Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T06:30:24.493Z Has data issue: false hasContentIssue false

Reproductive phenology in yellow starthistle (Centaurea solstitialis)

Published online by Cambridge University Press:  12 June 2017

Cindy Talbott Roché
Affiliation:
Department of Plant, Soil, Entomological Sciences, University of Idaho, Moscow, ID 83844
Donald C. Thill
Affiliation:
Department of Plant, Soil, Entomological Sciences, University of Idaho, Moscow, ID 83844
Bahman Shafii
Affiliation:
College of Agriculture, University of Idaho, Moscow, ID 83844

Abstract

Exotic annual weeds on western U.S. rangelands, including yellow starthistle, owe at least part of their invasion success to prolific seed production. Occurrence of flowering in relation to soil moisture and development of competing vegetation heavily influences reproductive output. Yellow starthistle flowers much later than associated Mediterranean invaders, which avoid summer drought by early flowering and senescence. This study used successive planting dates and four densities to investigate the influence of temperature, photoperiod, and intraspecific competition on reproductive phenology in a population of yellow starthistle from Lewiston, ID. A base temperature for seed germination of 2 C was determined by experiments at constant temperatures. Under the conditions of this study, density, photoperiod, and vernalization did not regulate reproductive development, as measured by onset of bud, flowering, and achene dispersal stages. A thermal time model adequately predicted phenology in this population of yellow starthistle. Plants emerging between October and July required about 1,240 degree days for 50% of the plants to reach bud stage, and an additional 500 and 900 degree days to flowering and achene dispersal, respectively. The relatively long time from emergence to mature achenes in this species influences management options such as prescribed fire, livestock grazing, and management of competing vegetation. Insensitiviry to photoperiod and lack of a vernalization requirement allow late germinating plants to reproduce if moisture is adequate.

