Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T19:26:03.234Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 August 2021

Victor H. Moll
Affiliation:
Tulane University, Louisiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N., Untersuchungen über die Reihe: , J. reine angew. Math., 1 (1826), pp. 311339.Google Scholar
Abel, N., Recherches sur les fonctions elliptiques, J. reine angew. Math., 2 (1827), pp. 101181.Google Scholar
Abel, N., Ueber einige bestimmte Integrale, J. reine angew. Math., 2 (1827), pp. 2230.Google Scholar
Abel, N., Recherches sur les fonctions elliptiques. (Suite du mémoire Nr. 12. tom II.cah. 2 de ce journal), J. reine angew. Math., 3 (1828), pp. 160190.Google Scholar
Abel, N., Oeuvres Completes, Grondhal and son, Christiania, 1881.Google Scholar
Abel, N., Solution de quelques problèmes à l’aide d’intégrales définies. In Oeuvres completes de Niels Henkik Abel, vol. 1, Christiana Imprimerie De Grondhal & Son, 1881.Google Scholar
Abikoff, W., The uniformization theorem, Amer. Math. Monthly, 88 (1981), pp. 574592.CrossRefGoogle Scholar
Adams, J. C., On the Motion of the Moon’s Node in the case when the Orbits of the Sun and Moon are supposed to have no Eccentricities, and when their mutual Inclination is supposed to be indefinitely small, Monthly Notices R. A. S., 38 (1877), pp. 4353.Google Scholar
Adams, J. C., On the expression of the product of any two Legendre’s coefficients by means of a series of Legendre’s coefficients, Proc. Roy. Soc. London, 27 (1878), pp. 6371.Google Scholar
Adams, J. C., On the value of Euler’s constant, Proc. Roy. Soc. London, 27 (1878), pp. 8894.Google Scholar
Adams, J. C., Table of the first sixty-two numbers of Bernoulli, J. reine angew. Math., 85 (1878), pp. 269272.Google Scholar
Ahlfors, L. V., Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill Book Company, first ed., 1973.Google Scholar
Ahlfors, L. V., Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, McGraw-Hill Book Company, third ed., 1979.Google Scholar
Airey, J. R.., Tables of Neumann functions Gn(x) and Yn(x), Phil. Mag. Series 6, 21 (1911), pp. 658663.Google Scholar
Aldis, W. S., Tables for the solution of the equation , Proc. Royal Soc., 64 (1899), pp. 202223.Google Scholar
Aldis, W. S., On the numerical computation of the functions G0(x), G1(x), and , Proc. Royal Soc., 66 (1900), pp. 3243.Google Scholar
Amigues, E., Application du calcul des résidues, Nouv. Ann. Math., 12 (1893), pp. 142148.Google Scholar
Anding, E., Sechsstellige Tafeln der Bessel’schen Funktionen imaginären Argumentes, Leipzig, 1911.Google Scholar
Andrews, G. E., A simple proof of Jacobi’s triple product identity, Proc. Amer. Math. Soc., 16 (1965), pp. 333334.Google Scholar
Andrews, G. E., Askey, R., and Roy, R., Special Functions, vol. 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1999.Google Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part I, Springer, New York, 2005.Google Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part II, Springer, New York, 2009.Google Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part III, Springer, New York, 2012.Google Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part IV, Springer, New York, 2013.CrossRefGoogle Scholar
Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part V, Springer, New York, 2018.Google Scholar
Antimorov, M. Y., Kolyshkin, A. A., and Vaillancourt, R., Complex Variables, Academic Press, New York, 1998.Google Scholar
Apéry, R., Irrationalite de ζ(2) et ζ(3), Astérisque, 61 (1979), pp. 1113. 625Google Scholar
Appell, P., Évaluation d’une intégrale définie, C. R. Acad. Sci. Paris, 87 (1878), pp. 874876.Google Scholar
Appell, P., Sur une classe d’èquations différentielles linéaires, C. R. Acad. Sci. Paris, 91 (1878), pp. 684717.Google Scholar
Appell, P., Sur des fonctions de deux variables à trois ou quatre paires de périods, C. R. Acad. Sci. Paris, 90 (1880), pp. 174176.Google Scholar
Appell, P., Sur la transformation des équations differentielles linéaires, C. R. Acad. Sci. Paris, 90 (1880), pp. 211214.Google Scholar
Appell, P., Quelques remarques sur la théorie des potentiels multiformes, Math. Ann., 30 (1887), pp. 155156.CrossRefGoogle Scholar
Argand, J. R., Essai sur une Manière de Représenter des Quantités Imaginaires dans les Constructions Géométriques, Duminil-Lesueur, Paris, 1806.Google Scholar
Arscott, F. M., Periodic Differential Equations. An Introduction to Mathieu, Lamé and Allied Functions, The MacMillan Company, 1964.Google Scholar
Bachmann, P., Niedere Zahlentheorie, Leipzig–Berlin, 1902.Google Scholar
Baik, J., Deift, P., and Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc., 12 (1999), pp. 11191179.Google Scholar
Baik, J., Deift, P., and Suidan, T., Combinatorics and Random Matrix Theory, vol. 172 of Graduate Studies in Mathematics, Amer. Math. Soc., 1st ed., 2016.Google Scholar
Bailey, D. H., Borwein, D., and Borwein, J. M., On Eulerian log-gamma integrals and Tornheim–Witten zeta functions, The Ramanujan Journal, 36 (2015), pp. 4368.Google Scholar
Baker, H. F., Abelian Functions, Cambridge University Press, 1897. Reissued 1995.Google Scholar
Baker, H. F., Abel’s Theorem and the Allied Theory, including the Theory of the Theta Functions, Cambridge University Press, 1897.Google Scholar
Baker, H. F., On functions of several variables, Proc. Royal Soc. London, 2 (1904), pp. 1436.Google Scholar
Barnes, E. W., The theory of the G-function, Quart. J. Math., 31 (1899), pp. 264314.Google Scholar
Barnes, E. W., The genesis of the double gamma function, Proc. London Math. Soc., 31 (1900), pp. 358381.Google Scholar
Barnes, E. W., The theory of the gamma function, Mess. Math., 29 (1900), pp. 64128.Google Scholar
Barnes, E. W., The theory of the double gamma function, Philos. Trans. Roy. Soc. A, 196 (1901), pp. 265388.Google Scholar
Barnes, E. W., On the theory of the multiple gamma function, Trans. Camb. Philos. Soc., 19 (1904), pp. 374425.Google Scholar
Barnes, E. W., The MacLaurin sum-formula, Proc. London Math. Soc., 2(3) (1905), pp. 253272.Google Scholar
Barnes, E. W., A new development of the theory of the hypergeometric functions, Proc. London Math. Soc., 6 (1908), pp. 141177.Google Scholar
Barnes, E. W., On functions defined by simple types of hypergeometric series, Trans. Camb. Phil. Soc., 206 (1908), pp. 253279.Google Scholar
Barnes, E. W., A transformation of generalized hypergeometric series, Quart. J. Math., 41 (1910), pp. 136140.Google Scholar
Basset, A. B., An Elementary Treatise on Hydrodynamics and Sound, Cambridge Deighton Bell and Co., London, George Bell and Sons, 1st ed., 1888.Google Scholar
Basset, A. B., On the Potentials of the surfaces formed by the revolution of Limacons and Cardiods about their axes, Proc. Camb. Phil. Soc., 6 (1889), pp. 218.Google Scholar
Bateman, H., The solution of partial differential equations by means of definite integrals, Proc. London Math. Soc., 1 (1904), pp. 451458.Google Scholar
Bateman, H., The conformal transformations of a space of four dimensions and their applications to geometrical optics, Proc. London Math. Soc., 7 (1909), pp. 7089.Google Scholar
Bateman, H., The solution of linear differential equations by means of definite integrals, Trans. Camb. Phil. Soc., 21 (1912), pp. 171196.Google Scholar
Bateman, H., An extension of Lagrange’s expansion, Trans. Amer. Math. Soc., 28 (1926), pp. 346356.Google Scholar
Bauer, G., Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen, J. reine angew. Math., 56 (1859), pp. 101121.Google Scholar
Bauer, G., Von der Coefficienten der Reihen von Kugelfunctionen einen Variablen, J. reine angew. Math., 56 (1859), pp. 101121.Google Scholar
Beals, R. and Wong, R., Special Functions. A Graduate Text, vol. 126 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2010.Google Scholar
Berndt, B., Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.Google Scholar
Berndt, B., Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.Google Scholar
Berndt, B., Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.Google Scholar
Berndt, B., Ramanujan’s Notebooks, Part IV, Springer-Verlag, New York, 1994.Google Scholar
Berndt, B., Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.Google Scholar
Bernoulli, D., Theoremata de oscillationibus corporum filo flexili connexorum et catenao verticaliter suspensae, Commentarii Academiae Scientiarum Petropolitanae, 6 (1738), pp. 108122.Google Scholar
Bernoulli, J., Ars Conjectandi, Impression Anastaltique Culture er Civilisation [Reprinted in 1968], 1713.Google Scholar
Bertrand, J., Règles sur la convergence des séries, Journal de Mathématiques Pures et Appliquées, 7 (1842), pp. 3554.Google Scholar
Bertrand, J., Traitè de Calcul Différentielle et de calcul intégral, Gauthier-Villars, Paris, 1864.Google Scholar
Bessel, F. W., Einige Resultate aus Bradleys Beobachtungen, Kónigsberger Archiv für Naturwissenschaft, 1 (1812), pp. 369405.Google Scholar
Bessel, F. W., Untersuchung des Theils der planetarischen Störungen welcher aus der Bewegung der Sonne entsteht, Abh. Ber. Acad. Wiss., (1824), pp. 152.Google Scholar
Besso, D., Sull’ integral seno e l’integral coseno, Giornale di matematiche, 6 (1868), pp. 31343.Google Scholar
Beukers, F., A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., 11 (1979), pp. 268272.CrossRefGoogle Scholar
Binet, J., Sur les intégrales définies eulériennes et sur leur application à la théorie des suites ainsi q’‘a l’évaluation des fonctions des grandes nombres, Journal de l’Ecole Polytechnique, Paris, 16 (1839), pp. 123343.Google Scholar
Björling, E. G., Quid in Analysis mathematica valeant signa illa x, log b(x), sin x, cos x, arcsin x. arccos x, disquisitio, Archiv der Math. und Phys., 9 (1845), pp. 383408.Google Scholar
Blades, E., On spheroidal harmonics, Proc. Edinburgh Math. Soc., 33 (1914), pp. 6568.Google Scholar
Boalch, P., From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc., 90 (2005), pp. 167208.Google Scholar
Bobek, K., Einleitung in die Theorie der Elliptischen Funktionen, Leipzig, 1884.Google Scholar
Bôcher, M., Ueber die Reihenentwickelungen der Potentialtheorie, B. G. Teubner, 1894.Google Scholar
Bôcher, M., On certain methods of Sturm and their application to the roots of Bessel’s functions, Bull. Amer. Math. Soc., 3 (1897), pp. 205213.Google Scholar
Bôcher, M., An Introduction to the Study of Integral Equations, vol. 10 of Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, 1909.Google Scholar
Bolzano, B., Rein analytischer Beweis des Lehrsatzes, Abh. der k. böhmischen Ges. der Wiss., 5 (1817).Google Scholar
Bonnet, O., Mémoire sur la théorie générale des séries, Mémoires des Savants étrangers of the Belgian Academy, 23 (1848), pp. 1116.Google Scholar
Bonnet, O., Remarques sur quelques intégrales définies, Journal de Mathématiques Pures et Appliquées, 14 (1849), pp. 249256.Google Scholar
Borchardt, C. W., Lecons sur les fonctions doublement périodiques faites en 1847 par M. J. Liouville, J. reine angew. Math., 89 (1880), pp. 277310.Google Scholar
Borel, E., Leçons sur les Séries Divergentes, Gauthier-Villars, 1901.Google Scholar
Borel, E., Définition et domaine d’existence des fonctions monogénes uniformes. In Proceedings of the 1912 International Congress of Mathematicians, Cambridge, United Kingdom, Hobson, E. W. and Love, A. E. H., eds., Cambridge University Press, 1913, pp. 133144.Google Scholar
Borel, E. and Julia, G., Leçons sur les Fonctions Monogènes Uniformes d’une Variable Vomplexe, Gauthier-Villars, 1917.Google Scholar
Borwein, J. M. and Bailey, D. H., Mathematics by Experiment: Plausible reasoning in the 21st century, A. K. Peters, 1st ed., 2003.Google Scholar
