Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T22:38:07.539Z Has data issue: false hasContentIssue false

Neurotropic enteroviruses co-opt “fair-weather-friend” commensal gut microbiota to drive host infection and central nervous system disturbances

Published online by Cambridge University Press:  15 July 2019

Kevin B. Clark*
Affiliation:
Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073; Felidae Conservation Fund, Mill Valley, CA 94941; Campus Champions, Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104 ; Virus Focus Group, NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA 94035. kbclarkphd@yahoo.comwww.linkedin.com/pub/kevin-clark/58/67/19a

Abstract

Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bordon, Y. (2015) Microbiota: A viral understudy for commensal bacteria. Nature Reviews Immunology 15(1):4.Google Scholar
Clark, K. B. (2013a) Biotic activity of Ca2+-modulating nontraditional antimicrobial and -viral agents. Frontiers in Microbiology 4:381.Google Scholar
Clark, K. B. (2013b) Preface. Current Topics in Medicinal Chemistry 13(18):2281–82.Google Scholar
Clark, K. B. (2018) Possible origins of consciousness in simple control over “involuntary” neuroimmunological action. Consciousness and Cognition 61:7678.Google Scholar
Clark, K. B. & Eisenstein, E. M. (2013) Targeting host store-operated Ca2+ release to attenuate viral infections. Current Topics in Medicinal Chemistry 13(16):1916–32.Google Scholar
Clark, K. B., Eisenstein, E. M. & Krahl, S. E. (2013) Calcium antagonists: A ready prescription for treating infectious diseases? Current Topics in Medicinal Chemistry 13(18):2291–305.Google Scholar
David, R. (2011) Viral infection. The gut microbiota: friend or foe? Nature Reviews Microbiology 9(12):831.Google Scholar
Erickson, A. K., Jesudhasan, P. R., Mayer, M. J., Narbad, A., Winter, S. E. & Pfeiffer, J. K. (2018) Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host & Microbe 23(1):7788.Google Scholar
Karst, S. M. (2016) The influence of commensal bacteria on infection with enteric viruses. Nature Reviews Microbiology 14(4):197204.Google Scholar
Kuss, S. K., Best, G. T., Etheredge, C. A., Pruijssers, A. J., Frierson, J. M., Hooper, L.V., Dermody, T. S. & Pfeiffer, J. K. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334(6053):249–52.Google Scholar
Liu, R. T. (2017) The microbiome as a novel paradigm in studying stress and mental health. American Psychologist 72(7):655–67. Available at: https://doi.org/10.1037/amp0000058.Google Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. (2014) Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience 34(46):15490–96. Available at: https://doi.org/10.1523/JNEUROSCI.3299-14.2014.Google Scholar
Ray, K. (2015) Gut microbiota: A ‘friendly’ gut virus? Nature Reviews Gastroenterology & Hepatology 12(1):6.Google Scholar
Robinson, C. M. & Pfeiffer, J. K. (2014) Viruses and the microbiota. Annual Review of Virology 1:5569.Google Scholar
Sampson, T. R. & Mazmanian, S. K. (2015) Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe 17:565–76. Available at: https://doi.org/10.1016/j.chom.2015.04.011.Google Scholar
Stilling, R. M., Dinan, T. G. & Cryan, J. F. (2016) The brain's Geppetto – microbes as puppeteers of neural function and behaviour? Journal of Neurovirology 22:1421. Available at: https://doi.org/10.1007/s13365-015-0355-x.Google Scholar
Wilks, J. & Golovkina, T. (2012) Influence of microbiota on viral infections. PLoS Pathogens 8(5):e1002681.Google Scholar