Type
Weed Biology and Ecology
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Angus, J. F., Mackenzie, D. H., Morton, R., and Schafer, C. A. 1981. Phasic development in field crops. II. Thermal and photoperiodic responses of spring wheat. Field Crops Res. 4: 269283.CrossRefGoogle Scholar
Baskin, J. M. and Baskin, C. C. 1981. Ecology of germination and flowering in the weedy winter annual grass Bromus japonicas . J. Range Manage. 34: 369372.CrossRefGoogle Scholar
Borman, M. M., Johnson, D. E., and Krueger, W. C. 1992. Soil moisture extraction by vegetation in a Mediterranean/maritime climatic regime. Agron. J. 84: 897904.CrossRefGoogle Scholar
Brown, R. F. and Mayer, D. G. 1988. Representing cumulative germination. 2. The use of the Weibull and other empirically derived curves. Ann. Bot. 61: 127138.CrossRefGoogle Scholar
Callihan, R. H., Northam, F. E., Johnson, J. B., Michalson, E. L., and Prather, T. S. 1989. Yellow starthistle biology and management in pasture and rangeland. CIS 634. Moscow, ID: University of Idaho. 4 p.Google Scholar
Covell, S., Ellis, R. H., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. J. Exp. Bot. 37: 705715.CrossRefGoogle Scholar
Del Pozo, A. H., García-Huidobro, J., Novoa, R., and Villaseca, S. 1987. Relationship of base temperature to development of spring wheat. Expl. Agric. 23: 2130.CrossRefGoogle Scholar
Dumur, D., Pilbeam, C. J., and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean. J. Exp. Bot. 41: 14231430.CrossRefGoogle Scholar
Efron, B. and Tibshirani, R. J. 1993. Confidence intervals based on bootstrap percentiles. in An Introduction to the Bootstrap. New York: Chapman Hall, pp. 168177.CrossRefGoogle Scholar
Ellis, R. H., Covell, S., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. J. Exp. Bot. 37: 15031515.CrossRefGoogle Scholar
Finnerty, D. W. and Klingman, D. L. 1962. Life cycles and control studies of some weedy bromegrasses. Weeds 10: 4047.CrossRefGoogle Scholar
García-Huidobro, J., Monteith, J. L., and Squire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S.&H.). I. Constant tempetature. J. Exp. Bot. 33: 288296.CrossRefGoogle Scholar
Ghersa, C. M. and Holt, J. S. 1995. Using phenology prediction in weed management: a review. Weed Res. 35: 461470.CrossRefGoogle Scholar
Hastings, M. and DiTomaso, J. 1996. The use of fire for yellow starthistle (Centaurea solstitialis) management and the restoration of native grasslands at Sugarloaf Ridge State Patk. CalEPPC News 4: 46.Google Scholar
Hay, R.K.M. and Kirby, E.J.M. 1991. Convergence and synchrony-a review of the coordination of development in wheat. Aust. J. Agric. Res. 42: 661700.CrossRefGoogle Scholar
Hendry, G. W. and Bellue, M. K. 1936. An approach to southwestern agricultural history through adobe brick analysis. Symposium on Prehistoric Agriculture, University of New Mexico Bulletin. Albuquerque, NM: University Press. 8 p.Google Scholar
Hulbert, L. C. 1955. Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol. Monogr. 25: 181213.CrossRefGoogle Scholar
Huyghe, C. 1991. Winter growth of autumn-sown white lupin (Lupinus albus L.): main apex growth model. Ann. Bot. 67: 429434.CrossRefGoogle Scholar
Klepper, B., Rickman, R. W., and Peterson, C. M. 1982. Quantitative characterization of vegetative development in small cereal grains. Agron. J. 74: 789792.CrossRefGoogle Scholar
Larson, L. L. and McInnis, M. L. 1989. Impact of grass seedings on establishment and density of diffuse knapweed and yellow starthistle. Northwest Sci. 63: 162166.Google Scholar
Maddox, D. M. 1981. Introduction, phenology, and density of yellow starthistle in coastal, intercoastal, and central valley situations in California. Agricultural Research Results ARR-W-20. Oakland, CA: U.S. Department of Agriculture. 33 p.Google Scholar
Maddox, D. M. and Mayfield, A. 1985. Yellow starthistle infestations are on the increase. Calif. Agric. 39: 1012.Google Scholar
Maddox, D. M., Mayfield, A., and Poritz, N. H. 1985. Distribution of yellow starthistle (Centaurea solstitialis) and Russian knapweed (Centaurea repens). Weed Sci. 33: 315327.CrossRefGoogle Scholar
Medd, R. W. and Lovett, J. V. 1978. Biological studies of Carduus nutans (L.) ssp. nutans. II. Vernalization and phenological development. Weed Res. 18: 369372.CrossRefGoogle Scholar
Medd, R. W. and Smith, R.C.G. 1978. Prediction of the potential distribution of Carduus nutans (nodding thistle) in Australia. J. Appl. Ecol. 15: 603612.CrossRefGoogle Scholar
Monteith, J. L. 1981. Climatic variation and the growth of crops. Q. J. Royal Meteorol. Soc. 107: 749774.CrossRefGoogle Scholar
Monteith, J. L. 1984. Consistency and convenience in the choice of units for agricultural science. Expl. Agric. 20: 105117.CrossRefGoogle Scholar
