Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T14:30:25.137Z Has data issue: false hasContentIssue false

Chapter 8 - Application of pharmacogenomics and personalized medicine for the care of depression

Published online by Cambridge University Press:  19 October 2021

Chad E. Beyer
Affiliation:
University of Colorado School of Medicine
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Remarkable progress notwithstanding, pharmacotherapy for depressive and related conditions, as well as pharmacological intervention of various other psychiatric and medical conditions, has typically ignored the magnitude and clinical relevance of the huge inter-individual variations in pharmacokinetics and pharmacodynamics. Such neglects lead to additional risks of severe and/or unpleasant side effects, medication non-adherence, prolonged periods of titration, suboptimal therapeutic responses, and treatment failures. Advances in pharmacogenomics and computer modeling technologies hold promises for achieving the goals of “personalized” (“individualized”) medicine. However, challenges abound for realizing such goals, including the packaging and interpretation of genotyping results, ethical considerations, financing, economy of scale, inertia against changes in medical practice (innovation diffusion), as well as other infrastructural and organizational issues related to the use of new information.

Type
Chapter
Information
Next Generation Antidepressants
Moving Beyond Monoamines to Discover Novel Treatment Strategies for Mood Disorders
, pp. 119 - 131
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fierz, W. 2004, Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends, Med. Sci. Monit., 10(5): 111.Google Scholar
Hallworth, M. 2004, The drugs don’t work: pharmacogenomics – clinical biochemistry’s future? Ann. Clin. Biochem., 41(Pt 4): 260.CrossRefGoogle Scholar
Ross, J., Schenkein, D., Kashala, O., et al. 2004, Pharmacogenomics, Adv. Anat. Pathol., 11(4): 211.Google Scholar
Haga, S. B., Burke, W. 2004, Using pharmacogenetics to improve drug safety and efficacy, JAMA, 291(23): 2869.CrossRefGoogle ScholarPubMed
Lin, K.-M., Perlis, R. H., Wan, Y.-J. 2008, Pharmacogenomic strategy for individualizing antidepressant therapy, Dialogues Clin. Neurosci., 10(4): 401.Google Scholar
Bala, M., Zarkin, G. 2004, Pharmacogenomics and the evolution of healthcare: is it time for cost-effectiveness analysis at the individual level? Pharmacoeconomics, 22(8): 495.Google Scholar
Evans, W., Relling, M. 2004, Moving towards individualized medicine with pharmacogenomics, Nature, 429: 464.CrossRefGoogle ScholarPubMed
Flowers, C., Veenstra, D. 2004, The role of cost-effectiveness analysis in the era of pharmacogenomics, Pharmacoeconomics, 22(8): 481.Google Scholar
Frueh, F., Gurwitz, D. 2004, From pharmacogenetics to personalized medicine: a vital need for educating health professionals and the community, Pharmacogenomics, 5(5): 571.Google Scholar
Phillips, K., Veenstra, D., Ramsey, S., Van Bebber, S., Sakowski, J. 2004, Genetic testing and pharmacogenomics: issues for determining the impact to healthcare delivery and costs, Am. J. Manag. Care, 10(7): 425.Google Scholar
Mordini, E. 2004, Ethical considerations on pharmacogenomics, Pharmacol. Res., 49(4): 375.CrossRefGoogle ScholarPubMed
Lin, Z., Owen, A., Altman, R. 2004, Genetics: genomic research and human subject privacy, Science, 305(5681): 183.CrossRefGoogle ScholarPubMed
Voelter-Mahlknecht, S., Mahlknecht, U. 2004, Darwinism and pharmacogenomics: from ‘one treatment fits all’ to ‘selection of the richest’? Trends Mol. Med., 10(5): 208.CrossRefGoogle ScholarPubMed
