. 1950, Galactic Radiation at Radio Frequencies II. The Discrete Sources, Austrl. J. Sci. Res. A, 3, 234.Google Scholar
Stebbins, J. and Whitford, A. 1947, Six-Color Photometery of Stars. V. Infrared Radiation from the Region of the Galactic Center, ApJ, 106, 235.Google Scholar
Stephan, K. D. 1990, How Ewen and Purcell Discovered the 21-cm Interstellar Hydrogen Line, IEEE Trans. Ant. Prop., 41, 7.Google Scholar
Stephenson, C. G. and Sanduleak, N. 1977, New H-Alpha Emission Stars in the Milky Way, ApJS, 33, 459.Google Scholar
Stratton, F. J. M. 1946, Untitled Letter, Nature, 157, 48.CrossRefGoogle Scholar
Struve, O. 1949, Progress in Radio Astronomy, Sky. Tel., 9, 55.Google Scholar
Sullivan, W. 1964, Mars Gives a Hint of Radiation Belt, New York Times, 29 August 1964, p. 46.Google Scholar
Sullivan, W. T. III. 1978, A New Look at Karl Jansky’s Original Data, Sky Tel., 56, 101.Google Scholar
Sullivan, W. T. III. 1982, Classics in Radio Astronomy (Dordrecht: Reidel).Google Scholar
Sullivan, W. T. III. (ed.) 1984a, The Early Years of Radio Astronomy (Cambridge: Cambridge University Press).Google Scholar
Sullivan, W. T. III. 1984b, Karl Jansky and the Beginnings of Radio Astronomy. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 39.Google Scholar
Sullivan, W. T. III. 2009, Cosmic Noise: A History of Early Radio Astronomy (Cambridge: Cambridge University Press).Google Scholar
Swarup, G. 1981, Proposal for an International Institute for Space Science and Electronics and for a Giant Equatorial Radio Telescope, Bull. Astron. Soc. India, 9, 269.Google Scholar
Tanaka, H. 1984, Development of Solar Radio Astronomy in Japan Up Until 1960. In The Early Years of Radio Astronomy, ed. Sullivan, W. T. III (Cambridge: Cambridge University Press), 335.Google Scholar
Tarter, J. 2001, The Search for Extraterrestrial Intelligence, ARAA, 39, 511.Google Scholar
Taylor, A. R. and Braun, R. (eds.) 1999, Science with the Square Kilometre Array: A Next Generation World Radio Observatory (Dwingeloo: ASTRON).Google Scholar
Taylor, J. H. 1974, A Sensitive Method for Detecting Dispersed Radio Emission, A&A Suppl., 15, 367.Google Scholar
Taylor, J. H. 1994a, Binary Pulsars and Relativistic Gravity, Rev. Mod. Phys., 66, 711.Google Scholar
Taylor, J. H. 1994b, Binary Pulsars and Relativistic Gravity, BAAS, 26, 971.Google Scholar
Taylor, J. H. and Hulse, R. A. 1974, Binary Pulsar, IAU Circular, No. 2704.Google Scholar
Taylor, J. H. and McCulloch, P. M. 1980, Evidence for the Existence of Gravitational Radiation from Measurements of the Binary Pulsar PR 1913+16, Ann. NY Acad. Sci., 336, 442.Google Scholar
Taylor, J. H. and Weisberg, J.M. 1982, A New Test of General Relativity; Gravitational Radiation and the Binary Pulsar PSR 1913+16, ApJ, 253, 908.Google Scholar
Taylor, J. H., Fowler, L. S., and McCulloch, P. M. 1979, Measurements of the General Relativistic Effects in the Binary Pulsar PSR1913+16, Nature, 277, 437.CrossRefGoogle Scholar
Terrell, J. 1964, Quasi-Stellar Diameters and Intensity Fluctuations, Science, 145, 918.Google Scholar
Thaddeus, P. 1972, The Short-Wavelength Spectrum of the Microwave Background, ARAA, 10, 305.Google Scholar
Thaddeus, P. and Clauser, J. P. 1966, Cosmic Microwave Radiation at 2.63 mm from Observations of Interstellar CN, Phys. Rev. Let., 16, 819.Google Scholar
Thompson, A. R. and Frater, R. H. 2010, Ronald Bracewell: An Appreciation, J. Astron. Hist. Heritage, 13, 172.Google Scholar
Thompson, A. R., Moran, J. M., and Swenson, G. W. 2017, Interferometry and Synthesis in Radio Astronomy (Cham: Springer).Google Scholar
Thornton, D. et al. 2013, A Population of Fast Radio Bursts at Cosmological Distances, Science, 341, 53.Google Scholar
Townes, C. H. 1946, Interpretation of Cosmic Noise: Radio Waves from Extraterrestrial Sources, Phys. Rev., 105, 235.Google Scholar
