Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T09:39:49.324Z Has data issue: false hasContentIssue false

Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy

Published online by Cambridge University Press:  15 February 2019

Vikas Shivam*
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
Yagnesh Shadangi
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
Joysurya Basu
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
Nilay Krishna Mukhopadhyay
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
*
a)Address all correspondence to this author. e-mail: vikas.rs.met13@itbhu.ac.in
Get access

Abstract

In this investigation, we have reported the alloying behavior, phase evolution, and thermal stability of equiatomic AlCoCrFeNiTi high-entropy alloy (HEA). The 40 h milled powder shows good chemical homogeneity with agglomerated particles varying in the range of ∼3–18 μm. The formation of a nanostructured single-phase BCC (a = 2.85 ± 0.01 Å) was observed along with the minor tungsten carbide (WC) phase that formed due to contamination during milling. Thermal stability of the alloy has been studied using dynamic differential scanning calorimetry (DSC) thermogram and in situ X-ray diffraction. It has been found that this HEA is stable up to 600 °C (873 K). Consolidated samples at 1000 °C (1273 K) showed the transformation of body centered cubic (BCC) phase into the B2 (a = 2.87 ± 0.03 Å) phase co-existing with minor hexagonal WC (a = 2.90 Å, c = 2.83 Å) phase.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213218 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Mukhopadhyay, N.K.: High entropy alloys: A renaissance in physical metallurgy. Curr. Sci. 109, 665667 (2015).Google Scholar
Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 17591771 (2013).CrossRefGoogle Scholar
Joo, S.H., Kato, H., Jang, M.J., Moon, J., Kim, E.B., Hong, S.J., and Kim, H.S.: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591604 (2017).CrossRefGoogle Scholar
Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299313 (2017).CrossRefGoogle Scholar
Moravcik, I., Cizek, J., Gavendova, P., Sheikh, S., Guo, S., and Dlouhy, I.: Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater. Lett. 174, 5356 (2016).CrossRefGoogle Scholar
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 17 (2013).Google ScholarPubMed
Chou, Y.L., Yeh, J.W., and Shih, H.C.: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52, 25712581 (2010).CrossRefGoogle Scholar
Kai, W., Li, C.C., Cheng, F.P., Chu, K.P., Huang, R.T., Tsay, L.W., and Kai, J.J.: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygen-containing atmospheres. Corros. Sci. 108, 209214 (2016).CrossRefGoogle Scholar
Fu, Z., Chen, W., Jiang, Z., MacDonald, B.E., Lin, Y., Chen, F., Zhang, L., and Lavernia, E.J.: Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 61, 106114 (2018).CrossRefGoogle Scholar
Zhang, K. and Fu, Z.: Intermetallics effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics 28, 3439 (2012).CrossRefGoogle Scholar
Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253257 (2008).CrossRefGoogle Scholar
Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154158 (2008).CrossRefGoogle Scholar
Chen, Y.L., Hu, Y.H., Hsieh, C.A., Yeh, J.W., and Chen, S.K.: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768775 (2009).CrossRefGoogle Scholar
Fu, Z., Chen, W., Chen, Z., Wen, H., and Lavernia, E.J.: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng., A 619, 137145 (2014).CrossRefGoogle Scholar
Suryanarayana, C., Ivanov, E., and Boldyrev, V.: The science and technology of mechanical alloying. Mater. Sci. Eng., A 304, 151158 (2001).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1184 (2001).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 5971 (2016).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavernia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175182 (2015).CrossRefGoogle Scholar
Koch, C.C.: Nanocrystalline high-entropy alloys. Mater. Res. Lett. 32, 34353444 (2017).Google Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Lee, S.W., and Niihara, K.: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 3338 (2010).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., Zhang, Q.J., and Shi, J.: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng., A 508, 214219 (2009).CrossRefGoogle Scholar
Veronesi, P., Colombini, E., Rosa, R., Leonelli, C., and Rosi, F.: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys. 162, 277280 (2016).Google Scholar
Thostenson, E. and Chu, T.W.: Microwave processing: Fundamentals and applications. 30, 1055-1071 (1999).Google Scholar
Chen, W., Fu, Z., Fang, S., Xiao, H., and Zhu, D.: Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854860 (2013).CrossRefGoogle Scholar
Shivam, V., Basu, J., Shadangi, Y., Singh, M.K., and Mukhopadhyay, N.K.: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 8797 (2018).CrossRefGoogle Scholar
Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., and Mukhopadhyay, N.K.: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 22212230 (2018).CrossRefGoogle Scholar
Wang, C., Ji, W., and Fu, Z.: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 13341338 (2014).CrossRefGoogle Scholar
Zhuang, Y.X., Xue, H.D., Chen, Z.Y., Hu, Z.Y., and He, J.C.: Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater. Sci. Eng., A 572, 3035 (2013).CrossRefGoogle Scholar
Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 7985 (2013).CrossRefGoogle Scholar
Zhang, B.Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 6, 534538 (2008).Google Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233238 (2012).CrossRefGoogle Scholar
Miedema, A.R., de Châtel, P.F., and de Boer, F.R.: Cohesion in alloys—Fundamentals of a semi-empirical model. Physica B + C 100, 128 (1980).CrossRefGoogle Scholar
Basu, J., Murty, B.S., and Ranganathan, S.: Glass forming ability: Miedema approach to (Zr, Ti, Hf)–(Cu, Ni) binary and ternary alloys. J. Alloys Compd. 465, 163172 (2008).CrossRefGoogle Scholar
Supplementary material: Image

Shivam et al. supplementary material

Shivam et al. supplementary material 1

Download Shivam et al. supplementary material(Image)
Image 2.2 MB