Neider, J. A. 1962. New kinds of systematic designs for spacing experiments. Biometrics 18: 283307.Google Scholar
Ong, C. K. 1983a. Response to temperature in a stand of pearl millet (Pennisetum typhoides S.&H.). 1. Vegetative development. J. Exp. Bot. 34: 332336.Google Scholar
Ong, C. K. 1983b. Response to temperature in a stand of pearl millet (Pennisetum typhoides S.&H.). 2. Reproductive development. J. Exp. Bot. 34: 337348.CrossRefGoogle Scholar
Powell, R. D. 1990. The role of spatial pattern in the population biology of Centaurea diffusa . J. Ecol. 78: 374388.CrossRefGoogle Scholar
Prince, S. D., Marks, M. K., and Carter, R. N. 1978. Induction of flowering in wild lettuce. New Phytol. 81: 265277.CrossRefGoogle Scholar
Richardson, J. M., Morrow, L. A., and Gealy, D. R. 1986. Floral induction of downy brome (Bromus tectorum) as influenced by temperature and photoperiod. Weed Sci. 34: 698703.CrossRefGoogle Scholar
Roberts, E. H. and Summerfield, R. J. 1987. Measurement and prediction of flowering in annual crops. in Atherton, J. G., ed. Manipulation of Flowering. London: Butterworths, pp. 1750.CrossRefGoogle Scholar
Roché, B. F. Jr. 1965. Ecologie studies of yellow starthistle (Centaurea solstitialis L.). , University of Idaho, Moscow, ID. 78 p.Google Scholar
Roché, B. F. Jr. and Roché, C. T. 1991. Introduction, classification, ecology, distribution, economics or Centaurea species. in James, L. F., Evans, J. O., Ralphs, M. H., and Child, R. D., eds. Noxious Range Weeds, Proceedings of the National Conference, Logan, Utah, August 8, 1990. Boulder, CO: Westview Press, pp. 274291.Google Scholar
Roché, B. F. Jr., Roché, C. T., and Chapman, R. C. 1994. Impacts of grassland habitat on yellow starthistle (Centaurea solstitialis L.) invasion. Northwest Sci. 68: 8696.Google Scholar
Roché, B. F. Jr. and Talbott, C. J. 1986. The collection history of Centaureas, found in Washington state. Agricultural Research Bull. XB0978. Pullman, WA: Washington State University. 36 p.Google Scholar
Roché, C.J.T. 1996. Developmental biology in common crupina (Crupina vulgaris Pers.) and yellow starthistle (Centaurea solstitialis L.). , University of Idaho, Moscow, ID. 125 p.Google Scholar
Roché, C. T., Shafii, B., Thill, D. C., and Price, W. J. 1996. Estimation of cardinal temperatures in germination analysis. Proceedings of the 1996 Kansas State University Conference on Applied Statistics in Agriculture, pp. 3346.Google Scholar
[SAS] Statistical Analysis Systems. 1989. SAS/STAT® User's Guide, Version 6, 4th ed., Volume 2. Cary, NC: Statistical Analysis Systems Institute. 846 p.Google Scholar
Shafii, B., Price, W. J., Swensen, J. B., and Murray, G. A. 1991. Nonlinear estimation of growth curve models for germination data analysis. Proceedings of the 1991 Kansas State University Conference on Applied Statistics in Agriculture, pp. 1936.Google Scholar
Sheley, R. L. and Larson, L. L. 1994. Observation: comparative live-history of cheatgrass and yellow starthistle. J. Range Manage. 47: 450456.CrossRefGoogle Scholar
Slafer, G. A. and Rawson, H. M. 1994. Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust. J. Plant Physiol. 21: 393426.Google Scholar
Slafer, G. A. and Savin, R. 1991. Developmental base temperature in different phenological phases of wheat (Triticum aestivum). J. Exp. Bot. 42: 10771082.CrossRefGoogle Scholar
Summerfield, R. J., Roberts, E. H., Ellis, R. H., and Lawn, R. J. 1991. Towards the reliable prediction of time to flowering in six annual crops. I. The development of simple models for fluctuating field environments. Expl. Agric. 27: 1131.CrossRefGoogle Scholar
Thompson, D. J. and Stout, D. G. 1991. Duration of the juvenile period in diffuse knapweed (Centaurea diffusa). Can. J. Bot. 69: 368371.CrossRefGoogle Scholar
Thomsen, C. D., Williams, W. A., George, M. R., McHenry, W. B., Bell, F. L., and Knight, R. S. 1989. Managing yellow starthistle on rangeland. Calif. Agric. 43: 47.Google Scholar
Thomsen, C. D., Williams, W. A., Vayssiéres, M., and Bell, F. L. 1994. Yellow starthistle control. Range Science Report No. 33. Davis, CA: University of California Agricultural Experiment Station. 6 p.Google Scholar
Thomsen, C. D., Williams, W. A., Vayssiéres, M., Bell, F. L., and George, M. R. 1993. Controlled grazing on annual grassland decreases yellow starthistle. Calif. Agric. 47: 3640.CrossRefGoogle Scholar
Thomsen, C. D., Williams, W. A., Vayssiéres, M. P., Turner, C. E., and Lanini, W. T. 1996. Yellow Starthistle Biology and Control. University of California Division of Agricultural Natural Resources Publ. 21541. Davis, CA: University of California. 19 p.Google Scholar