Borwein, J. M., Bailey, D. H., and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters, 1st ed., 2004.Google Scholar
Borwein, J. M. and Borwein, P. B., Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1st ed., 1987.Google Scholar
Borwein, J. M. and Borwein, P. B., Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi, Amer. Math. Monthly, 96 (1989), pp. 201219.Google Scholar
Borwein, J. M. and Corless, R. C., Gamma and factorial in the Monthly, Amer. Math. Monthly, 125 (2018), pp. 400424.Google Scholar
Borwein, P., Choi, S., Rooney, B., and Weirathmueller, A., The Riemann hypothesis. A resource for the afficionado and virtuoso alike, Canadian Mathematical Society, 1st ed., 2008.Google Scholar
Bourget, L., Mémoire sur les nombres de Cauchy et leur application à divers problémes de mécanique céleste, Journal de Math., 6 (1861), pp. 3354.Google Scholar
Bourget, L., Mémoire sur le mouvement vibratoire des membranes circulaires, Ann. Sci. de l’École Norm. Sup., 3 (1866), pp. 5595.Google Scholar
Bourget, L., Note sur les intégrales eulériennes: Extrait d’une lettre adressée à M. Ch. Hermite, Acta Math., 1 (1882), pp. 295296.CrossRefGoogle Scholar
Bourget, L., Sur quelques intégrales définies: Extrait d’une lettre adressée à M. Ch. Hermite, Acta Math., 1 (1882), pp. 363367.Google Scholar
Bridgeman, P. W., On a certain development in Bessel’s functions, Phil. Mag., (6)XVI (1908), pp. 947948.Google Scholar
Brioschi, F., Sur l’equation de Lamé, C. R. Acad. Sci. Paris, 86 (1878), pp. 313315.Google Scholar
Briot, C. and Bouquet, C., Théorie des Fonctions Elliptiques, Gauthier-Villars, Paris, 2nd ed., 1875.Google Scholar
Bromwich, T. J., The inversion of a repeated infinite integral, Proc. London Math. Soc., 1 (1904), pp. 176201.CrossRefGoogle Scholar
Bromwich, T. J., An Introduction to the Theory of Infinite Series, Macmillan & Co., New York, NY, 2nd ed., 1926.Google Scholar
Brouncker, L. V., The squaring of the hyperbola, by an infinite series of rational numbers, together with its demonstration, Phil. Trans., 3 (1668), pp. 645649.Google Scholar
de Brun, F., Einige neue Formeln der Theorie der elliptischen Functionen, II, Öfversigt af K. Vet. Akad., Stockholm, 54 (1897), pp. 523532.Google Scholar
Brychkov, Y. A., Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas, Taylor and Francis, Boca Raton, Florida, 2008.Google Scholar
Burger, E. B. and Tubbs, R., Making Transcendence Transparent, Springer-Verlag, New York, 2004.Google Scholar
Burgess, J., On the definite integral , with extended tables of values, Trans. Roy. Soc. Edin., 39 (1900), pp. 257322.Google Scholar
Burkhardt, H., Zur Theorie der trigonometrischen Reihen und der Entwicklungen nach Kugelfunktionen, Sitzungsberichte der mathematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München, 39 (1909), pp. 123.Google Scholar
Bürmann, H. H., Rapport sur deux mémoires d’analyse du professeur Bürmann, by Lagrange and Adrien-Marie Legendre, Mémoires de l’Institut National des Sciences et Arts, 2 (1799), pp. 1317.Google Scholar
Burnside, W. S., Two notes on Weierstrass’s ℘(u), Mess. Math., 21 (1891), pp. 8487.Google Scholar
Burnside, W. S. and Panton, A. W., The Theory of Equations, Dublin Hodges, Figgia, 1886.Google Scholar
Callandreau, O., Sur le calcul des polynômes Xn(cos θ) de Legendre pour les grandes valeurs de n, Bull. des Sci. Math., 15 (1891), pp. 121124.Google Scholar
Cantor, G., Beweis, dass eine für jeden reellen Werth von x durch eine trigonometrische Reihe gegebene Function f (x) sich nur auf eine einzige Weise in dieser Form darstellen lässt, J. reine angew. Math., 72 (1870), pp. 139142.Google Scholar
Cantor, G., Ueber einen die trigonometrischen Reihen betreffenden Lehrsatz, J. reine angew. Math., 72 (1870), pp. 130138.Google Scholar
Cantor, G., Ueber trigonometrische Reihen, Math. Ann., 4 (1871), pp. 139143.CrossRefGoogle Scholar
Cantor, G., Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, Math. Ann., 5 (1872), pp. 123132.Google Scholar
Carda, K., Zur Darstellung der Bernoullischen Zahlen durch bestimmte Integrale, Monatshefte für Math. und Phys., 5 (1894), pp. 321324.Google Scholar
Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), pp. 135157.Google Scholar
Carslaw, H. S., Introduction to the Theory of Fourier’s Series and Integrals, Macmillan and co., London, 1921.Google Scholar
Cauchy, A. L., Analyse Algebrique. Cours d’Analyse de l’Ecole Royale Polytechnique, vol. I, L’Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi; (reissued by Cambridge University Press, 2009), 1st ed., 1821.Google Scholar
Cauchy, A. L., Memoire sur les Integrales Definies, Prises entre des Limites Imaginaires, Gauthier-Villars, Paris, 1825.Google Scholar
Cauchy, A. L., Sur les d’eveloppements des fonctions en séries périodiques, Mém. de l’Acad. R. des Sci., 6 (1826), pp. 603612.Google Scholar
Cauchy, A. L., Exercises de Mathematiques. Reprinted by Kessinger Publishing, LLC, September, 2010, 1828.Google Scholar
Cauchy, A. L., Leçons sur le Calcul Différentiel, Chez De Bure freres, libraires du roi et de la bibliothéque du roi, Paris, 1829.Google Scholar
Cauchy, A. L., Résumés Analytiques, L’Imprimerie Royale, 1833.Google Scholar
Cauchy, A. L., Sur les fonctions alternées et sur diverse formules d’analyse, C. R. Acad. Sci. Paris, Ser. I., 10 (1840), pp. 178181.Google Scholar
Cauchy, A. L., Mémoire sur quelques propositions fondamentales du calcul des residues, C. R. Acad. Sci. Paris, Ser. I., 19 (1844), pp. 13371338.Google Scholar
Cauchy, A. L., Sur la transformation de variables qui déterminant les mouvement d’une planète ou méme d’une comète en fonction explcite du temps, et sur le développment de ces fonctions en séries convergentes, C. R. Acad. Sci., Paris, 38 (1854), pp. 990993.Google Scholar
Cauchy, A. L., Oeuvres Complètes d’Augustin Cauchy, Gauthier-Villars, Paris, 1882–1919.Google Scholar
Cayley, A., Note sur l’addition des fonction elliptiques, J. reine angew. Math., 41 (1852), pp. 5765.Google Scholar
Cayley, A., On a formula in elliptic functions, Mess. Math., 14 (1885), pp. 2122.Google Scholar
Cayley, A., Mémoire sur les fonctions doublement périodiques, Jour. de Math., 10 (1845), pp. 385420.Google Scholar
Cayley, A., On a theorem relating to hypergeometric series, Phil. Mag., 16 (1858), pp. 356357.Google Scholar
Cayley, A., On bicursal curves, Proc. London Math. Soc., 4 (1873), pp. 347352.Google Scholar
Cayley, A., On Wroński’s theorem, Quart. J. Math. (Oxford), 12 (1873), pp. 221228.Google Scholar
Cayley, A., An Elementary Treatise on Elliptic Functions, Cambridge: Deighton, Bell; London: Bell, 1876.Google Scholar
Cayley, A., On the Schwarzian derivative, and the polyhedral functions, Trans. Camb. Phil. Soc., 13 (1883), pp. 568.Google Scholar
Cayley, A., On the elliptic-function solution of the equation , Proc. Camb. Phil. Soc., 4 (1883), pp. 106109.Google Scholar
Cayley, A., On linear differential equations, Quart. J. Math. (Oxford), 21 (1886), pp. 326335.Google Scholar
Cellérier, C., Note sur les principes fondamentaux de l’analyse, Bull. des Sci. Math., 14 (1890), pp. 142160.Google Scholar
Cesàro, E., Sur la multiplication des séries, Bull. des Sci. Math., 14 (1890), pp. 114120.Google Scholar
Chapman, S., On the general theory of summability, with application to Fourier’s and other series, Quart. Jour., 43 (1912), pp. 153.Google Scholar
Chartier, J., Règles de convergence des séries et des intégrales définies qui contiennent un facteur périodique; par le P, Journal de Mathématiques Pures et Appliquées, 18 (1853), pp. 201212.Google Scholar
Chree, C., On the coefficients in certain series of Bessel’s functions, Phil. Mag., (6)XVII (1909), pp. 329331.Google Scholar
Christoffel, , Über die Gaussische Quadratur und eine Verallgemeinerung derselben, J. reine angew. Math., 55 (1858), pp. 6182.Google Scholar
Chrystal, G., Algebra. Part II, A. and C. Black, London, 2nd ed., 1922.Google Scholar
Clairault, A. C., Mémoire sur l’Orbite Apparente du Soleil Autour de la Terre, en Ayant égard aux Perturbations Produites par les Actions de la Lune at des Planètes Principales, Mémoires de Mathématique et de Physique de l’Académie Royales des Sciences, 9 (1754), pp. 801870.Google Scholar
Clausen, T., Demonstratio duarum celeberrimi Gaussii propositionum, J. reine angew. Math., 3 (1828), p. 311.Google Scholar
Clebsch, A., Ueber die Reflexion an einer Kugelfläche, J. reine angew. Math., 61 (1863), pp. 195262.Google Scholar
Clebsch, A., Ueber diejenigen Curven, deren Coordinaten sich als elliptische Functionen eines Parameters darstellen lassen, J. reine angew. Math., 64 (1865), pp. 210270.Google Scholar
Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Co., 1955.Google Scholar
Cohn, F., Uber Lamésche Funktionen mit komplexen Parametern, Thesis, Königsberg University, 1888.Google Scholar
Conrey, J. B., More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math., 399 (1989), pp. 116.Google Scholar
Conrey, J. B., The Riemann hypothesis, Notices of the AMS, 50 (2003), pp. 341353.Google Scholar
Copson, E. T., An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, Oxford, 1960.Google Scholar
Corey, S. A., The development of functions, Ann. Math., 1 (1900), pp. 7780.Google Scholar
Crawford, L., On the solutions of Lamé’s equation in finite terms when 2n is an odd integer, Quarterly J. Pure and Appl. Math., 27 (1895), pp. 9398.Google Scholar
Cunningham, E., The ω-functions, a class of normal functions occurring in statistics, Proc. Roy. Soc. 81, (1908), pp. 310331.Google Scholar
D’Alembert, , Opuscules Mathématiques, ou Mémoirs sur Différens Sujets de Géometrie, de . . ., David, 1768.Google Scholar
Darboux, G., Mémoire sur les fonctions discontinues, Ann. de l’École Norm. Sup. Ser. 2, (1875), pp. 57112.Google Scholar
Darboux, G., Mémoire sur l’approximation de fonctions de très-grands nombres et sur une classe étendue de développements en série, C. R. Acad. Sci. Paris, 82 (1876), pp. 365368; 404–406.Google Scholar
Darboux, G., Sur les dévelopment en série des fonctions d’une seule variable, Journal de Mathématiques Pures et Appliquées, 2 (1876), pp. 291312.Google Scholar
Darboux, G., Mémoire sur l’approximation des fonctions de très-grands nombres, et sur une classe ètendue de développements en série, Journal de Mathématiques Pures et Appliquées, 4 (1878), pp. 556.Google Scholar
Darboux, G., Sur l’approximation des fonctions de très-grands nombres, et sur une classe ètendue de développements en série, Journal de Math., 3 (1878), pp. 377416.Google Scholar
Darwin, G. H., Ellipsoidal harmonic analysis, Phil. Trans., 197A (1901), pp. 461557.Google Scholar
Davis, P. J., Leonhard Euler’s integral: a historical profile of the Gamma function. in memorian: Milton Abramowitz, Amer. Math. Monthly, 66 (1959), pp. 849869.Google Scholar
de Morgan, A., A Budget of Paradoxes, London, 1872.Google Scholar
Debye, P., Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veränderliche Werte des Index, Math. Ann., 67 (1909), pp. 535558.Google Scholar
Dedekind, R., Stetigkeit und Irrationale Zahlen, F. Vieweg und sohn, 1872.Google Scholar
Dini, U., Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale, T. Nistri, Pisa, 1880.Google Scholar
Dinnik, A., Tafeln der Besseischen Funktionen J + i/3 und J±, Archiv der Math. und Phys, 18 (1911), pp. 337338.Google Scholar
Dirichlet, P., Sur la convergence des séries trigonométriques qui servant à representer une fonction arbitraire entre des limits données, J. reine angew. Math., 4 (1829), pp. 157169.Google Scholar
Dirichlet, P., Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, Berliner Abh., (1837), pp. 4581.Google Scholar