Kessler, R. C., McGonagle, K. A., Zhao, S., et al. 1994, Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey, Arch. Gen. Psychiatry, 51(1): 8.Google Scholar
Weissman, M. M., Bland, R. C., Canino, G. J., et al. 1996, Cross-national epidemiology of major depression and bipolar disorder, JAMA, 276(4): 293.Google Scholar
Desjarlais, R., Eisenberg, L., Good, B., Kleinman, A. World Mental Health: Problems and Priorities in Developing Countries. New York: Oxford University Press; 1995.Google Scholar
Guze, S. B., Robins, E. L. I. 1970, Suicide and primary affective disorders, Br. J. Psychiatry, 117(539): 437.Google Scholar
Wells, K., Sturm, R., Sherbourne, C., Meredith, L. Caring for Depression: A RAND Study. Cambridge, MA: Harvard University Press; 1996.Google Scholar
Penninx, B. W. J. H., Beekman, A. T. F., Honig, A., et al. 2001, Depression and cardiac mortality: results from a community-based longitudinal study, Arch. Gen. Psychiatry, 58(3): 221.CrossRefGoogle ScholarPubMed
May, M., McCarron, P., Stansfeld, S., et al. 2002, Does psychological distress predict the risk of ischemic stroke and transient ischemic attack? The Caerphilly Study, Stroke, 33(1): 7.Google Scholar
Judd, L. L., Martin, P. P., Wells, K. B., Rapaport, M. H. 1996, Socioeconomic burden of subsyndromal depressive symptoms and major depression in a sample of the general population, Am. J. Psychiatry, 153: 1411.Google Scholar
Sherbourne, C. D., Wells, K. B., Hays, R. D. 1994, Subthreshold depression and depressive disorder: clinical characteristics of general medical and mental health specialty outpatients, Am. J. Psychiatry, 1(51): 1.Google Scholar
APA Task Force. 1985, Tricyclic antidepressants – blood level measurements and clinical outcome: an APA Task Force report. Task Force on the Use of Laboratory Tests in Psychiatry, Am. J. Psychiatry, 142(2): 155.Google Scholar
Eap, C., Sirot, E., Baumann, P. 2004, Therapeutic monitoring of antidepressants in the era of pharmacogenetics studies, Ther. Drug. Monit., 26(2): 152.CrossRefGoogle ScholarPubMed
Gram, L., Kragh-Sorensen, P., Kristensen, C., Moller, M., Pedersen, O., Thayssen, P. 1984, Plasma level monitoring of antidepressants: theoretical basis and clinical application, Adv. Biochem. Psychopharmacol., 39: 399.Google Scholar
Mann, K., Hiemke, C., Schmidt, L., Bates, D. 2006, Appropriateness of therapeutic drug monitoring for antidepressants in routine psychiatric inpatient care, Ther. Drug. Monit., 28(1): 83.CrossRefGoogle ScholarPubMed
Kalow, W. 2006, Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine, Pharmacogenomics J., 6(3): 162.Google Scholar
Malhotra, A., Murphy, G., Kennedy, J. 2004, Pharmacogenetics of psychotropic drug response, Am. J. Psychiatry, 161(5): 780.Google Scholar
Weinshilboum, R., Wang, L. 2004, Pharmacogenomics: bench to bedside, Nat. Rev. Drug. Discov., 3(9): 739.Google Scholar
Ingelman-Sundberg, M. 2004, Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future, Trends Pharmacol. Sci., 25(4): 193.Google Scholar
Lundqvist, E., Johansson, I., Ingelman-Sundberg, M. 1999, Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes, Gene, 226(2): 327.Google Scholar
Mendoza, R., Wan, Y.-J., Poland, R. E., et al. 2001, CYP2D6 polymorphism in a Mexican American population, Clin. Pharmacol. Ther., 70(6): 552.Google Scholar
Wan, Y.-J., Poland, R. E., Han, G., et al. 2001, Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in Southern California, Pharmacogenetics, 11(6): 489.Google Scholar
Luo, H.-R., Aloumanis, V., Lin, K.-M., Gurwitz, D., Wan, Y.-J. 2004, Polymorphisms of CYP2C19 and CYP2D6 in Israeli ethnic groups, Am. J. Pharmacogenomics, 4(6): 395.CrossRefGoogle ScholarPubMed
