Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T22:42:18.370Z Has data issue: false hasContentIssue false
Accepted manuscript

Target site mechanism confers resistance pattern of ACCase-inhibitors in bearded sprangletop (Leptochloa fusca ssp. fascicularis) from California

Published online by Cambridge University Press:  31 May 2024

Rasim Unan
Affiliation:
Postdoctoral Researcher, Department of Plant Science, University of California, Davis, CA, USA
Aaron Becerra-Alvarez
Affiliation:
Graduate Student Researcher, Department of Plant Sciences, University of California, Davis, CA, USA
Kassim Al-Khatib*
Affiliation:
Professor, Department of Plant Sciences, University of California, Davis, CA, USA.
*
Corresponding author: Kassim Al-Khatib, Professor Department of Plant Sciences, MS4, One Shields Avenue, University of California, Davis, CA 95616. Email: kalkhatib@ucdavis.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bearded sprangletop is a problematic native grass weed in California’s rice fields. The widespread and extensive use of Acetyl-CoA carboxylase (ACCase) inhibiting herbicides, such as cyhalofop-P-butyl (cyhalofop), has led to speculation that biotypes of bearded sprangletop have developed herbicide resistance to ACCase. The aim of this study was to evaluate suspected resistant bearded sprangletop biotypes, R1, R2, R3, and the susceptible biotype, S1, in terms of their levels of resistance to three ACCase-inhibiting herbicides and to characterize the molecular mechanisms of resistance. Dose-response experiments suggested that the biotype R1, R2, and R3 had high-level resistance to cyhalofop, and quizalofop-P-ethyl (quizalofop), but not clethodim. It was identified that the resistance to ACCase inhibitors was a target site mechanism resulting from nucleotide substitution. The carboxyl transferase (CT) domain of the ACCase gene’s sequence analysis revealed the substitutions Trp-2027-Cys for R1 and R2 biotypes and Ile-2041-Asn for R3 biotype. This study revealed that presence of target-site resistance to cyhalofop and quizalofop in at least two mutation points in representative biotypes of bearded sprangletop in California. This research highlights the significance of careful herbicide selection due to weed species responding quite rapidly to selection pressure to help manage bearded sprangletop in rice field.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© Weed Science Society of America, 2024

Footnotes

1This paper was given in part during at “100th Anniversary Turkish Herbology Congress” in 2023.