Townes, C. H. 1957, Microwave and Radio-Frequency Resonance Lines of Interest to Radio Astronomy. In IAU Symposium No. 4, Radio Astronomy, ed. van de Hulst, H. C. (Cambridge: Cambridge University Press), 92.Google Scholar
Townes, C. H. 1983, At What Wavelength Should We Search for Signals from Extraterrestrial Intelligence?, PNAS, 80, 1147.Google Scholar
Townes, C. H. 1999, How the Laser Happened (New York: Oxford University Press).Google Scholar
Trafton, L. M. 1964, The Thermal Opacity in the Major Planets, ApJ, 140, 1340.Google Scholar
Trimble, V. and Zaich, P. 2006, Productivity and Impact of Radio Telescopes, PASP, 118, 933.Google Scholar
Tyson, J. A. and Giffard, R. P. 1978, Gravitational-Wave Astronomy, ARAA, 16, 521.Google Scholar
Van Allen, J. A. 1966, Spatial Distribution and Time Decay of the Intensities of Geomagnetically Trapped Electrons from the High Altitude Nuclear Burst of July 1962. In Radiation Trapped in the Earth’s Magnetic Field, ed. McCormac, B. M. (New York: Gordon and Breach), 575.Google Scholar
Van Allen, J. A. et al. 1958, Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma, Jet Propulsion, 28, 588.Google Scholar
van de Hulst, H. C. 1945, The Origin of Radio Waves from Space, Nederlandsch Tijdscrift voor Natuurkunde, 11, 210 (in Dutch). English translation 1982 in Classics in Radio Astronomy, ed. W. T. Sullivan III (Dordrecht: Reidel).Google Scholar
van de Hulst, H. C. 1957, Studies of the 21-cm Line and their Interpretation. In IAU Symposium No. 4, Radio Astronomy, ed. van de Hulst, H. C. (Cambridge: Cambridge University Press), 3.Google Scholar
van de Hulst, H. C., Muller, C. A., and Oort, J. H. 1954, The Spiral Structure of the Outer Part of the Galactic System Derived from the Hydrogen Emission at 21 cm Wavelength, BAN, 12, 117.Google Scholar
van Woerden, H. and Strom, R. 2006, The Beginnings of Radio Astronomy in the Netherlands, J. Astron. Hist. Heritage, 9, 3.Google Scholar
Verde, L., Treu, T., and Riess, A. G. 2019, Tensions between the Early and Late Universe, Nat. Astron., 3, 891.Google Scholar
Verschuur, G. L. 1969, Measurements of Magnetic Fields in Interstellar Clouds of Neutral Hydrogen, ApJ, 156, 861.Google Scholar
Vessot, R. F. C. et al. 1980, Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Let., 45, 2081.CrossRefGoogle Scholar
Victor, W. K. and Stevens, R. 1961, Exploration of Venus by Radar, Science, 134, 46.Google Scholar
Vladimirsky, V. V. 1948, Influence of the Terrestrial Magnetic Field on Large Auger Showers, J. Exp. Theor. Phys., 18, 393 (in Russian).Google Scholar
von Hoerner, S. 1964, Requirements for Cosmological Studies in Radio Astronomy, IEEE Trans. Mil. Elec., 8, 282.Google Scholar
Von Klüber, H. 1960, The Determination of Einstein’s Light-Deflection in the Gravitational Field of the Sun, Vistas Astron., 3, 47.Google Scholar
Wade, C. M. 1984, The Discovery of Radio Novae. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 291.Google Scholar
Wade, C. M. and Hjellming, R. 1970, Detection of Radio Emission from Antares, ApJ, 163, 105.Google Scholar
Walker, R. G. and Sagan, C. 1960, The Ionospheric Model of the Venus Microwave Emission: An Obituary, Icarus, 5, 105.Google Scholar
Walsh, D. 1989, 0957+561: The Unpublished Story. In Lecture Notes in Physics 330, Gravitational Lenses, ed. Moran, J. M., Hewitt, J. M., and Lo, K. Y. (Berlin: Springer), 11.Google Scholar
Walsh, D., Carswell, R. F., and Weymann, R. J. 1979, 0957+561 A, B: Twin Quasistellar Objects or Gravitational Lens, Nature, 279, 381.Google Scholar
Waluska, E. R. 2007, Quasars and the Caltech-Carnegie Connection, J. Astron. Hist. Heritage, 10, 79.Google Scholar
Weaver, H. et al. 1965, Observations of a Strong Unidentified Microwave Line and of Emission from the OH Molecule, Nature, 208, 29.Google Scholar
Webb, H. D. 1946, Project Diana, Sky Tel., 5, 3.Google Scholar
Webb, S. 2015, If the Universe Is Teeming with Aliens … Where Is Everybody? (Cham: Springer).CrossRefGoogle Scholar