Luo, H.-R., Wan, Y.-J. 2006, Polymorphisms of genes encoding phase I enzymes in Mexican Americans – an ethnic comparison study, Curr. Pharmacogenomics, 4(4): 345.Google Scholar
DeVane, C. L. 1994, Pharmacogenetics and drug metabolism of newer antidepressant agents, J. Clin. Psychiatry, 55 Suppl: 38.Google Scholar
Lessard, E., Yessine, M. A., Hamelin, B. A., O’Hara, G., LeBlanc, J., Turgeon, J. 1999, Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans, Pharmacogenetics, 9(4): 435.Google Scholar
Yin, O., Wing, Y., Cheung, Y., et al. 2006, Phenotype–genotype relationship and clinical effects of citalopram in Chinese patients, J. Clin. Psychopharmacol., 26(4): 367.Google Scholar
Luo, H.-R., Gaedigk, A., Aloumanis, V., Wan, Y.-J. 2005, Identification of CYP2D6 impaired functional alleles in Mexican Americans, Eur. J. Clin. Pharmacol., 61(11): 797.Google Scholar
Luo, H.-R., Poland, R. E., Lin, K.-M., Wan, Y.-J. 2006, Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study, Clin. Pharmacol. Ther., 80(1): 33.Google Scholar
Harper, P. A., Wong, J. M. Y., Lam, M. S. M., Okey, A. B. 2002, Polymorphisms in the human AH receptor, Chem. Biol. Interact., 141(1–2): 161.CrossRefGoogle ScholarPubMed
Brinkmann, U., Eichelbaum, M. 2001, Polymorphisms in the ABC drug transporter gene MDR1, Pharmacogenomics J., 1(1): 59.Google Scholar
Saito, S., Iida, A., Sekine, A., et al. 2002, Three hundred twenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population, J. Hum. Genet., 47(1): 38.Google Scholar
Baumann, P., Eap, C. B., Muller, W. E., Tillement, J. P. Alpha-Acid Glycoprotein: Genetics, Biochemistry, Physiological Functions and Pharmacology. New York, NY: Alan R. Liss, Inc.; 1989.Google Scholar
Duché, J. C., Urien, S., Simon, N., Malaurie, E., Monnet, I., Barr, J. 2000, Expression of the genetic variants of human alpha-1-acid glycoprotein in cancer, Clin. Biochem., 33(3): 197.Google Scholar
Barker, E. L., Blakely, R. D. Norepinephrine and serotonin transporters: molecular targets of antidepressant drugs. In: Bloom, F. E. and Kupfer, D. J., eds. Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995. p. 321.Google Scholar
Nelson, J. C. 1999, A review of the efficacy of serotonergic and noradrenergic reuptake inhibitors for treatment of major depression, Biol. Psychiatry, 46(9): 1301.Google Scholar
Schatzberg, A. F., Schildkraut, J. J. Recent studies on norepinephrine systems in mood disorders. In: Bloom, F. E. and. Kupfer, D. J., eds. Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995. p. 911.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., et al. 1996, Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region, Science, 274(5292): 1527.Google Scholar
Greenberg, B. D., McMahon, F. J., Murphy, D. L. 1998, Serotonin transporter candidate gene studies in affective disorders and personality: promises and potential pitfalls, Mol. Psychiatry, 3(3): 186.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., et al. 2002, Serotonin transporter genetic variation and the response of the human amygdala, Science, 297(5580): 400.Google Scholar
Yu, Y. W., Tsai, S. J., Chen, T. J., Lin, C. H., Hong, C. J. 2002, Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders, Mol. Psychiatry, 7(10): 1115.Google Scholar
Smeraldi, E., Zanardi, R., Benedetti, F., Di Bella, D., Perez, J., Catalano, M. 1998, Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine, Mol. Psychiatry, 3(6): 508.Google Scholar
