Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T07:45:32.726Z Has data issue: false hasContentIssue false

Electromechanical ice protection system: de-icing capability prediction considering impedance matching effect

Published online by Cambridge University Press:  01 March 2024

B. Miao
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
L. Yuan
Affiliation:
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
C.L. Zhu*
Affiliation:
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
*
Corresponding author: C.L. Zhu; Email: clzhu@nuaa.edu.cn

Abstract

Due to the safety threats caused by icing, the de-icing system is essential in the aviation industry. As an effective method, the electromechanical de-icing system (EDS) is a new ice-protection system based on mechanical vibration principles. For the majority of the current research on system de-icing capability estimation, the effect of impedance-matching is not considered. Impedance matching plays a very important role in improving the performance of the electromechanical system, so we must also consider the impact of impedance matching when designing the EDS. In the present study, a de-icing capability prediction method considering the impact of an impedance-matching device is established based on experimental and numerical methods. The results indicate that the impedance-matching effect has no impact on the mechanical vibration of the structure for the same load power. Meanwhile, impedance-matching devices can significantly improve the power factor and increase the interface shear stress/strain for de-icing. Eight different vibrational modes were tested, and the experimental results showed that the actual interface shear strain after impedance matching is inversely proportional to the de-icing time. The verification experiments were conducted and the accuracy of the proposed prediction method was verified.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tetteh, E., Loth, E., Neuteboom, M.O. and Fisher, J. In-flight gas turbine engine icing. AIAA J., 2022, 60, (10), pp 56105632.CrossRefGoogle Scholar
Bromfield, M.A., Horri, N., Halvorsen, K. and Lande, K. Loss of control in flight accident case study: icing-related Tailplane stall. Aeronaut. J., 2023, 127, (1315), pp 15541573.CrossRefGoogle Scholar
Chen, N., Hu, Y., Ji, H. and Zhang, M. Hot-air anti-icing heat transfer and surface temperature modeling, AIAA J., 2021, 59, (9), pp 36573666.CrossRefGoogle Scholar
Yang, S., Yi, X., Guo, Q., Xiao, C., Luo, Z. and Zhou, Y. Novel hybrid ice protection system combining thermoelectric system and synthetic jet actuator. AIAA J., 2021, 59, (4), pp 14961500.CrossRefGoogle Scholar
Koivisto, P., Honkanen, T., Auvinen, M., Hellsten, A. and Kahma, K. De-icing fluid flow-off from a flat plate in an accelerating airstream. AIAA J., 2020, 58, (4), pp 16071619.CrossRefGoogle Scholar
Hu, H., Meng, X., Cai, J., Zhou, W., Liu, Y. and Hu, H. Optimization of dielectric barrier discharge plasma actuators for icing control. J. Aircraft, 2020, 57, (2), pp 383387.CrossRefGoogle Scholar
Han, N., Hu, H. and Hu, H. An experimental investigation to assess the effectiveness of various anti-icing coatings for UAV propeller icing mitigation. AIAA AVIATION 2022 Forum, Chicago, IL & Virtual Event, 2022.CrossRefGoogle Scholar
Burch, J.D., Han, D. and Averkin, S.N. Numerical investigations of 2-D planar magnetic nozzle effects on pulsed plasma plumes. Aeronaut. J., 2022, 126, (1299), pp 793812.CrossRefGoogle Scholar
Li, D.W., Lin, M.X. and Tian, L. Research and modeling of force fighting equalisation for aircraft rudder’s triple active actuation system, Aeronaut. J., 2022, 126, (1304), pp 18011814.CrossRefGoogle Scholar
Adachi, K., Saiki, K. and Sato, H. Suppression of frosting on a metal surface using ultrasonic vibrations, 1998 IEEE Ultrason. Symp. Proc., Sendai, Japan, 1998.CrossRefGoogle Scholar
DiPlacido, N., Soltis, J. and Palacios, J. Enhancement of ultrasonic de-icing via tone burst excitation. J. Aircraft, 2016, 53, (6), pp 18211829.CrossRefGoogle Scholar
Kalkowski, M.K., Rustighi, E. and Waters, T.P. Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method. Comput. Struct., 2016, 173, pp 174186.CrossRefGoogle Scholar
Venna, S.V., Lin, Y.J. and Botura, G. Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces. J. Aircraft, 2007, 44, (2), pp 509515.CrossRefGoogle Scholar
Palacios, J., Smith, E., Rose, J. and Royer, R. Ultrasonic de-icing of wind-tunnel impact icing, J. Aircraft, 2011, 48, (3), pp 10201027.CrossRefGoogle Scholar
Palacios, J., Smith, E., Rose, J. and Royer, R. Instantaneous de-icing of freezer ice via ultrasonic actuation. AIAA J., 2011, 49, (6), pp 11581167.CrossRefGoogle Scholar