Weber, J. 1960, Detection and Generation of Gravitational Waves, Phys. Rev., 117, 306.Google Scholar
Weber, J. 1968, Gravitational Waves, Phys. Today, 21, 34.CrossRefGoogle Scholar
Weber, J. 1969, Evidence for Discovery of Gravitational Radiation, Phys. Rev. Let., 22, 1320.Google Scholar
Weber, J. 1970, Gravitational Radiation Experiments, Phys. Rev. Let., 24, 276.Google Scholar
Weiler, K. W. et al. 1974, A Measurement of Solar Gravitational Microwave Deflection with the Westerbork Synthesis Telescope, A&A, 30, 241.Google Scholar
Weiler, K. W. et al. 1975, Dual-Frequency Measurement of the Solar Gravitational Microwave Deflection, Phys. Rev., 35, 134.Google Scholar
Weinreb, S. 1961, Digital Radiometer, Proc. IRE, 49, 1099.Google Scholar
Weinreb, S. et al. 1963, Radio Observations of OH in the Interstellar Medium, Nature, 200, 829.CrossRefGoogle Scholar
Weinreb, S. et al. 1965, Observations of Polarized OH Emission, Nature, 208, 440.Google Scholar
Weisberg, J. M. and Huang, Y. 2016, Relativistic Measurements from Timing the Binary Pulsar PSR 1913+16, ApJ, 829, 55.Google Scholar
Weiss, H. G. 1965, The Haystack Microwave Research Facility, IEEE Spectrum, 2, 50.CrossRefGoogle Scholar
Westerhout, G. and Oort, J. H. 1951, A Comparison of the Intensity Distribution of the Radio Frequency Radiation with a Model of the Galactic System, BAN, 11, 323.Google Scholar
Whipple, F. L. and Greenstein, J. L. 1937, On the Origin of Interstellar Radio Disturbances, PNAS, 23, 177.Google Scholar
Whiteoak, J. 1994, Early Polarization Research at Parkes. In Parkes: Thirty Years of Radio Astronomy, ed. Goddard, D. E. and Milne, D. K. (Melbourne: CSIRO Publishing), 75.Google Scholar
Whitney, A. R. et al. 1971, Quasars Revisited: Rapid Time Variations Observed via Very-Long-Baseline Interferometry, Science, 173, 225.Google Scholar
Wielebinski, R. 2012, A History of Radio Astronomy Polarisation Measurements, J. Astron. Hist. Heritage, 15, 76.Google Scholar
Wild, J. P. 1950, Observations of the Spectrum of High-Intensity Solar Radiation at Metre-Wavelengths. II. Outbursts, Austrl. J. Sci. Res. A, 3, 399.Google Scholar
Wild, J. P. 1952, The Radio-Frequency Line Spectrum of Atomic Hydrogen and Its Applications in Astronomy, ApJ, 115, 206.Google Scholar
Wild, J. P. 1967, The Radioheliograph and the Radio Astronomy Programme of the Culgoora Observatory, PASA, 1, 38.Google Scholar
Wild, J. P. and McCready, L. L. 1950, Observations of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. I. The Apparatus and Spectral Types of Solar Burst Observed, Austrl. J. Sci. Res. A, 3, 387.Google Scholar
Wild, J. P., Smerd, S. F. and Weiss, A. A. 1963, Solar Bursts, ARAA, 1, 231.Google Scholar
Wildt, R. 1940, Note on the Surface Temperature of Venus, AJ, 91, 266.Google Scholar
Wilkinson, D. T. 2009, Measuring the Cosmic Microwave Background Radiation. In Finding the Big Bang, ed. Peebles, P. J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 200.Google Scholar
Wilkinson, D. T. and Peebles, P. J. E. 1984, Discovery of the 3 K Radiation. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 175.Google Scholar
Wilkinson, P. N. et al. 2004, The Exploration of the Unknown, New Astron. Rev., 48, 1551.Google Scholar
Will, C. M. 1983, Testing General Relativity: 20 Years of Progress, Sky Tel., 66, 294.Google Scholar
Will, C. M. 2015, The 1919 Measurement of the Deflection of Light, Quantum Gravity, 32, 124001.Google Scholar
Wilsing, J. and Scheiner, J. 1896, On an Attempt to Detect Electrodynamic Solar Radiation and on the Change in Contact Resistance When Illuminating Two Conductors by Electric Radiation, Annalen der Physik und Chemie, 59, 782 (in German). English translation 1982, in Classics in Radio Astronomy, ed. W. T. Sullivan III (Dordrecht: Reidel), 147.Google Scholar
Wilson, R. W. 1980, History of the Discovery of the Cosmic Microwave Background, Physica Scripta, 21, 599.Google Scholar
