Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-18T22:45:10.716Z Has data issue: false hasContentIssue false

Resistance to chlortoluron in a downy brome (Bromus tectorum) biotype

Published online by Cambridge University Press:  20 January 2017

Fernando Bastida
Affiliation:
Departamento de Ciencias Agroforestales, Escuela Politecnica Superior, Campus Universitario de La Cartuja, 21819 Palos de la Frontera, Huelva, Spain
Rafael de Prado
Affiliation:
Departamento de Química Agrícola, Campus de Rabanales, 14071 Córdoba, Spain

Abstract

A downy brome population in a winter wheat field at Córdoba, Spain, survived use rates of chlortoluron (2.5 to 3.5 kg ai ha−1) over 2 consecutive yr, where wheat monoculture and multiple annual chlortoluron applications had been carried out. The resistant (CR) biotype showed a higher ED50 value (7.4 kg ai ha−1; the concentration required for 50% reduction of fresh weight) than the susceptible (S) control (2.2 kg ai ha−1), with a 3.4-fold increase in chlortoluron tolerance. Chlortoluron resistance in the CR downy brome biotype was not caused by altered absorption, translocation, or modification of the herbicide target site but by enhanced detoxification. The inhibition of both the recovery of photosynthetic electron transport and chlortoluron metabolism in the CR biotype due to the presence of the Cyt P450 inhibitor 1-aminobenzotriazole (ABT) indicates that herbicide metabolism catalyzed by Cyt P450 monooxygenases is related to chlortoluron resistance in CR plants. Although both biotypes degraded chlortoluron by N-dealkylation and ring-methyl hydroxylation and seem to share the same ability to form polar conjugates, degradation in the resistant biotype is more efficacious as this biotype metabolizes the parent herbicide faster and to a greater extent than its susceptible counterpart. The ability of the susceptible biotype to ring-hydroxylate chlortoluron, albeit at much slower rate, probably explains its moderate tolerance to chlortoluron observed in the growth assays and its minor photosynthetic electron transport recovery observed in fluorescence measurements.

