Hostname: page-component-5d59c44645-jb2ch Total loading time: 0 Render date: 2024-03-03T09:34:10.025Z Has data issue: false hasContentIssue false

Implication of Reduced Herbicide Rates on Resistance Enrichment in Wild Oat (Avena fatua)

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
Ken J. Kirkland
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
Corresponding author's E-mail:


Model simulations predict that lowering herbicide efficacy by reducing the application rate would slow the rate of enrichment of herbicide-resistant individuals in a weed population, but the resulting increase in density of susceptible plants would reduce crop yield and increase the weed seed bank. A study was conducted at three sites in Saskatchewan, Canada, from 1997 to 2000 to examine the implication of reduced rates of acetyl-CoA carboxylase (ACCase) inhibitors in a diverse 4-yr crop rotation, in conjunction with variable crop seeding rates, on the enrichment of resistant wild oat in a mixed (resistant and susceptible) population. Main-plot treatments were crop (barley, canola, field pea, and spring wheat), subplot treatments were crop seeding rate (recommended and high), and sub-subplot treatments were ACCase inhibitor rate (0, 0.33, 0.67, and 1.0 times the recommended rate). Herbicide rate frequently interacted with seeding rate in affecting wild oat seedling density, seed return, the viable fraction of the weed seed bank, and crop seed yield. As simulation models predict, reduced herbicide efficacy decreased the proportion of resistant individuals in the population. The high crop seeding rate compensated for a one-third reduction in herbicide rate by limiting total wild oat seed return and by reducing the number of resistant seedlings recruited from the seed bank. The level of resistance in the seed bank can be reduced without increasing the total (resistant plus susceptible) seed bank population by manipulating agronomic practices to increase crop competitiveness against wild oat when ACCase inhibitor rates are reduced to a maximum of two-thirds of that recommended.

Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Barton, D. L., Thill, D. C., and Shafii, B. 1992. Integrated wild oat (Avena fatua) management affects spring barley (Hordeum vulgare) yield and economics. Weed Technol. 6: 129135.CrossRefGoogle Scholar
Beckie, H. J., Hall, L. M., and Tardif, F. J. 2001. Impact and management of herbicide-resistant weeds in Canada. In Brighton Crop Protection Conference—Weeds. Farnham, Surrey, UK: British Crop Protection Council. pp. 747754.Google Scholar
Beckie, H. J., Thomas, A. G., and Stevenson, F. C. 2002. Survey of herbicide-resistant wild oat (Avena fatua) in two townships in Saskatchewan. Can. J. Plant Sci. 82: 463471.CrossRefGoogle Scholar
Belles, D. S., Thill, D. C., and Shafii, B. 2000. PP-604 rate and Avena fatua density effects on seed production and viability in Hordeum vulgare . Weed Sci. 48: 378384.CrossRefGoogle Scholar
Bourgeois, L. and Morrison, I. N. 1997. A survey of ACCase inhibitor resistant wild oat in a high risk township in Manitoba. Can. J. Plant Sci. 77: 703709.CrossRefGoogle Scholar
Diggle, A. J. and Neve, P. 2001. The population dynamics and genetics of herbicide resistance—a modeling approach. In Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York: CRC. pp. 6199.CrossRefGoogle Scholar
Ecological Stratification Working Group. 1995. A National Ecological Framework for Canada. Ottawa, Ontario: Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research; and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch. 125 p.Google Scholar
Evans, R. M., Thill, D. C., Tapia, L., Shafii, B., and Lish, J. M. 1991. Wild oat (Avena fatua) and spring barley (Hordeum vulgare) density affect spring barley grain yield. Weed Technol. 5: 3339.CrossRefGoogle Scholar
Freund, R. J. and Littell, R. C. 1986. SAS System for Regression. Cary, NC: Statistical Analysis Systems Institute. 254 p.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York: J. Wiley. 704 p.Google Scholar
Gorddard, R. J., Pannell, D. J., and Hertzler, G. 1996. Economic evaluation of strategies for management of herbicide resistance. Agric. Syst. 51: 281298.CrossRefGoogle Scholar
Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. In LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York: J. Wiley. pp. 325347.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41: 232238.CrossRefGoogle Scholar
Holm, F. A., Kirkland, K. J., and Stevenson, F. C. 2000. Defining optimum herbicide rates and timing for wild oat (Avena fatua) control in spring wheat (Triticum aestivum). Weed Technol. 14: 167175.CrossRefGoogle Scholar
Kirkland, K. J. 1993. Weed management in spring barley (Hordeum vulgare) in the absence of herbicides. J. Sust. Agric. 3: 95104.CrossRefGoogle Scholar
Kvalseth, T. O. 1985. Cautionary note about R 2 . Am. Stat. 39: 279285.Google Scholar
Légère, A., Beckie, H. J., Stevenson, F. C., and Thomas, A. G. 2000. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. Weed Technol. 14: 366376.CrossRefGoogle Scholar
Morrison, I. N. and Friesen, L. F. 1996. Herbicide resistant weeds: mutation, selection, misconception. In Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Quintanilla, C. F., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proceedings of the Second International Weed Control Congress; Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. pp. 19.Google Scholar
Murray, B. G. 1996. Inheritance and Pollen Mediated Gene Flow of Acetyl CoA Carboxylase Inhibitor Resistance in Wild Oat (Avena fatua). . Winnipeg, MB: University of Manitoba. 133 p.Google Scholar
Murray, B. G., Friesen, L. F., Beaulieu, K. J., and Morrison, I. N. 1996. A seed bioassay to identify acetyl-CoA carboxylase inhibitor resistant wild oat (Avena fatua) populations. Weed Technol. 10: 8589.CrossRefGoogle Scholar
Murray, B. G., Morrison, I. N., and Brûlé-Babel, A. L. 1995. Inheritance of acetyl-CoA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci. 43: 233238.CrossRefGoogle Scholar
O'Donovan, J. T., Baig, M. N., and Newman, J. C. 2000. Persistence of herbicide resistance in wild oat (Avena fatua L.) populations after cessation of triallate or difenzoquat use. Can. J. Plant Sci. 80: 451453.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., Newman, J. C., Robinson, D., and Hall, L. M. 2001. Barley seeding rate influences the effects of variable herbicide rates on wild oat. Weed Sci. 49: 746754.CrossRefGoogle Scholar
O'Donovan, J. T., Newman, J. C., Harker, K. N., Blackshaw, R. E., and McAndrew, D. W. 1999. Effect of barley plant density on wild oat interference, shoot biomass and seed yield under zero tillage. Can. J. Plant Sci. 79: 655662.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide, Version 8. Cary, NC: Statistical Analysis Systems Institute. 1243 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose response relationships. Weed Technol. 9: 218227.CrossRefGoogle Scholar
Sharma, M. P. and Vanden Born, W. H. 1978. The biology of Canadian weeds. 27. Avena fatua L. Can. J. Plant Sci. 58: 141157.CrossRefGoogle Scholar
Sharma, M. P. and Vanden Born, W. H. 1983. Crop competition aids efficacy of wild oat herbicides. Can. J. Plant Sci. 63: 503507.CrossRefGoogle Scholar
Shukla, A., Dupont, S., and Devine, M. D. 1997. Resistance to ACCase-inhibitor herbicides in wild oat: evidence for target site-based resistance in two biotypes from Canada. Pestic. Biochem. Physiol. 57: 147155.CrossRefGoogle Scholar
Spandl, E., Durgan, B. R., and Miller, D. W. 1997. Wild oat (Avena fatua) control in spring wheat (Triticum aestivum) and barley (Hordeum vulgare) with reduced rates of postemergence herbicides. Weed Technol. 11: 591597.CrossRefGoogle Scholar
Stevenson, F. C., Holm, F. A., and Kirkland, K. J. 2000. Optimizing wild oat (Avena fatua) control with ICIA 0604. Weed Technol. 14: 608616.CrossRefGoogle Scholar
Stougaard, R. N., Maxwell, B. D., and Harris, J. D. 1997. Influence of application timing on the efficacy of reduced rate postemergence herbicides for wild oat (Avena fatua) control in spring barley (Hordeum vulgare). Weed Technol. 11: 283289.CrossRefGoogle Scholar
Thill, D. C., O'Donovan, J. T., and Mallory-Smith, C. A. 1994. Integrated weed management strategies for delaying herbicide resistance in wild oats. Phytoprotection 75:(Suppl.). 6170.CrossRefGoogle Scholar
Thomas, A. G., Leeson, J. Y., Beckie, H. J., and Légère, A. 1999. Identification of farm management systems at risk for ACCase inhibitor-resistant wild oat (Avena fatua). Weed Sci. Soc. Am. Abstr. 39: 33.Google Scholar
Walker, S. R., Medd, R. W., Robinson, G. R., and Cullis, B. R. 2002. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res. 42: 257270.CrossRefGoogle Scholar