Dirichlet, P., Sur les séries dont le terme général dépend de deux angles, et qui servent à exprimer des fonctions arbitraires entre des limites donnée, J. reine angew. Math., 17 (1837), pp. 3556.Google Scholar
Dirichlet, P., Sur l’usage des intégrales définies dans la sommation des séries finies ou infinies, J. reine angew. Math., 17 (1837), pp. 5767.Google Scholar
Dirichlet, P., Démonstration de cette proposition: Toute progression arithmétique dont le premier terme et la raison sont des entiers sans diviseur commun contient une infinité de nombres premiers, Journal de Mathématiques Pures et Appliquées, 4 (1839), pp. 393422.Google Scholar
Dirichlet, P., Démonstration d’un théoreme d’Abel, Journal de Math., 7 (1863), pp. 253255.Google Scholar
Dirichlet, P., Sur les intégrales Euleriennes. In Werke, Kronecker, L., ed., vol. 1, Berlin: Reimer, 1889, pp. 271279.Google Scholar
Dirichlet, P., Vorlesungen über die Lehre von den einfachen und mehrfachen bestimmten Integralen, Braunschweig: Vieweg, 1904.Google Scholar
Dirksen, E., Ueber die Convergenz einer nach den Sinussen und Cosinussen der Vielfachen eines Winkels fortschreitenden Reihe, J. reine angew. Math., 4 (1829), pp. 170178.Google Scholar
Dixon, A. C., On the double periodic functions arising out of the curve x3 + y3 − 3αxy = 1, Quart. Jour., 24, (1890), pp. 167233.Google Scholar
Dixon, A. C., On Burmann’s theorem, Proc. London Math. Soc., 34 (1901), pp. 151153.Google Scholar
Dixon, A. C., Summation of a certain series, Proc. London Math. Soc., 35 (1902), pp. 284291.Google Scholar
Dixon, A. C., On a certain double integral, Proc. London Math. Soc., 2 (1905), pp. 815.Google Scholar
Dolbnia, M. J., Sur l’intégrale , Bulletin des sciences mathématiques Ser. 2, 19 (1895), pp. 6784.Google Scholar
Donkin, W. F., On the equation of Laplace’s functions, &c, Phil. Trans., 147, (1857), pp. 4357.Google Scholar
Dougall, J., On Vandermonde’s theorem, and some more general expansions, Proc. Edinburgh Math. Soc., 25 (1906), pp. 114132.Google Scholar
Dougall, J., The solution of Mathieu’s differential equation, Proc. Edinburgh Math. Soc., 34 (1915), pp. 176196.Google Scholar
Bois-Reymond, P. Du, Ueber den Gültigkeitsbereich der Taylorschen Reihenentwickelung, Münchener Sitzungsberichte, Mathematisch-physicalische Classe, 6 (1876), pp. 225237.Google Scholar
Dubrovin, B. and Kapaev, A., A Riemann–Hilbert approach to the Heun equation, SIGMA, 14 (2018), 24 pages.Google Scholar
Edwards, H. M., Riemann’s Zeta Function, Academic Press, New York, 1974.Google Scholar
Eichler, M. and Zagier, D., On the zeros of the Weierstrass ℘-function, Math. Ann., 258 (1982), pp. 399407.Google Scholar
Eisenstein, G., Beitrage zu Theorie der elliptischen Funktionen, J. reine angew. Math., 35 (1847), pp. 137184.Google Scholar
Eisenstein, G., Beitrage zu Theorie der elliptischen Funktionen. (Fortsetzung), J. reine angew. Math., 35 (1847), pp. 185274.Google Scholar
Encke, J. F., Über die Methode der kleinsten Quadrate, Berliner astronomisches. Jahrbuch, (1834), pp. 249312.Google Scholar
Espinosa, O. and Moll, V., On some definite integrals involving the Hurwitz zeta function. Part 2, The Ramanujan Journal, 6 (2002), pp. 449468.Google Scholar
Euler, L., Variae observationes circa series infinitas, Commentationes Acad. Sci. Imp. Petropolitanae, 9 (1737), pp. 160188.Google Scholar
Euler, L., Recherches sur les racines imaginaires de equations, Histoire de l’Académie Royale des Sciences et des Belles Lettres de Berlin, 5 (1749), pp. 212288.Google Scholar
Euler, L., De integratione aequationis differentialis . In Opera Omnia, vol. 20 of I, Teubner, Berlin, 1738-1914, pp. 5879.Google Scholar
Euler, L., Evolution formulae integralis integratione a valore x = 0 ad x = 1 extensa. In Opera Omnia, vol. 17 of I, Teubner, Berlin, 1738-1914, pp. 316357.Google Scholar
Euler, L., Institutiones calculi differentialis. In Opera Omnia, vol. 10 of I, Teubner, Berlin, 1738-1914.Google Scholar
Euler, L., Institutiones Calculi Integralis. In Opera Omnia, vol. 11 of I, Teubner, Berlin, 1738-1914.Google Scholar
Euler, L., Methodus facilis inveniendi series per sinus. In Opera Omnia, vol. 16 of I, Teubner, Berlin, 1738-1914, pp. 94113.Google Scholar
Euler, L., Methodus generalis summandi progressiones. In Opera Omnia, vol. 14 of I, Teubner, Berlin, 1738-1914, pp. 4272.Google Scholar
Euler, L., De motu vibratorio tympanorum, Novi commentarii academiae scientiarum Petropolitanae 10, (1764), 1766, pp. 243260.Google Scholar
Euler, L., De motu vibratorio tympanorum. In Opera Omnia, vol. 10 of II, Teubner, Berlin, 1766, pp. 344358.Google Scholar
Euler, L., Introductio in Analysis Infinitorum. English translation Introduction to Analysis of the Infinite, by Blantan, J. D., Editor, Springer-Verlag, New York, 1st ed., 1988.Google Scholar
Farkas, H. M. and Kra, I., Theta Constants, Riemann Surfaces and the Modular Group, vol. 37 of Graduate Studies in Mathematics, Springer-Verlag, New York, 2001.Google Scholar
Fay, J., Theta Functions on Riemann Surfaces, vol. 352 of Lecture Notes in Mathematics, Springer-Verlag, New York, 1973.Google Scholar
Fejér, L., Untersuchungen über Fourier Reihen, Math. Ann., 58 (1904), pp. 5169.Google Scholar
Floquet, G., Sur les èquations différentielles linéaires à coefficients périodiques, Annales de l’Ecole Normale Supérieure, 12 (1883), pp. 4788.Google Scholar
Fokas, A., Its, A., Kapaev, A., and Novokshenov, V., Painlevé Transcendents: The Riemann–Hilbert Approach, vol. 128 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2006.Google Scholar
Ford, L. R., Introduction to the Theory of Automorphic Functions, G. Bell and Sons, London, 1915.Google Scholar
Forrester, P. J. and Warnaar, S. O., The importance of the Selberg integral, Bull. Amer. Math. Soc., 45 (2008), pp. 489534.Google Scholar
Forsyth, A. R., Note on Professor Cayley’s “Formula in elliptic functions”, Messenger Math., 14 (1885), pp. 2325.Google Scholar
Forsyth, A. R., The addition-theorem for the second and third elliptic integral, Messenger Math., 15 (1886), pp. 4957.Google Scholar
Forsyth, A. R., New solutions of some of the partial differential equations in mathematical physics, Messeng. Math., 27 (1898), pp. 99118,190.Google Scholar
Forsyth, A. R., Theory of Differential Equations, vol. 4, Cambridge University Press, 1902.Google Scholar
Forsyth, A. R., Theory of Differential Equations, vol. 6, Cambridge University Press, 1906.Google Scholar
Forsyth, A. R., Theory of Functions of a Complex Variable, Cambridge University Press, 1918.Google Scholar
Forsyth, A. R., A Treatise on Differential Equations, Courier Corporation, London, 1929.Google Scholar
Forsyth, A. R., A treatise on differential equations, Dover, 1996.Google Scholar
Fourier, J. B., Théorie Analytique de la Chaleur, F. Didot, Paris, 1822.Google Scholar
Fredholm, I., On a new method for solving the Dirichlet problem, Stock. Öfv., 57 (1900), pp. 3946.Google Scholar
Fredholm, I., Sur une classe d’équations fonctionnelles, Acta Math., 27 (1903), pp. 365390.CrossRefGoogle Scholar
Frobenius, G., Ueber die Entwickelung analytischer Functionen in Reihen, die nach gegebenen Functionen fortschreiten, J. reine angew. Math., 73 (1871), pp. 130.Google Scholar
Frobenius, G., Ueber die Integration der linearen Differentialgleichungen durch Reichen, J. reine angew. Math., 76 (1873), pp. 214235.Google Scholar
Frobenius, G. and Stickelberger, G., Theorie der elliptischen Functionen, J. reine angew. Math., 83 (1877), pp. 175179.Google Scholar
Frobenius, G. and Stickelberger, G., Ueber die Addition und Multiplication der elliptischer Functionen, J. reine angew. Math., 89 (1880), pp. 146184.Google Scholar
Fürstenau, E., Darstellung der reellen Wurzeln algebraischer Gleichungen durch Determinanten der Coefficienten, Elwert, 1860.Google Scholar
Fuss, P. H., Correspondance Mathématique et Physique de quelques célèbres géomètres du XVII-éme siècle, vol. I, St.-Pétersbourg, 1843.Google Scholar
Gambioli, D., Sur le développement, suivant les puissances croissantes de x, de la fraction algébrique 1/L.n ar xr, Bologna, Memoire, (1892), pp. 3944.Google Scholar
Gauss, C. F., Integralium valores per approximationem inveniendi, Commentationes Societatis Regiae Scientarium Gottingensis (1814), pp. 39–76. Reprinted in Werke, 3 (1876), pp. 165196.Google Scholar
Gauss, C. F., Arithmetisch Geometrisches Mittel. In Werke, 3 (1876), pp. 361403.Google Scholar
Gauss, C. F., Demonstration nova theorematis omnen functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolve posse. In Werke, 3 (1876), pp. 331.Google Scholar
Gauss, C. F., Disquisitiones generales circa seriem infinitam. In Werke, 3 (1876), pp. 123162.Google Scholar
Gauss, C. F., Theorie residuorum biquadraticorum. In Werke, 2 (1863), pp. 95148.Google Scholar
Gauss, C. F., Werke, Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1863–1903.Google Scholar
Gegenbauer, L., Über die functioner . Wiener Sitzungsberichte, 68 (1874), pp. 357367.Google Scholar
Gegenbauer, L., Über einige bestimmte Integrale, Wiener Sitzungsberichte, 70 (1874), pp. 433443.Google Scholar
Gegenbauer, L. v., Bemerkung über die Bessel’schen Functionen, Monatsh. f. Math. Phys., 102 (1893), p. 942.Google Scholar
Gegenbauer, L. v., Bemerkung über die Bessel’schen Functionen, Monatsh. f. Math. Phys., 8 (1897), pp. 383384.Google Scholar
Gibbs, J. W., Fourier’s series, Nature, 59 (1899), p. 606.Google Scholar
Glaisher, J. W. L., On sin ∞ and cos ∞, Mess. Math., 5 (1871), pp. 232244.Google Scholar
Glaisher, J. W. L., Formulae for the sn, cn, dn, of u + v + w, Mess. Math., 11 (1882), pp. 4577.Google Scholar
Glaisher, J. W. L., Tables of the first 250 Bernoulli’s numbers (to nine figures) and their logarithms (to ten figures), Trans. of Camb. Phil. Soc., (I) 12 (1873), pp. 384391.Google Scholar
Glaisher, J. W. L., Notes on Laplace’s coefficients, Proc. London Math. Soc., 6 (1874), pp. 126136.CrossRefGoogle Scholar
Glaisher, J. W. L., On definite integrals involving elliptic functions, Proc. London Math. Soc., 29 (1879), pp. 331351.Google Scholar
Glaisher, J. W. L., On the addition equation for the third elliptic integral, Mess. Math., 10 (1881), pp. 124135.Google Scholar
Glaisher, J. W. L., On some elliptic functions and trigonometrical theorems, Mess. Math., 10 (1881), pp. 9297.Google Scholar
Glaisher, J. W. L., Systems of formulae in elliptic functions, Mess. Math., 10 (1881), pp. 104111.Google Scholar
Glaisher, J. W. L., On elliptic functions, I, Mess. Math., 11 (1882), pp. 8195.Google Scholar
Glaisher, J. W. L., Factor Tables, London, 1883.Google Scholar
Goursat, E., Sur la définition générale des fonctions analytiques, d’après Cauchy, Trans. Amer. Math. Soc., 1 (1900), pp. 1416.Google Scholar
Goursat, E., Cours d’Analyse Mathématique, vol. I, Gauthier-Villars, Paris, 1902.Google Scholar
Goursat, E., Cours d’Analyse Mathématique, vol. II, Gauthier-Villars, Paris, 1910.Google Scholar
Grace, J. H., On the zeros of a polynomial, Proc. Camb. Phil. Soc., 11 (1902), pp. 352357.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, Edited by Zwillinger, D. and Moll, V.. Academic Press, New York, 8th ed., 2015.Google Scholar
Gray, A. and Mathews, G. B., A Treatise on Bessel Functions and their Applications to Physics, Macmillan, London, 1895.Google Scholar
Greene, R. and Krantz, S., Function Theory of One Complex Variable, vol. 40 of Graduate Studies in Mathematics, American Mathematical Society, 2002.Google Scholar
Gromak, V. I., Laine, I., and Shimomura, S., Painlevé Differential Equations in the Complex Plane, Walter de Gruyter, 2002.Google Scholar