Type
Physiology, Chemistry, Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci 29:316322.CrossRefGoogle Scholar
Ball, D. A. and Mallory-Smith, C. A. 2000. Sulfonylurea herbicide resistance in downy brome. Proceedings 2000 The Western Society of Weed Science 53:4142.Google Scholar
Burnet, M. W. M., Loveys, B. R., Holtum, J. A. M., and Powles, S. B. 1993. A mechanism of chlorotoluron resistance in Lolium rigidum . Planta 190:182189.CrossRefGoogle Scholar
Cabanne, F., Huby, D., Gaillardon, P., Scalla, R., and Durst, F. 1987. Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat. Pestic. Biochem. Physiol 28:371380.CrossRefGoogle Scholar
Cole, D. J. and Owen, W. J. 1987. Influence of monooxygenase inhibitors on the metabolism of the herbicides chlortoluron and metolachlor in cell suspension cultures. Plant Sci 50:1320.Google Scholar
De la Guardia, M. D. and Benlloch, M. 1980. Effects of potassium and gibberellic acid on stem growth of whole sunflower plants. Physiol. Plant 49:443448.Google Scholar
De Prado, R., De Prado, J. L., and Menendez, J. 1997. Resistance to substituted urea herbicides in Lolium rigidum biotypes. Pestic. Biochem. Physiol 57:126136.Google Scholar
De Prado, R., Domínguez, C., and Tena, M. 1989. Characterization of triazine-resistant biotypes of common lambsquarters (Chenopodium album), hairy fleabane (Conyza bonariensis), and yellow foxtail (Setaria glauca) found in Spain. Weed Sci 37:14.Google Scholar
De Prado, R. and Menendez, J. 1997. Cross-resistance and herbicide metabolism in Alopecurus myosuroides Huds. Pages 351366 in Hatzios, K. K. ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Dordrecht: Kluwer.Google Scholar
De Prado, R., Romera, E., and Menendez, J. 1995. Atrazine detoxification in Panicum dichotomiflorum and target site Polygonum lapathifolium . Pestic. Biochem. Physiol 52:111.Google Scholar
De Prado, R., Scalla, R., and Gaillardon, P. 1990. Differential toxicity of simazine and diuron to Torilis arvensis and Lolium rigidum . Weed Res 30:213221.Google Scholar
Ducruet, J. M. and De Prado, R. 1982. Comparison of inhibitory activity of amide derivatives in triazine resistant and susceptible chloroplast from Chenopodium album and Brassica campestris . Pestic. Biochem. Physiol 18:253261.Google Scholar
Ducruet, J. M., Gaillardon, P., and Vienot, J. 1984. Use of chlorophyll fluorescence kinetics to study translocation and detoxification of DCMU-type herbicides in plant leaves. Zaturforsch 39:(c). 354358.Google Scholar
Ducruet, J. M., Sixto, H., and García-Baudin, J. M. 1993. Using chlorophyll fluorescence induction for a quantitative detoxification assay with metribuzin and chlortoluron in excised wheat (Triticum aestivum and Triticum durum) leaves. Pestic. Sci 38:295301.Google Scholar
Durst, F. and O'Keefe, D. P. 1995. Plant cytochromes P450: an overview. Drug Metab. Drug Interact 12:171187.CrossRefGoogle ScholarPubMed
Frear, S. 1995. Wheat microsomal cytochrome P450 monooxygenases: characterization and importance in the metabolic detoxification and selectivity of wheat herbicides. Drug Metab. Drug Interact 12:329358.CrossRefGoogle ScholarPubMed
Fonné-Pfister, R., Gaudin, J., Krenz, K., Romsteiner, K., and Ebert, E. 1990. Hydroxylation of primisulfuron by an inducible cytochrome P-450-dependant monooxygenase system from maize. Pestic. Biochem. Physiol 37:165173.CrossRefGoogle Scholar
Gaillardon, P., Cabanne, F., Scalla, R., and Durst, F. 1985. Effect of mixed function oxidase inhibitors on the toxicity of chlortoluron and isoproturon in wheat. Weed Res 25:397402.CrossRefGoogle Scholar
Gasquez, J. and Darmency, H. 1989. Herbicide resistance in France. Pages 8194 in Cavalloro, R. and Noyé, G. eds. Importance and Perspective on Herbicide-Resistant Weeds. Brussels: Commission of European Communities.Google Scholar
Gonneau, M., Pasquette, B., Cabanne, F., and Scalla, R. 1988. Metabolism of chlortoluron in tolerant species: possible role of cytochrome P450 monooxygenases. Weed Res 28:1925.CrossRefGoogle Scholar
Gressel, J. 1997. Burgeoning resistance requires new strategies. Pages 316 in De Prado, R., Jorrin, J., and Garcia-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht: Kluwer.Google Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. Pages 2770 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide resistance in plants: biology and biochemistry. London: Lewis Publishers.Google Scholar
Gronwald, J. W. 1997. Resistance to PSII inhibitor herbicides. Pages 5359 in De Prado, R., Jorrin, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht: Kluwer.Google Scholar
Gross, D., Laanio, T., Dupuis, G., and Esser, H. O. 1979. The metabolic behaviour of chlortoluron in wheat and soil. Pestic. Biochem. Physiol 10:4959.Google Scholar
Hall, L. M., Moss, S. R., and Powles, S. B. 1995. Mechanism of resistance to chlorotoluron in two biotypes of the grass weed Alopecurus myosuroides . Pestic. Biochem. Physiol 53:180192.CrossRefGoogle Scholar
Heap, I. 2005. The International Survey of Herbicide Resistant Weeds. www.weedscience.org.Google Scholar
Masabni, J. G. and Zandstra, B. H. 1999. A serine-to-threonine mutation in linuron-resistant Portulaca oleracea . Weed Sci 47:393400.Google Scholar
Menendez, J., Jorrin, J., Romera, E., and De Prado, R. 1994. Resistance to chlorotoluron of a slender foxtail (Alopecurus myosuroides) biotype. Weed Sci 42:340344.CrossRefGoogle Scholar
Menendez, J. and De Prado, R. 1997. Detoxification of chlorotoluron in a chlorotoluron-resistant biotype of Alopecurus myosuroides: comparison between cell cultures and whole plants. Physiol. Plant 99:97104.CrossRefGoogle Scholar
Mengistu, L. W., Mueller-Warrant, G. W., Liston, A., and Baker, R. E. 2000. psbA mutation (valine 219 to isoleucine) in Poa annua resistant to metribuzin and diuron. Pest Manag. Sci 56:209217.3.0.CO;2-8>CrossRefGoogle Scholar
Mougin, C., Cabanne, F., Canivenc, M-C., and Scalla, R. 1990. Hydroxylation and N-demethylation of chlortoluron by wheat microsomal enzymes. Plant Sci 66:195203.CrossRefGoogle Scholar
Mougin, C., Cabanne, F., and Scalla, R. 1992. Additional observations on the chlortoluron hydroxylase and N-demethylase activities in wheat microsomes. Plant Physiol. Biochem 30:769778.Google Scholar
Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplast isolated from species either susceptible or resistant toward s-triazine herbicides. Pestic. Biochem. Physiol 18:357367.CrossRefGoogle Scholar
Park, K. W. and Mallory-Smith, C. A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:7177.CrossRefGoogle Scholar
Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci 18:614616.CrossRefGoogle Scholar
Ryan, P. J., Gross, D., Owen, W. J., and Loani, T. L. 1981. The metabolism of chlorotoluron, diuron and CGA 43057 in tolerant and susceptible plants. Pestic. Biochem. Physiol 16:213221.Google Scholar
Saavedra, M. and Natera, C. 1991. Controlling L. rigidum and Bromus spp. using simazine and diuron. Pages 187190 in Reunion SEMh 1991, Cordoba, Spain. [In Spanish].Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218225.CrossRefGoogle Scholar
Streibig, J. C. 1988. Herbicide bioassay. Weed Res 28:479484.CrossRefGoogle Scholar