Pollock, B. G., Ferrell, R. E., Mulsant, B. H., et al. 2000, Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression, Neuropsychopharmacology, 23(5): 587.Google Scholar
Serretti, A., Zanardi, R., Rossini, D., Cusin, C., Lilli, R., Smeraldi, E. 2001, Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity, Mol. Psychiatry, 6(5): 586.Google Scholar
Rausch, J. L., Johnson, M. E., Fei, Y. J., et al. 2002, Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome, Biol. Psychiatry, 51(9): 723.Google Scholar
Zanardi, R., Serretti, A., Rossini, D., et al. 2001, Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression, Biol. Psychiatry, 50(5): 323.Google Scholar
Kim, D. K., Lim, S. W., Lee, S., et al. 2000, Serotonin transporter gene polymorphism and antidepressant response, Neuroreport, 11(1): 215.Google Scholar
Yoshida, K., Ito, K., Sato, K., et al. 2002, Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients, Prog. Neuropsychopharmacol. Biol. Psychiatry, 26(2): 383.Google Scholar
Durham, L. K., Webb, S. M., Milos, P. M., Clary, C. M., Seymour, A. B. 2004, The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder, Psychopharmacology, 174(4): 525.Google Scholar
Mundo, E., Walker, M., Cate, T., Macciardi, F., Kennedy, J. L. 2001, The role of serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder: preliminary findings, Arch. Gen. Psychiatry, 58(6): 539.Google Scholar
Perlis, R. H., Mischoulon, D., Smoller, J. W., et al. 2003, Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment, Biol. Psychiatry, 54(9): 879.Google Scholar
Konishi, T., Calvillo, M., Leng, A.-S., Lin, K.-M., Wan, Y.-J. 2004, Polymorphisms of the dopamine D2 receptor, serotonin transporter, and GABAA receptor [beta]3 subunit genes and alcoholism in Mexican-Americans, Alcohol, 32(1): 45.Google Scholar
Massat, I., Souery, D., Lipp, O., et al. 2000, A European multicenter association study of HTR2A receptor polymorphism in bipolar affective disorder, Am. J. Med. Genet., 96(2): 136.Google Scholar
Serretti, A., Lilli, R., Lorenzi, C., Smeraldi, E. 1999, No association between serotonin-2A receptor gene polymorphism and psychotic symptomatology of mood disorders, Psychiatry Res., 86(3): 203.Google Scholar
Bondy, B., Spaeth, M., Offenbaecher, M., et al. 1999, The T102C polymorphism of the 5-HT2A-receptor gene in fibromyalgia, Neurobiol. Dis., 6(5): 433.Google Scholar
Du, L., Bakish, D., Lapierre, Y. D., Ravindran, A. V., Hrdina, P. D. 2000, Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder, Am. J. Med. Genet., 96: 56.Google Scholar
Tiihonen, J., Kuikka, J., Bergstrom, K., et al. 1995, Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics, Nat. Med., 1(7): 654.Google Scholar
Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., et al. 1992, Human dopamine transporter gene(DAT1) maps to chromosome 5p15.3 and displays a VNTR, Genomics, 14(4): 1104.Google Scholar
Muramatsu, T., Higuchi, S. 1995, Dopamine transporter gene polymorphism and alcoholism, Biochem. Biophys. Res. Commun., 211(1): 28.Google Scholar
Parsian, A., Zhang, Z. H. 1997, Human dopamine transporter gene polymorphism (VNTR) and alcoholism, Am. J. Med. Genet., 74: 480.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sander, T., Harms, H., Podschus, J., et al. 1997, Allelic association of a dopamine transporter gene polymorphism in alcohol dependence with withdrawal seizures or delirium, Biol. Psychiatry, 41(3): 299.Google Scholar
Inada, T., Sugita, T., Dobashi, I., et al. 1996, Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode, Am. J. Med. Genet., 67: 406.Google Scholar
Barr, C. L., Xu, C., Kroft, J., et al. 2001, Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder, Biol. Psychiatry, 49(4): 333.Google Scholar