Gudermann, C., Theorie der Modular-Functionen und der Modular-Integrale, J. reine angew. Math., 18 (1838), pp. 154.Google Scholar
Guerritore, G., Calcolo delle funzioni di Lamé fio a quelle di grado 10, Giorn. Math. Napoli, 47 (1909), pp. 164172.Google Scholar
Gutzmer, A., Ein Satz über Potenzreihen, Math. Ann., 32 (1888), pp. 596600.Google Scholar
Hadamard, J., Résolution d’une question relative au déterminants, Bull. Sci. Math., 17 (1893), pp. 240246.Google Scholar
Haentzschel, E., Ueber den functionentheoretischen Zusammenhang zwischen den Lamé’schen, Laplace’schen und Bessel’schen Functionen, Zeitschrift für Math. und Phys., 31 (1886), pp. 2533.Google Scholar
Halphen, G. H., Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables, Mém. présentées par divers savants à l’Académie de Sciences, 28 (1880), pp. 1260.Google Scholar
Halphen, G. H., Traité des Fonctions lliptiques et de Leurs Applications, vol. 1, Gauthier-Villars, Paris, 1886.Google Scholar
Halphen, G. H., Traité des Fonctions Elliptiques et de Leurs Applications, vol. 2, Gauthier-Villars, Paris, 1888.Google Scholar
Hamilton, W. R., On fluctuating functions, Trans. Royal Irish Academy, 19 (1843), pp. 264321.Google Scholar
Hancock, H., Lectures on the Theory of Elliptic Functions, J. Wiley and Sons, New York, 1910.Google Scholar
Hankel, H., Die Euler’schen Integrale bei unbeschränkter Variabilität des Argumentes, Zeitschrift fúr Math. und Phys., 9 (1864), pp. 121.Google Scholar
Hankel, H., Die Cylinderfunctionen erster und zweiter Art, Math. Ann., 1 (1869), pp. 467501.Google Scholar
Hardy, G. H., The elementary theory of Cauchy’s principal values, Proc. London Math. Soc., 34 (1901), pp. 1640.Google Scholar
Hardy, G. H., Notes on some points in the Integral Calculus. Reprinted in Collected Papers of G. H. Hardy vol. V, Oxford at the Clarendon Press, 1972, pp. 177183 (258).Google Scholar
Hardy, G. H., Some theorems connected with Abel’s theorem on the continuity of power series, Proc. London Math. Soc., 2(4) (1907), pp. 247265.Google Scholar
Hardy, G. H., A Course of Pure Mathematics, Cambridge University Press, 1908.Google Scholar
Hardy, G. H., Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc., 8 (1910), pp. 301320.Google Scholar
Hardy, G. H., Sur les zéros de la fonction ζ(s) de Riemann, C. R. Acad. Sci. Paris, 158 (1914), pp. 10121014.Google Scholar
Hardy, G. H., The Integration of Functions of a Single Variable, vol. 2 of Cambridge University Tracts in Mathematical Physics, Cambridge University Press, 2nd ed., 1958.Google Scholar
Hardy, G. H. and Littlewood, J. E., Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Proc. London Math. Soc., 19 (1920), pp. 119196.Google Scholar
Hargreave, C. J., On the solution of linear differential equations, Phil. Trans. R. Soc. Lond., 138 (1848), pp. 3154.Google Scholar
Harnack, A., Ueber Cauchy’s zweiten Beweis für die Convergenz der Fourier’schen Reihen und eine damit verwandte ältere Method von Poisson, Math. Ann., 32 (1888), pp. 175202.Google Scholar
Heffter, L., Úber eine Veranschanlichung von Funktionen einer komplexen Variabelen, Zeit. für Math. und Phys., 44 (1899), pp. 235236.Google Scholar
Heine, E., Beitrag zur Theorie der Anziehung und der Wärme, J. reine angew. Math., 29 (1845), pp. 185208.Google Scholar
Heine, E., Theorie der Anziehung eines Ellipsoids, J. reine angew. Math., 42 (1851), pp. 7082.Google Scholar
Heine, E., Handbuch der Kugelfunktionen, George Reimer, 1861.Google Scholar
Heine, E., Ueber trigonometrische Reihen, J. reine angew. Math., 71 (1870), pp. 353365.Google Scholar
Hermite, C., Sur un nouveau développement en série des fonctions, C. R. Acad. Sci. Paris, 58 (1864), pp. 266273.Google Scholar
Hermite, C., Extrait d’une lettre de M. Ch. Hermite adressée á M. L. Fuchs., J. reine angew. Math., 82 (1877), pp. 343347.Google Scholar
Hermite, C., Sur quelques applications des fonctions elliptiques, C. R. Acad. Sci. Paris, 85 (1877), pp. 689695; 728–732; 821–826. Reprinted in Oeuvres de Charles Hermite, Tome 2, pp. 266–274.Google Scholar
Hermite, C., Sur une application du théorème de M. Mittag-Leffler, dans la théorie des fonctions. (Extrait d’une lettre adresseée à M. Mittag-Leffler de Stockholm par M. Ch. Hermite à Paris), J. reine angew. Math., 92 (1882), pp. 145155.Google Scholar
Hermite, C., Sur les polynômes de Legendre, Jornal de sciencias mathematicas e astronomicas, 6 (1885), pp. 8184.Google Scholar
Hermite, C., Sur Quelques Applications des Fonctions Elliptiques, Gauthier-Villars, 1885.Google Scholar
Hermite, C., Sur quelques propositions fondamentales de la théorie des fonctions elliptiques, Proc. Math. Congress, American Mathematical Society, Vol. 1, (1896), pp. 105115.Google Scholar
Hermite, C., Extraits de quelques lettres adressées à M. S. Pincherle, Annili di Matematica, 3 (1901), pp. 5772.Google Scholar
Hermite, C., Oeuvres de Charles Hermite, vol. 3, Gauthier-Villars, 1912.Google Scholar
Hermite, C. and Stieltjes, T. J., Correspondance d’Hermite et de Stieltjes, vol. 2, Les Soins de B. Baillaud et H. Bourget, avec une prèface de Èmile Picard, Paris, Gauthier-Villars, 1905.Google Scholar
Heun, K., Die Kugelfunctionen und Laméschen Functionen als Determinanten, Gött. Nach., (1881).Google Scholar
Heun, K., Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verzweigungspunkten, Math. Ann., 33 (1888), pp. 161179.Google Scholar
Heun, K., Beitrag zur Theorie der Lamé’schen Functionen, Math. Ann., 33 (1888), pp. 180196.Google Scholar
Heymann, W., Über hypergeometrische Funktionen, deren letztes Element speziell ist., Zeitschrift für Math. und Phys., 44 (1899), pp. 28088.Google Scholar
Hicks, W. M., On toroidal functions, Phil. Trans., 172 (1881), pp. 609652.Google Scholar
Hijab, O., Introduction to Calculus and Classical Analysis, Springer-Verlag, New York, 1st ed., 1997.Google Scholar
Hilbert, D., Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Göttinger Nach., 1904 (1904), pp. 4191.Google Scholar
Hill, G. W., On the part of the motion of lunar perigee which is a function of the mean motions of the sun and moon, Acta Math., 8 (1886), pp. 136.Google Scholar
Hill, M. J. M., The continuation of certain fundamental power series, Proc. London Math. Soc., 35 (1902), pp. 388416.Google Scholar
Hill, M. J. M., On a formula for the sum of a finite number of terms of the hypergeometric series when the fourth element is equal to unity, Proc. London Math. Soc., 5 (1907), pp. 335341.Google Scholar
Hille, E., On the zeros of Mathieu functions, Proc. London Math. Soc., (2)23 (1925), pp. 185237.Google Scholar
Hille, E., Ordinary Differential Equations in the Complex Domain, Dover Publications Inc., 1976.Google Scholar
Hirschhorn, M., The power of q: A personal journey, vol. 49 of Developments in Mathematics, Springer, 2017.Google Scholar
Hobson, E. W., On a theorem in differentiation, and its application to spherical harmonics, Proc. London Math. Soc., 24 (1892), pp. 5567.Google Scholar
Hobson, E. W., On Bessel’s functions, and relations connecting them with hyperspherical and spherical harmonics, Proc. London Math. Soc., 25 (1893), pp. 4975.Google Scholar
Hobson, E. W., On a type of spherical harmonics of unrestricted degree, order, and argument, Phil. Trans. R. Soc. London, 187A (1896), pp. 443531.Google Scholar
Hobson, E. W., Functions of a Real Variable, Cambridge University Press, 1907.Google Scholar
Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier Series, Cambridge University Press, 1907.Google Scholar
Hobson, E. W., On a general convergence theorem, and the theory of the representation of a function by series of normal functions, Proc. London Math. Soc., 6 (1908), pp. 349395.Google Scholar
Hobson, E. W., On the representation of a function by series of Bessel’s functions, Proc. London Math. Soc., 7 (1908), pp. 359388.Google Scholar
Hobson, E. W., On the representation of a function by a series of Legendre’s functions, Proc. London Math. Soc., 7 (1909), pp. 2439.Google Scholar
Hobson, E. W., Squaring the Circle, Cambridge University Press, 1913.Google Scholar
Hobson, E. W., A Treatise on Plane Trigonometry, Cambridge University Press, 2nd ed., 1918.Google Scholar
Hobson, E. W., On the summability of generalized Fourier’s series, Proc. London Math. Soc., 22 (1924), pp. 420424.Google Scholar
Hobson, E. W., A Treatise on Plane and Advanced Trigonometry, Dover Publications, Inc., New York, 7th ed., 1928.Google Scholar
Hocevar, M., Über die unvollständige Gammafunction, Zeitschrift für Math. und Phys., 21 (1876), pp. 449450.Google Scholar
Hölder, O., Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichungen zu genügen, Math. Ann., 28 (1887), pp. 113.Google Scholar
Hölder, O., Über einen Mittelwertsatz, Gott. Nachr., 2 (1889), pp. 3847.Google Scholar
Hurwitz, A., Einige Eigenschaften der Dirichlet’schen Funktionen , die bei der Bestimmung der Klassenanzahlen Binärer quadratischer Formen auftreten, Z. für Math. und Physik, 27 (1882), pp. 86101.Google Scholar
Hurwitz, A., Uber die Fourierschen Konstanten integrierbarer Funktionen, Math. Ann., 57 (1903), pp. 425446.Google Scholar
Hurwitz, A., Note on certain iterated and multiple integrals, Ann. Math., 9 (1908), pp. 183192.Google Scholar
Hurwitz, A., Über die Einführung der elementaren transzendenten Funktionen in der algebraischen Analysis, Math. Ann., 70 (1911), pp. 3347.Google Scholar
Husemöller, D., Elliptic Curves, vol. 111 of Graduate Texts in Mathematics, Springer Verlag, 2nd ed., 2004.Google Scholar
Ince, E. L., On a general solution of Hill’s equation, Roy. Astronomical Soc., 55 (1915), pp. 436448.Google Scholar
Ince, E. L., Continued fractions associated with the hypergeometric equation, Proc. Edinburgh Math. Soc., 34 (1916), pp. 215.Google Scholar
Ince, E. L., On the connexion between linear differential systems and integral equations, Proc. Royal Soc. Edin., 42 (1922), pp. 4353.Google Scholar
Ince, E. L., A proof of the impossibility of the coexistence of two Mathieu functions, Proc. Camb. Phil. Soc., 21 (1922), pp. 117120.Google Scholar
Ince, E. L., Ordinary Differential Equations, Dover, New York, 1956.Google Scholar
Innes, R. T. A., On the periods of the elliptic functions of Weierstrass, Proc. Edin. Math. Soc., 27 (1907), pp. 357368.Google Scholar
Isherwood, J. G., Tables of the Bessel functions for pure imaginary values of the argument, Proc. Manchester Lit. and Phil. Soc., 48 (XIX) (1904), pp. 13.Google Scholar
Iwasaki, K., Kimura, H., Shimomura, S., and Yoshida, M., From Gauss to Painlevé: A Modern Theory of Special Functions, Braunschweig: Fried. Vieweg and Sohn, 1991.Google Scholar
Jackson, F. H., An Extension of the Theorem , Proc. London Math. Soc., Series 1, 28 (1897), pp. 475486.Google Scholar
Jackson, F. H., Series Connected with the Enumeration of Partitions, Proc. London Math. Soc., Series 2, 1, (1904), pp. 6388.Google Scholar
Jackson, F. H., The Application of Basic Numbers to Bessel’s and Legendre’s Functions, Proc. London Math. Soc., Series 2, 2(1), (1905), pp. 192220.Google Scholar
Jackson, F. H., A generalisation of the functions Γ(n) and xn, Proc. Roy. Soc., 74 (1905), pp. 6472.Google Scholar
Jacobi, C. G. J., Lieber die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem, der Elementaregeometrie:”Die Relation zwisvchen der Dstanz der Mittelpiancte und den Radien zweir Kreise zu finden, von denen der einem unregelmäfsigen Polygon eingeschriebem, der andere demselben umgesschrieben ist, J. reine angew. Math., 3 (1828), pp. 376389.Google Scholar
Jacobi, C. G. J., Demonstratio theorematis ad theoriam functionum ellipticarum spectantis, Astr. Nach., 6 (10) (1828), pp. 133141; and Extraits de deux lettres de Mr. Jacobi de l’Université de Königsberg á l’éditeur, 6 (3) (1828), pp. 3337.Google Scholar