Budinger, M., Pommier-Budinger, V., Napias, G. and Costa da Silva, A. Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff, J. Aircraft, 2016, 53, (3), pp 680690.CrossRefGoogle Scholar
Guo, F. and Wu, J.H. Analytical solution and coupling resonance mechanism of interface delamination of composite laminates excited by ultrasonic shear horizontal waves. Compos. Struct., 2021, 276, p 114583.CrossRefGoogle Scholar
Guo, F. and Wu, J.H. Coupling resonance mechanism of interfacial fatigue stratification of adhesive and/or welding butt joint structures excited by horizontal shear waves, Int. J. Mod. Phys. B, 2021, 35, (7), p 2150096.CrossRefGoogle Scholar
Guo, F. and Wu, J.H. Mechanism and prediction models for interfacial shear separation of claddings excited by Love waves. Adv. Mech. Eng., 2021, 13, (3), p 16878140211005196.CrossRefGoogle Scholar
Wang, Y., Xu, Y. and Lei, Y. An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades. Renew. Energy, 2018, 118, pp 10151023.CrossRefGoogle Scholar
Daniliuk, V., Xu, Y., Liu, R., He, T. and Wang, X. Ultrasonic de-icing of wind turbine blades: performance comparison of perspective transducers. Renew. Energy, 2020, 145, pp 20052018.CrossRefGoogle Scholar
Wang, Z., Xu, Y. and Gu, Y. A light lithium niobate transducer design and ultrasonic de-icing research for aircraft wing. Energy, 2015, 87, pp 173181.CrossRefGoogle Scholar
Shi, Y. and Jia, Y. Multimodal shear wave de-icing using fiber piezoelectric actuator on composite for aircraft wings. IEEE-ASME T. Mech., 2018, 23, (5), pp 20902098.CrossRefGoogle Scholar
Overmeyer, A., Palacios, J. and Smith, E. Ultrasonic de-icing bondline design and rotor ice testing. AIAA J., 2013, 51, (12), pp 29652976.CrossRefGoogle Scholar
Miao, B., Li, W., Yuan, L. and Zhu, C. Determining region of installation of flat-ended piezoelectric de-icing actuators on curved surfaces, J. Aircraft, 2023, 60, (1), pp 232244.CrossRefGoogle Scholar
Strobl, T., Storm, S., Thompson, D., Hornung, M. and Thielecke, F. Feasibility study of a hybrid ice protection system. J. Aircraft, 2015, 52, (6), pp 20642076.CrossRefGoogle Scholar
Zeng, X., Yan, Z., Lu, Y., Fu, Y., Lv, X., Yuan, W. and He, Y. Reduction of ice adhesion using surface acoustic waves: nanoscale vibration and interface heating effects. Langmuir, 2021, 37, (40), pp 1185111858.CrossRefGoogle ScholarPubMed
Garcia, J., Huré, M., Olivier, P., Budinger, M. and Tepylo, N. Numerical simulation of ice shedding from an icephobic surface using a four-point bending test and cohesive zone modeling. Available at SSRN 4092186.Google Scholar
Lin, S. and Xu, J. Effect of the matching circuit on the electromechanical characteristics of sandwiched piezoelectric transducers. Sensors, 2017, 17, (2), p 329.CrossRefGoogle ScholarPubMed
Rathod, V.T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors, 2020, 20, (14), p 4051.CrossRefGoogle ScholarPubMed
Yao, M., Li, J. and Niu, Y. Adaptive impedance matching for power management circuit for a piezoelectric energy harvester on the bridge. Sensor Actuat. A-Phys., 2021, 331, p 112986.CrossRefGoogle Scholar
Maio, L., Piscitelli, F., Ameduri, S., et al., On the use of smart on-board systems for aircraft ice removal. 2020 IEEE 7th Int. Workshop Metrol. AeroSp. (MetroAeroSp.), Pisa, Italy, 2020.CrossRefGoogle Scholar
Budinger, M., Pommier-Budinger, V., Bennani, L., Rouset, P., Bonaccurso, E. and Dezitter, F. Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms. AIAA J., 2018, 56, (11), pp 44124422.CrossRefGoogle Scholar
Villeneuve, E., Ghinet, S. and Volat, C. Experimental study of a Piezoelectric de-icing system implemented to rotorcraft blades. Appl. Sci., 2021, 11, (21), p 9869.CrossRefGoogle Scholar
Maio, L., Piscopo, R. and Ricci, F. An adaptive impedance matching network for ultrasonic de-icing. Eur. Workshop Struct. Health Monit., 2022, 3, pp 806811.Google Scholar
Wang, H. and Qin, Q.H. Methods of Fundamental Solutions in Solid Mechanics. Cambridge: Elsevier, 2019.Google Scholar
Budinger, M., Pommier-Budinger, V., Reysset, A. and Palanque, V. Electromechanical resonant ice protection systems: energetic and power considerations, AIAA J., 2021, 59, (7), pp 25902602.CrossRefGoogle Scholar
Rønneberg, S., Zhuo, Y., Laforte, C., He, J. and Zhang, Z. Interlaboratory study of ice adhesion using different techniques. Coatings, 2019, 9, (10), p 678.CrossRefGoogle Scholar
Shi, Z., Kang, Z., Xie, Q., Tian, Y., Zhao, Y. and Zhang, J. Ultrasonic deicing efficiency prediction and validation for a flat deicing system. Appl. Sci., 2020, 10, (19), p 6640.CrossRefGoogle Scholar