Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T14:50:17.913Z Has data issue: false hasContentIssue false

A straw man's neogenome

Published online by Cambridge University Press:  24 October 2012

Oscar Vilarroya*
Affiliation:
Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Fundació IMIM, C/ Doctor Aiguader, 88, 08003 Barcelona, Spain. oscar.vilarroya@uab.cat

Abstract

The neogenome has indeed changed how to understand the relationship between genotype and phenotype. However, this does not imply a paradigm shift, but simply a normal development of a young science. Charney creates a straw man out of the myth of an immutable genetics, and conveys the wrong idea that heritability studies and gene association studies are no longer valid.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, C. G., Finer, S., Lindgren, C. M., Wilson, G. A., Rakyan, V. K., Teschendorff, A. E., Akan, P., Stupka, E., Down, T. A., Prokopenko, I., Morison, I. M., Mill, J., Pidsley, R., International Type 2 Diabetes 1q Consortium, Deloukas, P., Frayling, T. M., Hattersley, A. T., McCarthy, M. I., Beck, S. & Hitman, G. A.. (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One. 5(11):e14040.Google Scholar
Caldji, C., Hellstrom, I. C., Zhang, T. Y., Diorio, J. & Meaney, M. J. (2011) Environmental regulation of the neural epigenome. FEBS Letters 585(13):2049–58. Advance online epub: March 21, 2011.Google Scholar
Cherry, A. B. C. & Daley, G. Q. (2012) Reprogramming cellular identity for regenerative medicine. Cell 148(6):1110–22.Google Scholar
Fusco, G. & Minelli, A. (2010) Phenotypic plasticity in development and evolution: Facts and concepts. Introduction. Philosophical Transactions of the Royal Society of London B Biological Sciences 365(1540):547–56.Google Scholar
Gershon, E., Alliey-Rodriguez, N. & Liu, C. (2011) After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder. American Journal of Psychiatry 168:253–56.Google Scholar
Hamm, C. A. & Costa, F. F. (2011) The impact of epigenomics on future drug design and new therapies. Drug Discovery Today (13–14):626–35. Advance online epub: May 5, 2011.Google Scholar
Hilferty, J., Valenzuela, J. & Vilarroya, O. (1998) Paradox lost. Cognitive Linguistics 9:175–88.Google Scholar
Hilferty, J. & Vilarroya, O. (2002) ¿Podrían los genes codificar una gramática? Quark 25:3544.Google Scholar
Hilferty, J. & Vilarroya, O. (2008) In search of development. In: Body, Language and Mind. Vol. 2: Sociocultural Situatedness, ed. Fank, R. M., Dirven, R., Ziemke, T. & Bernárdez, E., 197213. Mouton de Gruyter.Google Scholar
Oh, G. & Petronis, A. (2008) Environmental studies of schizophrenia through the prism of epigenetics. Schizophrenia Bulletin 6:1122–29.CrossRefGoogle Scholar
Pike, J. W. (2011) Genome-scale techniques highlight the epigenome and redefine fundamental principles of gene regulation. Journal of Bone Mineral Research 26(6):1155–62. doi: 10.1002/jbmr.317.Google Scholar
Rutten, B. P. & Mill, J. (2009) Epigenetic mediation of environmental influences in major psychotic disorders. Schizophrenia Bulletin 35(6):1045–56. Advance online epub: September 25, 2009.Google Scholar