Jacobi, C. G. J., Suite des notices sur les fonctions elliptiques, J. reine angew. Math., 3 (1828), pp. 403404.Google Scholar
Jacobi, C. G. J., De functionibus ellipticis commentatio, J. reine angew. Math., 4 (1829), pp. 371390.Google Scholar
Jacobi, C. G. J., Disquisitiones analyticae de fractionibus simplicibus, in Gesammelte Werke, 1884, vol. III, Chelsea Publishing Company, 1829, pp. 144.Google Scholar
Jacobi, C. G. J., Fundamenta nova theoriae functionum ellipticarum, in Gesammelte Werke, 1884, vol. I, Chelsea Publishing Company, 1829, pp. 49239.Google Scholar
Jacobi, C. G. J., De functionibus duarum variabilium quadrupliciter periodicis, quibus theoria transcendentium Abelianarum innitur, J. reine angew. Math., 13 (1835), pp. 5578.Google Scholar
Jacobi, C. G. J., Ueber die Entwicklung des Ausdrucks, J. reine angew. Math., 26 (1843), pp. 8187.Google Scholar
Jacobi, C. G. J., Uber die Differentialgleichung, welcher die Reihen 1 ± 2q + 2q4 ± 2q9 + etc.. etc. Genüge leisten, J. reine angew. Math., 36 (1848), pp. 97112.Google Scholar
Jacobi, C. G. J., Versuch einer Berechnung der grossen Ungleichheit des Saturns nach einer strengen Entwickelung, Astr. Nach., 28 (1849), pp. 8194.Google Scholar
Jacobi, C. G. J., Gesammelte Werke, (2nd. ed.), New York: Chelsea Publ. Co., 1881.Google Scholar
Jacobsthal, W., Asymptotische Darstellung von Lösungen linearer Differentialgleichungen, Math. Ann., 56 (1903), pp. 129154.Google Scholar
Jahnke, E. and Emde, F., Funktionentafeln mit Formeln und Kurven, Leipzig, Teubner, 1909.Google Scholar
Jamet, V., Sur un cas particulier de l’équation de Lamé, C. R. Acad. Sci. Paris, 101 (1890), pp. 638639.Google Scholar
Jeffery, G. B., On spheroidal harmonics and allied functions, Proc. Edinburgh Math. Soc., 33 (1914), pp. 118121.Google Scholar
Jensen, J. L. W. V., Remarques relatives aux réponses de MM. Franel et Kluyver (1895, pp. 153–157), L’Intermédiaire des Math., (1895), pp. 346–347.Google Scholar
Jordan, C., Sur la série de Fourier, C. R. Acad. Sci. Paris, 92 (1881), pp. 228230.Google Scholar
Jordan, C., Cours d’Analyse de l’Ecole Polytechnique, vol. I, Gauthier-Villars et fils, Paris, 1893.Google Scholar
Jordan, C., Cours d’Analyse de l’Ecole Polytechnique, vol. II, Gauthier-Villars et fils, Paris, 1894.Google Scholar
Jordan, C., Cours d’Analyse de l’Ecole Polytechnique, vol. III, Gauthier-Villars et fils, Paris, 1894.Google Scholar
Kalähne, A., Über die Wurzeln einiger Zylinderfunktionen und gewisser aus ihnen gebildeter Gleichungen, Zeitschrift für Math. und Phys., 54 (1907), pp. 5586.Google Scholar
Kapteyn, W., Recherches sur les fonctions de Fourier–Bessel, Ann. Sci. de l’Ecole Norm. Sup., (3)X (1893), pp. 91120.Google Scholar
Kapteyn, W., Sur deus séries qui représentent la même fonction dans une partie du plan, Niuew Archief, (2)3 (1898), pp. 225229.Google Scholar
Katz, N. M. and Sarnak, P., Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc., 36 (1999), pp. 126.Google Scholar
Katznelson, Y., An Introduction to Harmonic Analysis, Cambridge University Press, 2004.Google Scholar
Keating, J. P. and Snaith, N. C., Random matrix theory and ζ(1/2 + it), Comm. Math. Physics, 214 (2000), pp. 5789.Google Scholar
Kiepert, L., Wirkliche Ausführung der ganzzahligen Multiplication der elliptischen Functionen, J. reine angew. Math., 76 (1873), pp. 2133.Google Scholar
Kiepert, L., Auflösung der Transformationsgleichungen und Division der elliptischen Functionen, J. reine angew. Math., 76 (1873), pp. 3444.Google Scholar
Klein, F., Ueber die hypergeometrische Function. Vorlesung, gehalten im Wintersemester 1893/94, Göttingen, 1894.Google Scholar
Klein, F., Vorlesung über Lamé’schen Funktionen (lithographed), Göttingen, 1894.Google Scholar
Klein, F., Vorlesungen über lineare Differentielgleichungen (lithographed), Göttingen, 1894.Google Scholar
Klein, F., Gauss wissenschaftliches Tagebuch 1796 – 1814, Math. Ann., 57 (1903), pp. 134.Google Scholar
Klein, F., Ueber Lineare Differentialgleichungen der Zweiten Ordnung: Vorlesung Gehalten im Sommersemester 1894, Leipzig, Teubner, 1906.Google Scholar
Klein, F., Developments of Mathematics in the 19th century, Trans. Math. Sci. Press, Editor Hermann, R., Brookline, MA, 1928.Google Scholar
Klein, F. and Fricke, R., Vorlesungen über die Theorie der Elliptischen Modulfunctionen, B. G. Teubner, Leipzig, 1890.Google Scholar
Kluyver, J. C., Sur les séries de factorielles, C. R. Acad. Sci. Paris, 133 (1901), pp. 587588.Google Scholar
Kneser, A., Ein Beitrag zur Theorie der Integralgleichungen, Rend. del Circolo Matematico di Palermo, 22 (1906), pp. 233240.Google Scholar
Kolmogorov, A., Une série de Fourier–Lebesgue divergent presque partout, Fundamenta Mathematica, 4 (1923), pp. 324328.Google Scholar
Kolmogorov, A., Une série de Fourier–Lebesgue divergent partout, C. R. Acad. Paris, 186 (1926), pp. 13271328.Google Scholar
Kronecker, L., Eine Mathematische Mittheilung, Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, (1857), pp. 455–460.Google Scholar
Kronecker, L., Über eine neue Eigenschaft der quadratischen Formen von negativer Determinante, Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, (1862), pp. 302–311.Google Scholar
Kronecker, L., Bemerkungen über die Jacobischen Thetaformeln, J. reine angew. Math., 102 (1888), pp. 260272.Google Scholar
Kronecker, L., Bemerkungen über die Darstellung von Reihen durch Integrale, J. reine angew. Math., 105 (1889), pp. 345354.Google Scholar
Kronecker, L., Über die Zeit und die Art der Entstehung der jacob’schen Thetaformeln, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1891), pp. 653–659.Google Scholar
Kummer, E., Über die hypergeometrische Reihe, J. reine angew. Math., 15 (1836), pp. 3983.Google Scholar
Kummer, E., Über die hypergeometrische Reihe. (Fortzetzung), J. reine angew. Math., 15 (1836), pp. 127172.Google Scholar
Kummer, E. E., Beitrag zur theorie der Function Γ(x), J. reine angew. Math., 35 (1847), pp. 14.Google Scholar
Lagrange, C., Démonstration élémentaire de la loi supréme de Wronski, Mémoires Couronnés et Mémoires des Savants Étrangers, 47 (2) (1886), pp. 38.Google Scholar
Lagrange, J. L., Memoire sur l’utilité de la méthode de prendre le milieu entre les résultas de plusiers observations, Miscellanea Taurinenia, 1770–1773 (1770), pp. 167232.Google Scholar
Lagrange, J. L., Sur le problème de Kepler, Hist. de l’Acad. R. des Sciences de Berlin, 25 (1770–1771), pp. 204233.Google Scholar
Lagrange, J. L., In Oeuvres, vol. 1, Gauthier-Villars, Paris, 1869, p. 520.Google Scholar
Lagrange, J. L., Leçons sur le Calcul des fonctions, in Oeuvres, vol. 2, Gauthier-Villars, Paris, 1869, p. 25.Google Scholar
Lagrange, J. L., Oeuvres, Edited by Serret, J. A., Gauthier-Villars, Paris, 1870.Google Scholar
Laguerre, E., Sur l’integrale , Bull. de la Soc. Math. France, 7 (1879), pp. 7281.Google Scholar
Lamb, H., Hydrodynamics, Cambridge University Press, 1895.Google Scholar
Lamb, H., An Elementary Course of Infinitesimal Calculus, Cambridge University Press, 1897.Google Scholar
Lamé, G., Mémoire sur les lois de l’équilibre du fluide éthéré, Journal de l’École Polyt., 23 (1834), pp. 191288.Google Scholar
Lamé, G., Sur les surfaces isothermes dans les corps solides homogènes en équilibre de température, Journal de Math. Pure et Appl., 2 (1837), pp. 147183.Google Scholar
Lamé, G., Mémoire sur les axes des surfaces isothermes du second degré, considérés comme de fonctions de la température, Journal de Math. Pure et Appl., 4 (1839), pp. 100125.Google Scholar
Lamé, G., Mémoire sur l’équilibre des températures dans un ellipsoide á trois axes inégaux, Journal de Math. Pure et Appl., 4 (1839), pp. 126163.Google Scholar
Lamé, G., Leo¸ns sur les Fonctions Inverses des Transcendantes et les Surfaces Isothermes, MalletBachelier, 1857.Google Scholar
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig: B. G. Teubner, 1909.Google Scholar
Landen, J., An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom, Philos. Trans. Royal Soc. London, 65 (1775), pp. 283289.Google Scholar
Landsberg, G., Zur Theorie der Gaussschen Summen und der linearen Transformation der Theta-functionen, J. reine angew. Math., 111 (1893), pp. 234253.Google Scholar
Laplace, P. S., Mémoire sur la théorie de l’anneau de Saturne, Histoire de l’Académie royale des sciences, avec les mémoires de mathématique et de physique, (1787), pp. 249267.Google Scholar
Laplace, P. S., Traité de Mècanique Cèleste, Paris, Duprat, 1799.Google Scholar
Laplace, P. S., Théorie Analytique des Probabilités, 1812. Reproduced by Nabu Press, September, 2011.Google Scholar
Laurent, H., Mémoire sur les fonctions de Legendre, Journal de Mathématiques Pures et Appliquées, 1 (1875), pp. 373398.Google Scholar
Laurent, H., Sur les nombres premiers, Nouv. Ann. Math., 18 (1899), pp. 234241.Google Scholar
Laurent, P. A., Extension du théorème de M. Cauchy, relatif á la convergence du développement d’une fonction suivant les puissances ascendantes de la variable, Comptes Rendus de la Academie des Sciences de Paris, 17 (1843), pp. 348349.Google Scholar
Laurincikas, A. and Garunkstis, R., The Lerch Zeta Function, Springer-Verlag, 1st. ed., 2003.Google Scholar
Lax, P. D., Functional Analysis, J. Wiley and Sons, New York, 2002.Google Scholar
Leathem, J. G., Elements of the Mathematical Theory of Limits, London, G. Bell and sons, Ltd., 1925.Google Scholar
Lebesgue, H., Intégrale, longeur, aire, Annali di Matematica Pura ed Applicata, 7 (1902), pp. 231359.Google Scholar
Lebesgue, H., Leçons sur l’Intégration, Gauthier-Villars, Paris, 1904.Google Scholar
Lebesgue, H., Leçons sur les Séries Trigonométriques, Gauthier-Villars, Paris, 1906.Google Scholar
Legendre, A. M., Recherches sur diverses sortes d’intégrales défines, Mémoires par divers Savants à l’Académie des Sciences de l’Insitute de France, 10 (1785), pp. 416509.Google Scholar
Legendre, A. M., Exercises de Calcul Intégral sur Diverses Ordres de Transcendentes et sur les Quadratures, Paris, 1811.Google Scholar
Legendre, A. M., Traite des Fonctions Elliptiques et des Integrales Euleriennes; three volumes, Firmin Didot Freres, Paris, 1825, 1826, 1828-1832.Google Scholar
Legendre, A. M. and Jacobi, C., Correspondance mathématique entre Legendre et Jacobi, J. reine angew. Math., 80 (1875), pp. 205279.Google Scholar
Leibnitz, G., Letter from J. Bernoulli to Leibnitz, Ges. Werke, Dritte Folge, III (Halle, 1855), p. 75.Google Scholar
Lerch, M., Contributions á la théorie des fonctions, Sitz. Böhm. Akad., (1886), pp. 571583.Google Scholar
Lerch, M., Note sur la fonction , Acta Math., 11 (1887), pp. 1924.Google Scholar
Lerch, M., Ueber die Nichtdifferentiirbarkeit gewisser Functionen, J. reine angew. Math., 103 (1888), pp. 126138.Google Scholar
Lerch, M., O vlastnostech nekonečné řady , Casopis, 21 (1892), pp. 6568.Google Scholar
Lerch, M., Sur une intégrale définie, Giornale di Matematiche, 31, (1893), pp. 171172.Google Scholar
Lerch, M., Sur la différentiation d’une classe de séries trigonométriques, Ann. de l’École norm. sup., 12 (1895), pp. 351361.Google Scholar
Lerch, M., Uber eine Formel aus der Theorie der Gammafunction, Monatshefte für Mathematik und Physik, 8 (1897), pp. 187192.Google Scholar
Levi-Civita, T., Sullo sviluppo delle funzioni implicite, Rend. dei Lincei, 16 (1907), pp. 312.Google Scholar
Lewis, R. P., A combinatorial proof of the triple product identity, Amer. Math. Monthly, 91 (1984), pp. 420423.Google Scholar
