Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T07:29:56.917Z Has data issue: false hasContentIssue false

Gaze-contingent manipulation of the FVF demonstrates the importance of fixation duration for explaining search behavior

Published online by Cambridge University Press:  24 May 2017

Jochen Laubrock
Affiliation:
Department of Psychology, University of Potsdam, 14476 Potsdam, Germanyjochen.laubrock@uni-potsdam.deralf.engbert@uni-potsdam.deanke.cajar@uni-potsdam.dehttp://mbd.uni-potsdam.de/EngbertLab/Welcome.html
Ralf Engbert
Affiliation:
Department of Psychology, University of Potsdam, 14476 Potsdam, Germanyjochen.laubrock@uni-potsdam.deralf.engbert@uni-potsdam.deanke.cajar@uni-potsdam.dehttp://mbd.uni-potsdam.de/EngbertLab/Welcome.html
Anke Cajar
Affiliation:
Department of Psychology, University of Potsdam, 14476 Potsdam, Germanyjochen.laubrock@uni-potsdam.deralf.engbert@uni-potsdam.deanke.cajar@uni-potsdam.dehttp://mbd.uni-potsdam.de/EngbertLab/Welcome.html

Abstract

Hulleman & Olivers' (H&O's) model introduces variation of the functional visual field (FVF) for explaining visual search behavior. Our research shows how the FVF can be studied using gaze-contingent displays and how FVF variation can be implemented in models of gaze control. Contrary to H&O, we believe that fixation duration is an important factor when modeling visual search behavior.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cajar, A., Engbert, R. & Laubrock, J. (2016a) Spatial frequency processing in the central and peripheral visual field during scene viewing. Vision Research 127:186–97. doi: 10.1016/j.visres.2016.05.008.CrossRefGoogle ScholarPubMed
Cajar, A., Schneeweiß, P., Engbert, R. & Laubrock, J. (2016b) Coupling of attention and saccades when viewing scenes with central and peripheral degradation. Journal of Vision 16(2):8, 119.CrossRefGoogle ScholarPubMed
Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Essen, D. C. V. & Shulman, G. L. (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–73.CrossRefGoogle ScholarPubMed
Engbert, R., Mergenthaler, K., Sinn, P. & Pikovsky, A. (2011) An integrated model of fixational eye movements and microsaccades. Proceedings of the National Academy of Sciences of the United States of America 108:E765–70.Google ScholarPubMed
Engbert, R., Trukenbrod, H. A., Barthelmé, S. & Wichmann, F. A. (2015) Spatial statistics and attentional dynamics in scene viewing. Journal of Vision 15(1):14, 117.CrossRefGoogle ScholarPubMed
Henderson, J. M. & Ferreira, F. (1990) Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control. Journal of Experimental Psychology: Learning, Memory, and Cognition 16:417–29.Google ScholarPubMed
Laubrock, J., Cajar, A. & Engbert, R. (2013) Control of fixation duration during scene viewing by interaction of foveal and peripheral processing. Journal of Vision 13(12):11, 120.CrossRefGoogle ScholarPubMed
Laubrock, J., Engbert, R. & Kliegl, R. (2005) Microsaccade dynamics during covert attention. Vision Research 45:721–30.CrossRefGoogle ScholarPubMed
Laubrock, J., Engbert, R. & Kliegl, R. (2008) Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision 8(14):13, 117.CrossRefGoogle ScholarPubMed
Loschky, L. C. & McConkie, G. W. (2002) Investigating spatial vision and dynamic attentional selection using a gaze-contingent multiresolutional display. Journal of Experimental Psychology: Applied 8:99117.Google ScholarPubMed
Loschky, L. C., McConkie, G. W., Yang, J. & Miller, M. E. (2005) The limits of visual resolution in natural scene viewing. Visual Cognition 12:1057–92.CrossRefGoogle Scholar
Malcolm, G. L. & Henderson, J. M. (2009) The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision 9(11):8, 113.CrossRefGoogle ScholarPubMed
Malcolm, G. L. & Henderson, J. M. (2010) Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision 10(2):4, 111.CrossRefGoogle ScholarPubMed
McConkie, G. W. & Rayner, K. (1975) The span of the effective stimulus during a fixation in reading. Perception and Psychophysics 17:578–86. doi: 10.3758/BF03203972.CrossRefGoogle Scholar
Nuthmann, A. (2014) How do the regions of the visual field contribute to object search in real-world scenes? Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance 40:342–60.Google ScholarPubMed
Rayner, K. (1986) Eye movements and the perceptual span in beginning and skilled readers. Journal of Experimental Child Psychology 41:211–36.CrossRefGoogle ScholarPubMed
Schad, D. J. & Engbert, R. (2012) The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition 20:391421.CrossRefGoogle ScholarPubMed
Shioiri, S. & Ikeda, M. (1989) Useful resolution for picture perception as a function of eccentricity. Perception 18:347–61.CrossRefGoogle ScholarPubMed
Sperlich, A., Schad, D. J. & Laubrock, J. (2015) When preview information starts to matter: Development of the perceptual span in German beginning readers. Journal of Cognitive Psychology 27:511–30.CrossRefGoogle Scholar