Wilson, R. W. 1984, Discovery of the Cosmic Microwave Background. In Serendipitous Discoveries in Radio Astronomy, ed. Kellermann, K. I. and Sheets, B. (Green Bank: NRAO/AUI), 185.Google Scholar
Wilson, R. W. 1992, The Cosmic Microwave Background Radiation. In Nobel Lectures in Physics 1971–1980, ed. Lundqvist, S. (Singapore: World Scientific), 463.Google Scholar
Wilson, R. W. 2009, Two Astronomical Discoveries. In Finding the Big Bang, ed. Peebles, P. J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 157.Google Scholar
Wilson, R. W., Jefferts, K. B., and Penzias, A. A. 1970, Carbon Monoxide in the Orion Nebula, ApJ, 161, L43.Google Scholar
Winn, J. N. and Fabrycky, D. C. 2015. The Occurrence and Architecture of Exoplanetary Systems, ARAA, 53, 409.Google Scholar
Wolfe, A. M. and Burbidge, G. R. 1969, Discrete Source Models to Explain the Microwave Background Radiation, ApJ, 156, 345.Google Scholar
Wolszczan, A. 1994, Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12, Science, 264, 538.Google Scholar
Wolszczan, A. and Frail, D. A. 1992, A Planetary System around the Millisecond Pulsar PSR 1257+12, Nature, 355, 145.Google Scholar
Woltjer, L. 1968, The Nature of Pulsating Radio Sources, ApJ, 152, 179.CrossRefGoogle Scholar
Woolf, N. J. 2009, Conversations with Dicke. In Finding the Big Bang, ed. Peebles, P. J. E., Page, L. A., and Partridge, R. B. (Cambridge: Cambridge University Press), 74.Google Scholar
Yahil, A. 1972, Observed Anisotropy in the Distribution of Radio Sources, ApJ, 178, 45.Google Scholar
Yodh, G. B. and Wallis, R. F. 2001, Joseph Weber, Obituary, Phys. Today, 54, 74.Google Scholar
Zhu, W. and Dong, S. 2021, Exoplanet Statistics and Theoretical Implications, ARAA, 59, 291.CrossRefGoogle Scholar
Zuckerman, B., Lilley, A. E., and Penfield, H., 1965, OH Emission in the Direction of Radio Source W49, Nature, 208, 441.Google Scholar
Zwicky, F. 1933, Die Rotverschiebung von Extragalaktischen Nebeln, Helvetica Physica Acta, 6, 110.Google Scholar
Zwicky, F. 1937a, Nebulae as Gravitational Lenses, Phys. Rev., 51, 290.Google Scholar
Zwicky, F. 1937b, On the Probability of Detecting Nebulae Which Act as Gravitational Lenses, Phys. Rev., 51, 679.CrossRefGoogle Scholar
Zwicky, F. 1937c, On the Masses of Nebulae and of Clusters of Nebulae, ApJ, 86, 217.Google Scholar
Zwicky, F. 1939, On the Theory and Observation of Highly Collapsed Stars, Phys. Rev., 55, 726.Google Scholar
Zwicky, F. 1963, New Types of Objects, AJ, 68, 301.Google Scholar
Zwicky, F. 1965, Blue Compact Galaxies, ApJ, 142, 1293.Google Scholar
Zwicky, F. 1969, Discovery, Invention, Research (New York: Macmillan).Google Scholar
Zwicky, F. and Zwicky, M. 1971, Catalogue of Selected Compact Galaxies and of Post-Eruptive Galaxies (Guemligen: Zwicky), xix.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Kenneth I. Kellermann, National Radio Astronomy Observatory, Charlottesville, Virginia, Ellen N. Bouton, National Radio Astronomy Observatory, Charlottesville, Virginia
  • Book: Star Noise: Discovering the Radio Universe
  • Online publication: 04 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009023443.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Kenneth I. Kellermann, National Radio Astronomy Observatory, Charlottesville, Virginia, Ellen N. Bouton, National Radio Astronomy Observatory, Charlottesville, Virginia
  • Book: Star Noise: Discovering the Radio Universe
  • Online publication: 04 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009023443.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Kenneth I. Kellermann, National Radio Astronomy Observatory, Charlottesville, Virginia, Ellen N. Bouton, National Radio Astronomy Observatory, Charlottesville, Virginia
  • Book: Star Noise: Discovering the Radio Universe
  • Online publication: 04 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009023443.019
Available formats
×