Liapounoff, A. M., Sur une série relative à la théorie de équations différentielles linéaires à coefficients périodiques, Comptes Rendus de la Academie des Sciences de Paris, 123 (1896), pp. 12481252. See also On a series encountered in the theory of linear differential equations of the second order with periodic coefficients (in Russian), Zap. Akad. Nauk po Fiz.-matem. otd., 13 (2) (1902), pp. 170.Google Scholar
Lindelöf, E., Sur les systèmes complets et le calcul des invariants differentiels des groupes continus finis, Diss. et Acta Soc. Scient. Fennicae, 20 (1893), p. 1.Google Scholar
Lindelöf, E., Calcul de Résidues et ses Applications a la Théorie des Fonctions, Gauthier-Villars, 1905.Google Scholar
Lindemann, F., Ueber die Differentialgleiching der Functionen des elliptischen Cylinders, Math. Ann., 22 (1883), pp. 117123.Google Scholar
Liouville, J., Premier Mémoire sur la Théorie des Équations différentielles linéaires et sur le développement des Fonctions en séries, Journal de Mathématiques Pures et Appliquées, 3 (1838), pp. 561614.Google Scholar
Liouville, J., Lettres sur diverses questions d’analyse et de physique mathématique concernant l’ellipsoïde, adressées à M. P.-H. Blanchet, Journal de Mathématiques Pures et Appliquées, 11 (1846), pp. 217236.Google Scholar
Lipschitz, R., De explicatione per series trigonometricas instituenda functionum unius variabilis arbitrariarum, et praecipue earum, quae per variabilis spatium finitum valorum maximorum et minimorum numerum habent infinitum disquisitio, J. reine angew. Math., 63 (1864), pp. 296308.Google Scholar
Lommel, E., Studien über die Bessel’schen Functionen, Leipzig, 1868.Google Scholar
London, F., Ueber Doppelfolgen und Doppelreihen, Math. Ann., 53 (1900), pp. 322370.Google Scholar
Lozier, D. W., The NIST Digital Library of Mathematical Functions Project, Ann. Math. Art. Intel., 38 (2003), pp. 105119.Google Scholar
MacDonald, H. M., Note on Bessel functions, Proc. London Math. Soc., 29 (1897), pp. 110115.Google Scholar
MacDonald, H. M., Zeros of the spherical harmonic considered as a function of n, Proc. London Math. Soc., 31 (1899), pp. 264281.Google Scholar
MacDonald, H. M., The addition-theorem for the Bessel functions, Proc. London Math. Soc., 32 (1900), pp. 152157.Google Scholar
MacDonald, H. M., Note on the zeros of the spherical harmonic , Proc. London Math. Soc., 34 (1901), pp. 5255.Google Scholar
MacDonald, H. M., Note on the evaluation of a certain integral containing Bessel’s functions, Proc. London Math. Soc., (2)7 (1909), pp. 142149.Google Scholar
MacLaurin, C., A Treatise of Fluxions in Two Books, Ruddimans, Edinburgh, 1742.Google Scholar
MacLaurin, R. C., On the solutions of the equation (V2 + κ2)ψ = 0 in elliptic coordinates and their physical applications, Trans. Camb. Phil. Soc., 17 (1898), pp. 41108.Google Scholar
Magnus, W. and Winkler, W., Hill’s Equation, Interscience Wiley, New York, 1st ed., 1966.Google Scholar
Maier, R. S., The 192 solutions of the Heun equation, Math. Comp., 76 (2007), pp. 811843.Google Scholar
Mangeot, S., Sur un mode de développement en série des fonctions algébriques explicites, Ann. de l’École Norm. Sup., (3) 14 (1897), pp. 247250.Google Scholar
Mansion, P., Continuité au sens analytique et continité au sens vulgaire, Mathesis, 19 (1899), pp. 129131.Google Scholar
Markushevich, A. I., Theory of Functions of a Complex Variable, vol. 2, Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
Mathews, G. B., Projective Geometry, London, 1914.Google Scholar
Mathieu, E., Memoire sur le Mouvement Vibratoire d’une Membrane de Forme Elliptique, Jour. Math. Pures Appl., 13 (1868), pp. 137203.Google Scholar
Mazur, B. and Stein, W., Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016.Google Scholar
McKean, H. P., Integrable systems and algebraic curves. In Global Analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978), vol. 755 of Lecture Notes in Math., Springer, Berlin, 1979, pp. 83200.Google Scholar
McKean, H. P., Fredholm determinants, Cent. Eur. J. Math., 9 (2011), pp. 205243.Google Scholar
McKean, H. P. and Moll, V., Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, 1997.Google Scholar
McKean, H. P. and Trubowitz, E., Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math., 29 (1976), pp. 143226.Google Scholar
McKean, H. P. and van Moerbeke, P., The spectrum of Hill’s equation, Invent. Math., 30 (1975), pp. 217274.Google Scholar
Mehler, F. G., Über die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper, J. reine angew. Math., 68 (1868), pp. 134150.Google Scholar
Mehler, F. G., Notiz über die Dirichlet’schen Integralausdrücke für die Kugelfunction Pn(cos ϑ) und über eine analoge Integralform für dir Cylinderfunction J(x), Math. Annalen, 5 (1872), pp. 141144.Google Scholar
Meissel, E., Tafel der Bessel’sehen Functionen und von k = 0 bis k = 15.5 berechnet, Mathematische Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (1888), pp. 1–23.Google Scholar
Merz, J. T., History of European Thought in the Nineteenth Century, vol. 2, Blackwood and Sons, Edinburgh and London, 1903.Google Scholar
Miller, P. D., Applied Asymptotic Analysis, vol. 75 of Graduate Studies in Mathematics, American Mathematical Society, 2006.Google Scholar
Michell, J. H., The wave resistance of a ship, Phil. Mag., 45 (1898), pp. 106123.Google Scholar
Mittag-Leffler, G., Funktions teoretiska studier, I. en ny serientveckling für funktionner af rational karakter, Acta Soc. Scient. Fennicae, 11 (1880), pp. 273293.Google Scholar
Mittag-Leffler, G., Démonstration nouvelle du théoréme de Laurent, Acta Math., 4 (1884), pp. 8088.Google Scholar
Moore, E. H., Concerning transcendentally transcendental functions, Math. Ann., 48 (1897), pp. 4974.Google Scholar
Mordell, L. J., The inversion of the integral , Mess. Math., 44 (1915), pp. 138141.Google Scholar
Morera, G., Intorno all’integrale di Cauchy, Rend.del Ist. Lombardo, 22 (1889), pp. 191200.Google Scholar
Morley, F., On the series , Proc. London Math. Soc., 34 (1901), pp. 397402.Google Scholar
Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, New York, 1953.Google Scholar
Mumford, D., Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Michigan, 1975. Reprinted in The Red Book of Varieties and Schemes, Second edition, Springer, 2009.Google Scholar
Mumford, D., Tata Lectures on Theta, I, vol. 28 of Progr. Math., Birkhäuser, Boston, 1983.Google Scholar
Mumford, D., Tata Lectures on Theta, II, vol. 43 of Progr. Math., Birkhäuser, Boston, 1984.Google Scholar
Mumford, D., Tata Lectures on Theta, III, Progr. Math., Birkhäuser, Boston, 1984.Google Scholar
Murphy, R., On the inverse method of definite integrals, with physical applications, Camb. Phil. Trans., 4 (1833), pp. 353408.Google Scholar
Murphy, R., Elementary Principles of the Theories of Electricty, Heat, and Molecular Actions, Cambridge: Printed at the Pitt Press by J. Smith for J. & J. Deighton, 1833.Google Scholar
Murphy, R., Second memoir on the inverse method of definite integrals, Camb. Phil. Trans., 5 (1835), pp. 113148; Third memoir on the inverse method of definite integrals, pp. 315–394.Google Scholar
Netto, E., Beitrage sur Integralrechnung, Zeitschrift für Math. und Phys., 40 (1895), pp. 180185.Google Scholar
Neumann, C., Über die Entwicklung einer Funktion nach den Kugelfunktionen, Halle, 1862.Google Scholar
Neumann, C., Theorie der Bessel’schen Functionen: Ein analogon zur Theorie der Kugelfunctionen, B. G. Teubner, Leipzig, 1867.Google Scholar
Neumann, C., Ueber die Entwickelung beliebig gegebener Functionen nach den Besselschen Functionen, J. reine angew. Math., 67 (1867), pp. 310314.Google Scholar
Neumann, C., Untersuchungen über das Logarithmische und Newton’sche Potential, B. G. Teubner, Leipzig, 1877.Google Scholar
Neumann, C., Über die Kugelfunctionen Pn und Qn, insbesondere über Entwicklung der Ausdrücke und nach den Cosinus der Vielfachen von Φ, Abhandlungen der Mathematisch-Physischen Classe de Königlich Sächsischen Gesellschaft der Wissenschaften, 13 (1887), pp. 401475.Google Scholar
Neumann, J., Entwickelung der in elliptischen Coordinaten ausgedrückten reciproken Entfernung zweier Puncte in Reihen, welche nach den Laplace’schen Y(n) fortschreiten; und Anwendung dieser Reihen zur Bestimmung des magnetischen Zustandes eines Rotations-Ellipsoïds, welche durch vertheilende Kräfter erregt ist, J. reine angew. Math., 37 (1848), pp. 2150.Google Scholar
Neville, E. H., The genesis of Lamé’s equation, Quarterly Journal of Pure and Applied Mathematics, 49 (1923), pp. 338352.Google Scholar
Newman, D. J., Simple analytic proof of the Prime Number Theorem, Amer. Math. Monthly, 87 (1980), pp. 693696.Google Scholar
Newman, F. W., On Γa, especially when a is negative, Cambridge and Dublin Math. Journal, 3 (1848), pp. 5760.Google Scholar
Newton, I., De Analysi per aequationes numero terminorum infinitas (1669). In The Mathematical Papers of Isaac Newton, Whiteside, D., ed., vol. 2, Cambridge University Press, 1969.Google Scholar
Nicholson, J. W., The asymptotic expansion of Bessel functions of high order, Phil. Mag., 14 (1907), pp. 697707.Google Scholar
Nicholson, J. W., On Bessel functions of equal argument and order, Phil. Mag., 16, (1908), pp. 271279.Google Scholar
Nicholson, J. W., On the relation of Airy’s integral to the Bessel functions, Phil. Mag., 18, (1909), pp. 617.Google Scholar
Nicole, F., Sur le calcul des différences finies, et des sommes des suites, Mém. de l’Acad. des Sci., Paris, (1717), pp. 3847.Google Scholar
Nielsen, N., Sur les séries de factorielles, C. R. Acad. Sci. Paris, 134 (1902), pp. 12731275.Google Scholar
Nielsen, N., Handbuch der Theorie der Cylinderfunktionen, B. G. Teubner, Leipzig, 1904.Google Scholar
Nielsen, N., Sur la représentation asymptotique d’une série de factorielles, Annales scientifiques de l’École Normale Supérieure, 21 (1904), pp. 449458.Google Scholar
Nielsen, N., Recherches sur le développement d’une fonction analytique en série de fonctions hypergéometriques, Annales scientifiques de l’École Normale Supérieure, 30 (1913), pp. 121171.Google Scholar
Niven, W. D., On a special form of Laplace’s equation, Mess. Math., 10 (1880), pp. 114117.Google Scholar
Niven, W. D., On ellipsoidal harmonics, Phil. Trans., 182a (1892), pp. 231278.Google Scholar
Niven, W. D., On the harmonics of a ring, Proc. London Math. Soc., 24 (1892), pp. 373377.Google Scholar
Nörlund, N. E., Sur les séries de facultés, Acta Math., 37 (1914), pp. 327387.Google Scholar
Nörlund, N. E., Mémoire sur les polynomes de Bernoulli, Acta Math., 43 (1920), pp. 121196.Google Scholar
Olver, F. W. J., Asymptotics and Special Functions, Academic Press. New York, 1974.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W., eds., NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.Google Scholar
Orr, W. M., Theorems relating to the product of two hypergeometric series, Trans. Camb. Phil. Soc., 17 (1899), pp. 115.Google Scholar
Osgood, W. F., Some points in the elements of the theory of functions, Bull. Amer. Math. Soc., 2 (1896), pp. 296302.Google Scholar
Osgood, W. F., Problems in infinite series and definite integrals; with a statement of certain sufficient conditions which are fundamental in the theory of definite integrals, Ann. Math., 3 (1901), pp. 129146.Google Scholar
Osgood, W. F., Lehrbuch der Funktionentheorie, B. G. Teubner, Leipzig und Berlin, 1907.Google Scholar
Painlevé, P., Mémoire sur les équations différentielles dont l’integrale générale est uniforme, Bulletin de la Soc. Mat. France, 27 (1900), pp. 201261.Google Scholar
Papperitz, E., Ueber verwanndtes-Functionen, Math. Ann., 25 (1885), pp. 212221.Google Scholar