Greenwood, T. A., Alexander, M., Keck, P. E., et al. 2001, Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder, Am. J. Med. Genet., 105: 145.Google Scholar
Schramm, N. L., McDonald, M. P., Limbird, L. E. 2001, The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety, J. Neurosci., 21(13): 4875.Google Scholar
González-Maeso, J., Rodríguez-Puertas, R., Meana, J. J., García-Sevilla, J. A., Guimón, J. 2002, Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: selective supersensitivity of alpha 2A-adrenoceptors, Mol. Psychiatry, 7: 755.Google Scholar
Schittecatte, M., Dumont, F., Machowski, R., et al. 2002, Mirtazapine, but not fluvoxamine, normalizes the blunted REM sleep response to clonidine in depressed patients: implications for subsensitivity of alpha2-adrenergic receptors in depression, Psychiatry Res., 109(1): 1.Google Scholar
Marazziti, D., Baroni, S., Masala, I., et al. 2001, Correlation between platelet alpha(2)-adrenoreceptors and symptom severity in major depression, Neuropsychobiology, 44(3): 122.Google Scholar
Zill, P., Baghai, T. C., Engel, R., et al. 2003, Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response, Am. J. Med. Genet., 120B(1): 85.Google Scholar
Szegedi, A., Rujescu, D., Tadic, A., et al. 2004, The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression, Pharmacogenomics J., 5(1): 49.Google Scholar
Sabol, S. Z., Hu, S., Hamer, D. 1998, A functional polymorphism in the monoamine oxidase A gene promoter, Hum. Genet., 103(3): 273.Google Scholar
Kunugi, H., Ishida, S., Kato, T., et al. 1999, A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders, Mol. Psychiatry, 4(4): 393.CrossRefGoogle ScholarPubMed
Ibanez, A., Perez de Castro, I., Fernandez-Piqueras, J., Saiz-Ruiz, J. 2000, Association between the low-functional MAO-A gene promoter and pathological gambling, Am. J. Med. Genet., 96: 464.Google Scholar
Bellivier, F., Leboyer, M., Courtet, P., et al. 1998, Association between the tryptophan hydroxylase gene and manic-depressive illness, Arch. Gen. Psychiatry, 55(1): 33.Google Scholar
Nielsen, D. A., Virkkunen, M., Lappalainen, J., et al. 1998, A tryptophan hydroxylase gene marker for suicidality and alcoholism, Arch. Gen. Psychiatry, 55(7): 593.Google Scholar
Serretti, A., Lorenzi, C., Cusin, C., et al. 2003, SSRIs antidepressant activity is influenced by Gβ3 variants, Eur. Neuropsychopharmacol., 13(2): 117.Google Scholar
Murphy, G. M., Kremer, C., Rodrigues, H., Schatzberg, A. F. 2003, The apolipoprotein E e4 allele and antidepressant efficacy in cognitively intact elderly depressed patients, Biol. Psychiatry, 54(7): 665.Google Scholar
Russo-Neustadt, A. A., Chen, M. J. 2005, Brain-derived neurotrophic factor and antidepressant activity, Curr. Pharm. Des., 11(12): 1495.Google Scholar
Lan, T., Loh, E., Wu, M., et al. 2008, Performance of a neuro-fuzzy model in predicting weight changes of chronic schizophrenic patients exposed to antipsychotics, Mol. Psychiatry, 13(12): 1129.Google Scholar
Lin, C., Wang, Y., Chen, J., et al. 2008, Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data, Comput. Methods Programs Biomed., 91(2): 91.Google Scholar
Serretti, A., Smeraldi, E. 2004, Neural network analysis in pharmacogenetics of mood disorders, BMC Med. Genet., 5(1): 27.Google Scholar
Sproule, B., Naranjo, C., Türksen, I. 2002, Fuzzy pharmacology: theory and applications, Trends Pharmacol. Sci., 23(9): 412.Google Scholar
Lesko, L., Woodcock, J. 2004, Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective, Nat. Rev. Drug. Discov., 3(9): 763.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×