Parseval, M. A., Méthode générale pour sommer, par le moyen des intégrales définies, la suite donnée par le théorème de m. Lagrange, au moyen de laquelle it trouve une valeur qui satisfait á une équation algébrique ou transcendente, Mém. par divers savants, I (1805), pp. 639648.Google Scholar
Pearson, K., A Mathematical Theory of Random Migration, London, Dulau & Co.Google Scholar
Petkovsek, M., Wilf, H., and Zeilberger, D., A=B, A. K. Peters, 1st. ed., 1996.Google Scholar
Pierpoint, J., The Theory of Functions of Real Variables, Ginn and Company, 1908.Google Scholar
Pincherle, S., Una nuova estensione delle funzioni sferiche, Memorie della Reale Accademia delle Scienze dell’Istituto di Bologna, Classe di Scienze Fisiche Series 5, 1 (1890), pp. 337339.Google Scholar
Pincherle, S., I sistemi ricorrenti di prim’ordine e di secondo grado, Atti della R. Accad. dei Lincei, Rendiconti Ser. 4, 5 (1889), pp. 812.Google Scholar
Pincherle, S., Un sistema d’integrali ellitici considerati come funzioni dell’invariante assoluto, Atti della R. Accad. dei Lincei, Rendiconti Ser. 4, 7 (1891), pp. 7487.Google Scholar
Pincherle, S., Della validitá effetiva di alcuni sviluppi in series di funzioni, Atti della R. Accad. dei Lincei, Rendiconti Ser. 5, 5 (1896), pp. 2733.Google Scholar
Pincherle, S., Sulle serie di fattoriali, Atti della R. Accad. dei Lincei, Rendiconti Ser. 5, 11 (1902), pp. 139144 and 417–426.Google Scholar
Pincherle, S., Sulla serie di fattoriali generalizzate, Rendiconti del Circolo Matematico di Palermo, 37 (1914), pp. 379390.Google Scholar
Plana, G. A. A., Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en terms finis la formula g’en’erale pour la sommation des suites, Mem. Acad. Sci. Torino, 25 (1820), pp. 403418.Google Scholar
Pochhammer, L., Zur Theorie der Euler’schen Integrale, Math. Ann., 35 (1890), pp. 495526.Google Scholar
Poincaré, H., Sur les déterminants d’ordre infini, Bull. Soc. Math. France, 14 (1886), pp. 7790.Google Scholar
Poincaré, H., Sur les intégrales irrégulièrs: Des équations linéires, Acta Math., 8 (1886), pp. 295344.Google Scholar
Poisson, S. D., Second mémoire sur la distribution de la chaleur dans les corps solides, Journal de l’École Polytechnique, Paris, 12 (1823), pp. 249403.Google Scholar
Poisson, S. D., Suite du mémoire sur les intégrales définies et sur la sommation des séries, Journal de l’École Polytechnique, Paris, 12 (1823), pp. 404509.Google Scholar
Poisson, S. D., Mémoire sur le calcul numérique des intégrales définies, Mém. de l’Acad. des Sci., Paris, 6 (1827), pp. 571602.Google Scholar
Poisson, S. D., Mémoire sur l’équilibre et le mouvement des corps élastiques, Mémoires de l’Académie Royale des sciences de l’Institut de France, 8 (1829), pp. 357570.Google Scholar
Poole, E., Introduction to the Theory of Linear Differential Equations, Oxford Univ. Press, Oxford, 1936.Google Scholar
Porter, M. B., Note on the roots of Bessel’s functions, Bull. Amer. Math. Soc., 4 (1898), pp. 274275.Google Scholar
Pöschel, J. and Trubowitz, E., Inverse Spectral Theory, vol. 130 of Pure and Applied Mathematics, Academic Press, New York, 1987.Google Scholar
Pringsheim, A., Ueber das Verhalten gewisser Potenzreihen auf dem Convergenzkreise, Math. Ann., 25 (1885), pp. 419426.Google Scholar
Pringsheim, A., Zur Theorie der Gamma-Functionen, Math. Ann., 31 (1888), pp. 455481.Google Scholar
Pringsheim, A., Ueber die Convergenz unendlicher Producte, Math. Ann., 33 (1889), pp. 119154.Google Scholar
Pringsheim, A., Zur Theorie der Taylor’schen Reihe und der analytischen Functionen mit beschränktem Existenzbereich, Math. Ann., 42 (1893), pp. 153184.Google Scholar
Pringsheim, A., Uber Konvergenz und funktionentheretischen Charakter gewisser limitär-periodischer Kettenbrüche, Münchner Sitzungsberichte, 27 (1897), pp. 101152.Google Scholar
Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), pp. 289321.Google Scholar
Pringsheim, A. and Molk, J., Algorithmes illimités. In Encyclopédie des Sciences Mathématiques Pures at Appliquées, Monk, J., ed., vol. I4, Gauthier-Villars, Paris, 1904.Google Scholar
Prudnikov, A. P., Brychkov, Y. A., and Marichev, O. I., Integrals and Series. Five volumes, Gordon and Breach Science Publishers, 1992.Google Scholar
Prym, F. E., Zur Theorie der Gammafunction, J. reine angew. Math., 82 (1877), pp. 165172.Google Scholar
Raabe, J. L., Angenäherte Bestimmung der Factorenfolge , wenn n eine sehr grosse Zahl ist., J. reine angew. Math., 25 (1843), pp. 14659.Google Scholar
Raabe, J. L., Zurückführung einiger Summen und bestimmten Integrale auf die Jacob–Bernoullische Function, J. reine angew. Math., 42 (1851), pp. 348367.Google Scholar
Ramanujan, S., Modular equations and approximations to π, Quart. J. Math., 45 (1914), pp. 350372.Google Scholar
Ravut, L., Extension du théoréme de Cauchy aux fonctions d’une variable complexe de la forme , Nouv. Annales de Math., 16 (1897), pp. 365367.Google Scholar
Rayleigh, J. W. S., The Theory of Sound, London, Macmillan and Co., 1877.Google Scholar
Reiff, R., Geschichte der Unendlichen Reichen, Tübingen, H. Laupp, 1889.Google Scholar
Remmert, R., Theory of Complex Functions, Readings in Mathematics, Springer-Verlag, New York, 1991.Google Scholar
Reyssat, E., Quelques Aspects des Surfaces de Riemann, vol. 77 of Progress in Mathematics, Birkhäuser, Boston, 1989.Google Scholar
Richelot, F. J., Note sur le théorème relatif à une certaine fonction transcendante démontré dans No. 22. cah. 3. du présent volume, J. reine angew. Math., 9 (1832), pp. 407408.Google Scholar
Riemann, G. F. B., Zur Theorie der Nobili’schen Farbenringe, Ann. der Phys. und Chemie, 95 (1855), pp. 130139.Google Scholar
Riemann, G. F. B., Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β, γ, x) darstellbaren Functionen, Abh. Kön. Ges. Wiss. Göttingen Math., 7 (1857).Google Scholar
Riemann, G. F. B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatberichte der Berliner Akademie, 7 (1859), pp. 671680.Google Scholar
Riemann, G. F. B., Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, B. G. Teubner, 1876.Google Scholar
Riesz, M., Sur la sommation des séries de Dirichlet, C. R. Acad. Sci. Paris, 149 (1909), pp. 1821.Google Scholar
Ritt, J. F., On the differentiability of asymptotic series, Bull. Amer. Math. Soc., 24 (1918), pp. 225227.Google Scholar
Rodrigues, M., Mémoire sur l’attraction des sphéroïdes, Corresp. sur l’École polytechnique, 3 (1816), pp. 361385.Google Scholar
Romik, D., The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, 2015.Google Scholar
Ronveaux, A., Heun’s Differential Equations, Oxford Science Publications, Clarendon Press, 1995.Google Scholar
Routh, E. J., On an expansion of the potential functions i/rn−1 in Legendre’s functions, Proc. London Math. Soc., 26 (1894), pp. 481491.Google Scholar
Royden, H. L., Real Analysis, Prentice-Hall, Englewood Cliffs, N.J. 07632, third ed., 1988.Google Scholar
Ruijsenaars, S. N. M., On Barnes’ multiple zeta and gamma function, Adv. Math., 156 (2000), pp. 107132.Google Scholar
Russell, B., Introduction to Mathematical Philosophy, The Macmillan Company, New York, 1st ed., 1919.Google Scholar
Saalschütz, L., Bemerkungen über die Gammafunction mit negativen Argumenten, Zeitschrift fúr Math. und Phys., 32 (1887), pp. 246250.Google Scholar
Saalschütz, L., Weitere bemerkungen über die Gammafunction mit negativen Argumenten, Zeitschrift fúr Math. und Phys., 33 (1888), pp. 363374.Google Scholar
Saalschütz, L., Eine summations formel, Zeitschrift fúr Math. und Phys., 35 (1887), pp. 186189.Google Scholar
Salmon, G., A Treatise on the Higher Plane Curves, Hodges, Foster, and Figgs. Dublin, 1879.Google Scholar
Savidge, H. G., Tables of the ber and bei and ker and kei functions, with further formulae for their computation, Phil. Mag., 19 (1910), pp. 4958.Google Scholar
Schafheitlin, P., Ueber die Darstellung der hypergeometrischen Reihe durch ein bestimmtes Integrals, Math. Ann., 30 (1877), pp. 157158.Google Scholar
Scheiber, W., Uber Unendliche Reihen und deren Convergenz, S. Hirzel, 1860.Google Scholar
Schendel, L., Zur theorie der kugelfunctionen, J. reine angew. Math., 80 (1875), pp. 8694.Google Scholar
Schläfli, H., Einige Bemerkungen zu Herrn Neumann’s Untersuchungen über die Bessel’schen Functionen, Math. Ann., 3 (1871), pp. 134149.Google Scholar
Schläfli, H., Ueber die allgemeine Möglichkeit der conformen Abbildung einer von Geraden begrenzten ebenen Figur in eine Halbebene, J. reine angew. Math., 78 (1874), pp. 6380.Google Scholar
Schläfli, H., Sull’uso delle linee lungo le quali il valore assoluto di una funzione è costante, Ann. di Mat., (2)VI (1875), pp. 120.Google Scholar
Schläfli, H., Ueber die zwei Heine’schen Kugelfunctionen, Bern, 1881.Google Scholar
Schlömilch, O., Notiz über ein bestimmtes Integral, Zeitschrift für Math. und Phys., 2 (1857), pp. 67103.Google Scholar
Schlömilch, O., Ueber die Bessel’sche Funktion, Zeitschrift für Math. und Phys., 2 (1857), pp. 137165.Google Scholar
Schlömilch, O., Über Fakultätenreihen, Zeitschrift für Math. und Phys., 4 (1859), pp. 390431.Google Scholar
Schlömilch, O., Compendium der Höheren Analysis, Braunschweig: Vieweg, 1862.Google Scholar
Schlömilch, O., Ueber eine Kettenbruchenwickelung für unvollständige Gammafunctionen, Zeitschrift für Math. und Phys., 16 (1871), pp. 261262.Google Scholar
Schlömilch, O., Ueber eine Verwandte de Gammafunction, Zeitschrift für Math. und Phys., 25 (1880), pp. 335350.Google Scholar
Schlömilch, O., Ueber den Quotienten zweier Gammafunctionen, 25, pp. 351–415.Google Scholar
Schlömilch, O., Handbuch der Algebraischen Analysis, Frommen, Leipzig, 1889.Google Scholar
Schonholzer, J. J., Ueber die Auswerthungbestimmte Integrale mit Hülfe von Veranderungen des Integrationsweges, Dissertation, Bern (1877).Google Scholar
Schwarz, H. A., Formeln und Lehrsätze zum Gebrauche der elliptische Functionen, Springer-Verlag, Berlin–Heidelberg, 1893.Google Scholar
Seidel, P. L., Note über eine Eigenschaft der Reihen, welche Discontinuirliche Functionen Darstellen, Abhandlunden der Mathematisch-Physikalischen Klasse der Kóniglich Bayerischen Akademie der Wissenschaften, 5 (1848), pp. 382393.Google Scholar
Seifert, A., Ueber eine Neue Geometrische Einführung in die Theorie der Elliptischen Funktionen, Charlottenburg, 1896.Google Scholar
Silverman, J. H., The Arithmetic of Elliptic Curves, Springer Verlag, New York, first ed., 1986.Google Scholar
Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York, first ed., 1994.Google Scholar
Smith, B. A., Tables of Bessel functions Y0 and Y1, Mess. Math., 26 (1897), pp. 98101.Google Scholar
Smith, H. J. S., On a formula for the multiplication of four theta functions, Proc. London Math. Soc., 1 (1865), pp. 8596.Google Scholar
Smith, H. J. S., Note on the formula for the multiplication of four theta functions, Proc. London Math. Soc., 10 (1879), pp. 91100.Google Scholar
Soldner, J., Extract of a letter. In Monatlicher Correspondenz zur beförderung der Erd- und Himmels-Kunde, Gotha, 23 (1811), pp. 182188.Google Scholar
Sonine, N., Recherches sur les fonctions cylindriques et le développement des fonctions continues en sèries, Math. Ann., 16 (1–80), p. 1880.Google Scholar
Spivak, M., Calculus, Publish or Perish Inc., 2nd ed., 1980.Google Scholar
Springer, G., Introduction to Riemann Surfaces, American Mathematical Society, 1st ed., 2002.Google Scholar
Stekloff, W., Sur un problème de la théorie analytique de la chaleur, C. R. Acad. Sci. Paris, 126 (1898), pp. 10221025.Google Scholar
Stenberg, E. A., Sur un cas spécial de l’équation de Lamé, Acta Math., 10 (1887), pp. 339348.Google Scholar
Stieltjes, T. J., Quelques remarques sur l’integration d’une équation différentielle, Astr. Nach., 109 (1884), pp. 146152; 261–266.Google Scholar
Stieltjes, T. J., Sur certains polynômes: Qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé, Acta Math., 6 (1885), pp. 321326.Google Scholar
Stieltjes, T. J., Recherches sur quelques séries semi-convergentes, Ann. de l’École norm. Sup., 3 (1886), pp. 201258.Google Scholar
Stieltjes, T. J., Sur le développement de log Γ(a), Journal de Mathématiques Pures et Appliquées, Ser. 4, 5 (1889), pp. 425466.Google Scholar
Stirling, J., Methodus Differentialis, London, 1764.Google Scholar
Stokes, G. G., On the critical values of the sums of periodic series, Trans. Camb. Phil. Soc., 8 (1849), pp. 533583.Google Scholar
Stokes, G. G., On the dynamical theory of diffraction, Trans. Camb. Phil. Soc., 9 (1856), pp. 162.Google Scholar
Stokes, G. G., On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Phil. Soc., 9 (1856), pp. 166187.Google Scholar
Stokes, G. G., Mathematical and Physical Papers, vol. I, Cambridge University Press, 1901.Google Scholar
Stolz, O., Ueber unendliche Doppelreihen, Math. Ann., 24 (1884), pp. 157171.Google Scholar
Stolz, O. and Gmeiner, J. A., Theoretische Arithmetik, vol. 4 of Sammlung von Lehrbüchern auf dem Gebiete der Mathematischen Wissenschaften mit Einschuluss ihrer Anwendungen, B. G. Teubner, Leipzig, 1902.Google Scholar
Störmer, C., Sur une généralisation de la formule , Acta Mathematica, 19 (1895), pp. 341350.Google Scholar
Sturm, C., Mémoire sur la résolution des équations numériques, Mém. présentés par divers Savans à l’Académie Royale des Science de l’Institute de France, 6 (1835), pp. 271318.Google Scholar
Sylvester, J. J., Note on spherical harmonics, Phil. Mag. Series 5, 2 (1876), pp. 291307.Google Scholar
Sylvester, J. J., The Collected Mathematical Papers, edited by Baker, H. F., vol. I, Cambridge University Press, 1908.Google Scholar
Sylvester, J. J., The Collected Mathematical Papers, edited by Baker, H. F., vol. III, Cambridge University Press, 1909.Google Scholar
Tannery, J., Leçons d’Algèbre et d’Analyse, Gauthier-Villars, 1906.Google Scholar
Tannery, J. and Molk, J., Fonctions Elliptiques (2 volumes), Reprinted by Chelsea, New York, 1972, 1893.Google Scholar
Taylor, B., Methodus Incrementorum Directa et Inversa, London: William Innys, 1715.Google Scholar
Teixeira, F. G., Sur les séries ordonnées suivant les puissances d’une fonction donnée, J. reine angew. Math., 122 (1900), pp. 97123.Google Scholar
Thomé, L. W., Ueber die Reihen, welche nach Kugelfunctionen fortschreiten, J. reine angew. Math., 66 (1866), pp. 337343.Google Scholar
Thomé, L. W., Zur Theorie der linearen Differentialgleichungen, J. reine angew. Math., 75 (1873), pp. 266291.Google Scholar
Thompson, W., On the equations of the motion of heat referred to curvilinear coordinates, Camb. Math. Journal, 4 (1845), pp. 3342.Google Scholar
Thompson, W., On the rigidity of the earth, Phil. Trans. R. Soc. Lond., 153 (1863), pp. 573582.Google Scholar
Thompson, W. Kelvin, Lord, Mathematical and Physical papers, vol. 3rd, Cambridge University Press, 1882.Google Scholar
Thompson, W. and Tait, P. T., Treatise on Natural Philosophy, Clarendon Press, 1867.Google Scholar
Titchmarsh, E. C., Hankel transforms, Proc. Camb. Phil. Soc., 21 (1923), pp. 463473.Google Scholar
Titchmarsh, E. C., A contribution to the theory of Fourier transforms, Proc. London Math. Soc., 23 (1925), pp. 279289.Google Scholar
Todhunter, I., An Elementary Treatise on Laplace’s Functions, Lamé’s Functions and Bessel’s Functions, MacMillan and Co., London and Cambridge, 1875.Google Scholar
Tracy, C. A. and Widom, H., Painlevé functions in statistical physics, Publ. RIMS Kyoto Univ., 47 (2011), pp. 361374.Google Scholar
Transon, A., Réflexions sur l’évenement scientifique d’une formule publiée par Wroński en 1812 et démontrée par Cayley en 1873, Nouvelles Annales de Mathématiques, 13 (1874), pp. 161174.Google Scholar
Tweddle, I., James Stirling’s Methodus Differentialis. An Annotated Translation of Stirling’s Text, Sources and Studies in the History of Mathematics and Physical Sciences, Springer Verlag, 2003.Google Scholar
Tweedie, C., Nicole’s contribution to the foundation of the Calculus of Finite Differences, Proc. Edin. Math. Soc., 36 (1918), pp. 2239.Google Scholar
Umemura, H., Painlevé equations and classical functions, Sugaku Expositions, 11 (1998), pp. 77100.Google Scholar
Poussin, C. J. d. l. Vallée, Etudes sur les intégrales à limites infinies pour lesquelles la fonction sous le signe est continue, Ann. Soc. Scient. Brux., 16 (1892), pp. 150180.Google Scholar
Poussin, C. J. d. l. Vallée, Démonstration simplifiée du théoréme de Dirichlet sur la progression arithmétique, vol. 53, Mém. de l’Acad. de Belgique, 1896.Google Scholar
Poussin, C. J. d. l. Vallée, Cours d’Analyse Infinitésimale, Louvain, 1914.Google Scholar
Van Assche, W., Orthogonal Polynomials and Painlevé Equations, vol. 27 of Australian Mathematical Society Lecture Series, Cambridge University Press, 2018.Google Scholar
Varadarajan, V. S., Linear meromorphic differential equations: a modern point of view, Bull. Amer. Math. Soc., 33 (1996), pp. 142.Google Scholar
von Dantscher, V., Vorlesungen úber die Weierstrassche Theorie der Irrationalen Zahlen, Gruck und Verlag von B. G. Teubener, Leipzig, 1908.Google Scholar
von Koch, H., Sur les déterminants infinis et les équations différentielles linéaires, Acta Math., 16 (1892), p. 217.Google Scholar
Wallis, J., Logarithmotechnia Nicolai Mercatoris. Concerning which we shall here deliver the account of the judicious Dr. I. Wallis, given in a Letter to the Lord Viscount Brouncker, as follows, Phil. Trans., 3 (1668), pp. 754764.Google Scholar
Wallis, J., Opera Mathematica, i. (1695).Google Scholar
Watson, G. N., The general solution of Laplace’s equation in n dimensions, Mess. Math., 36 (1906), pp. 98106.Google Scholar
Watson, G. N., The cubic transformation of the hypergeometric function, Quart. J. Math., 41 (1909), pp. 7079.Google Scholar
Watson, G. N., A theory of asymptotic series, Phil. Trans., 211 (1911), pp. 279313.Google Scholar
Watson, G. N., The continuation of functions defined by the generalized hypergeometric series, Camb. Phil. Trans., 21 (1912), pp. 281299.Google Scholar
Watson, G. N., Complex Integration and Cauchy’s theorem, Cambridge University Press, 1914.Google Scholar
Watson, G. N., The limits of applicability of the principle of stationary phase, Proc. Camb. Phil. Soc., 19 (1917), pp. 4955.Google Scholar
Watson, G. N., Asymptotic expansions of hypergeometric functions, Trans. Camb. Phil. Soc., 22 (1918), pp. 277308.Google Scholar
Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1966.Google Scholar
Weber, H., Ueber einige bestimmte Integrale, J. reine angew. Math., 69 (1868), pp. 222237.Google Scholar
Weber, H., Ueber die Integration der partiellen Differentialgleichung , Math. Ann., 1 (1869), pp. 136.Google Scholar
Weber, H., Ueber die Besselschen Functionen und ihre Anwendung auf die Theorie der elektrischen Ströme, J. reine angew. Math., 75 (1873), pp. 75105.Google Scholar
Weber, H., Ueber eine Darstellung willkürlicher Functionen durch Bessel’sche Functionen, Math. Ann., 6 (1873), pp. 146161.Google Scholar
Weber, H., Ein Beitrag zu Poincaré’s Theorie der Fuchs’schen Functionen, Nachrichten von der Königl. Gesellschaft der Wissenschaften und dre Georg-Augusts-Universität zu Göttinger Nach., (1886), pp. 359–370.Google Scholar
Weierstrass, K., Über die Theorie der analytischen Facultäten, J. reine angew. Math., 51 (1856), pp. 160.Google Scholar
Weierstrass, K., Zur Functionenlehre, Berliner Monatsberichte, (1880), pp. 719743.Google Scholar
Weierstrass, K., Abhandlungen aus der Funktionenlehre, Verlag von Julius Springer, 1886.Google Scholar
Weierstrass, K., Mathematische Werke, vol. I, Berlin, Mayer and Muller, 1894.Google Scholar
Weierstrass, K., Mathematische Werke, vol. II, Berlin, Mayer and Muller, 1895.Google Scholar
Wessel, C., On the analytical representation of direction: an attempt applied to solving plane and spherical polygons, 1797. Translated by Damhus, Flemming. Copenhagen: C. A. Reitzels, 1997. Editor Branner, Bodil et al.Google Scholar
Weyl, H., The concept of a Riemann surface, New York, Dover Publications, 3rd. ed., 2000.Google Scholar
Wheeden, R. L. and Zygmund, A., Measure and Integral. An introduction to Real Analysis, Marcel Dekker, New York, 1977.Google Scholar
Whitehead, A. N., Axioms of Projective Geometry, no. 4 in Cambridge Math. Tracts, Cambridge University Press, 1906.Google Scholar
Whitehead, A. N. and Russell, B., Principia Mathematica, Cambridge University Press, 1910–1913.Google Scholar
Whittaker, E. T., On the connection of algebraic functions with automorphic functions, Phil. Trans. Roy. Soc., 192 (1899), pp. 132.Google Scholar
Whittaker, E. T., On the functions associated with the parabolic cylinder in harmonic analysis, Proc. London Math. Soc., 35 (1902), pp. 417427.Google Scholar
Whittaker, E. T., An expression of certain functions as generalized hypergeometric functions, Bull. Amer. Math. Soc., 10 (1903), pp. 125134.Google Scholar
Whittaker, E. T., On the partial differential equations of mathematical physics, Math. Ann., 57 (1903), pp. 333355.Google Scholar
Whittaker, E. T., On the functions associated with the elliptic cylinder in harmonic analysis, in Proc. Inter. Congress Math., vol. 1, Cambridge, 1912, pp. 366371.Google Scholar
Whittaker, E. T., On the general solution of Mathieu’s equation, Proc. Edin. Math. Soc., 32 (1914), pp. 7580.Google Scholar
Whittaker, E. T., On Lamé’s Differential Equation and Ellipsoidal Harmonics, Proc. London Math. Soc., 14 (1915), pp. 260268.Google Scholar
Whittaker, E. T., Bessel functions and Kapteyn series, Proc. London Math. Soc., 16 (1917), pp. 150174.Google Scholar
Whittaker, E. T., On the numerical solutions of integral-equations, Proc. Roy. Soc. London, 94 (1918), pp. 367383.Google Scholar
Whittaker, E. T., Analytical Dynamics, Cambridge University Press, 4th ed., 1959.Google Scholar
Whittaker, E. T. and Watson, G. N., Modern Analysis, Cambridge University Press, 1962.Google Scholar
Wilbraham, H., On a certain periodic function, The Cambridge and Dublin Mathematical Journal, 3 (1848a), pp. 198201.Google Scholar
Wilf, H. S., generatingfunctionology, Academic Press, 1st ed., 1990.Google Scholar
Wilson, R. H. and Peirce, B. O., Table of the first forty roots of the Bessel equation J0(x) = 0 with the corresponding values of J1(x), Bull. Amer. Math. Soc., 33 (1897), pp. 153157.Google Scholar
Wright, E. M., An enumerative proof of an identity of Jacobi, Jour. London Math. Soc., 40 (1965), pp. 5557.Google Scholar
Wroński, J. M. H., Introduction à la Philosophie des Mathématiques et Technie de l’Algorithmique, Courcier, Paris, 1811.Google Scholar
Young, A. W., On the quasi-periodic solutions of Mathieu’s differential equation, Proc. Edinburgh Math. Soc., 32 (1913), pp. 8190.Google Scholar
Young, W. H., On series of Bessel’s functions, Proc. London Math. Soc., s2-(18) (1920), pp. 163200.Google Scholar
Young, W. H. and Young, G. C., The theory of sets of points, Cambridge University Press, 1906.Google Scholar
Zudilin, W., One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russian Math. Surveys, 56 (2001), pp. 774776.Google Scholar
Zudilin, W., Apèry’s theorem. Thirty years after. (An elementary proof of Apèry’s theorem), Int. J. Math. Comput. Sci., 4 (2009), pp. 919.Google Scholar
Zygmund, A., Trigonometric series, Two volumes. Third edition. With a foreword by Robert A. Fefferman, Cambridge University Press, 2002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×