Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T15:42:41.832Z Has data issue: false hasContentIssue false

Predicting Yellow Nutsedge (Cyperus esculentus) Emergence Using Degree-day Models

Published online by Cambridge University Press:  12 June 2017

Cheryl A. Wilen
Affiliation:
Dep. Bot. and Plant Sci., Univ. Calif., Riverside, CA 92521
Jodie S. Holt
Affiliation:
Dep. Bot. and Plant Sci., Univ. Calif., Riverside, CA 92521
William B. McCloskey
Affiliation:
Dep. Plant Sci., Univ. Ariz., Tucson, AZ 85721

Abstract

We examined the relationship between temperature and emergence of yellow nutsedge tubers to generate predictive models for the arid southwestern United States. Field experiments were conducted in California and Arizona to obtain phenological and temperature data needed to generate degree-day models. The effect of air temperature on emergence was tested with available programs using four methods to calculate degree-days (single sine, double sine, single triangle, and double triangle). Separate models were tested for each genotype examined (Arizona source and California source) as no one model was a good predictor of emergence when data were pooled. Results indicate that there is year to year variation in model accuracy but predictions of date of emergence can be made to within 2 d of actual emergence. This information can be used to schedule cultivations to reduce early yellow nutsedge competition in the field.

Type
Weed Biology and Ecology
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aldrich, R. J. 1984. Weed-Crop Ecology. Principles in Weed Management. Breton Publishers, North Scituate, Massachusetts. Pages 89110.Google Scholar
2. Aleixo, M. de F. D. and Valio, I. F. M. 1976. Effect of light, temperature and endogenous growth regulators on the growth of buds of Cyperus rotundus L. tubers. Z. Pflanzenphysiol. Bd. 80: 336347.CrossRefGoogle Scholar
3. Allen, J. C. 1976. A modified sine wave method for calculating degree days. Env. Ent. 5: 388396.Google Scholar
4. Alm, D. M., Pike, D. R., Hesketh, J. D., and Stoller, E. W. 1988. Leaf area development in some crop and weed species. Biotronics 17: 2939.Google Scholar
5. Arnold, C. Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Amer. Soc. Hort. Sci. 74: 430445.Google Scholar
6. Baskerville, G. L. and Emin, P. 1969. Rapid estimations of heat accumulation from maximum and minimum temperatures. Ecology 50: 514517.Google Scholar
7. Bewick, T. A., Binning, L. K., and Yandell, B. 1988. A degree day model for predicting the emergence of swamp dodder in cranberry. J. Am. Soc. Hort. Sci. 113: 839841.CrossRefGoogle Scholar
8. Byrd, J. D. 1991. Report of the 1990 cotton weed loss committee. Proc. Beltwide Cotton Conf.—Cotton Weed Sci. Res. Conf. 15: 949.Google Scholar
9. Constable, G. A. 1976. Temperature effects on the early field development of cotton. Aust. J. Exp. Agric. and Anim. Husbandry 16: 905910.Google Scholar
10. Elmore, C. D., Brown, M. A., and Flint, E. P. 1983. Early interference between cotton (Gossypium hirsutum) and four weed species. Weed Sci. 31: 200207.CrossRefGoogle Scholar
11. El-Zik, K. M. and Sevacherian, V. 1985. Heat units and their application in crop and insect management. Proc. Beltwide Cotton Prod. Res. Conf. Memphis, TN. p. 372375.Google Scholar
12. Glaze, N. C. 1987. Cultural and mechanical manipulation of Cyperus spp. Weed Technol. 1: 8283.Google Scholar
13. Gutierrez, A. P., Falcon, L. A., Loew, W., Leipzig, P. A., and van den Bosch, R. 1975. An analysis of cotton production in California: A model for acala cotton and the effects of defoliators on its yields. Env. Ent. 4: 125136.Google Scholar
14. Gutierrez, A. P., Pizzamiglio, M. A., Dos Santos, W. J., Tennyson, R., and Villacorta, A. M. 1984. A general distributed delay time varying life table plant population model: Cotton (Gossypium hirsutum L.) growth and development as an example. Ecol. Modelling 26: 231249.Google Scholar
15. Heathman, S. 1990. Documentation of weed infestation in Arizona cotton. Proc. Beltwide Cotton Conf.—Cotton Weed Sci. Res. Conf. 14: 367.Google Scholar
16. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The Worlds Worst Weeds: Distribution and Biology. Univ. Press of Hawaii, Honolulu. Pages 125133.Google Scholar
17. Holt, J. S. 1994. Genetic variation in life history traits in yellow nutsedge (Cyperus esculentus) from California. Weed Sci. 42: 378384.CrossRefGoogle Scholar
18. Holt, J. S. and Orcutt, D. R. 1991. Functional relationships of growth and competitiveness in perennial weeds and cotton (Gossypium hirsutum). Weed Sci. 39: 575584.Google Scholar
19. Holt, J. S. and Orcutt, D. R. 1996. Temperature thresholds for bud sprouting in perennial weeds and seed germination in cotton. Weed Sci. 44: 523533.Google Scholar
20. Horak, M. J. and Holt, J. S. 1986. Isozyme variability and breeding systems in populations of yellow nutsedge (Cyperus esculentus). Weed Sci. 34: 538543.CrossRefGoogle Scholar
21. Horak, M. J., Holt, J. S., and Ellstrand, N. C. 1987. Genetic variation in yellow nutsedge (Cyperus esculentus). Weed Sci. 35: 506512.Google Scholar
22. Horak, M. J. and Wax, L. M. 1991. Growth and development of bigroot morningglory (Ipomoea pandurata). Weed Technol. 5: 805810.Google Scholar
23. Keeley, P. E. (coordinator). 1973. Survey of weeds on cotton farms in the San Joaquin Valley. Proc. Calif. Weed Conf. 27: 3747.Google Scholar
24. Keeley, P. E. 1987. Interference and interaction of purple and yellow nutsedges (Cyperus rotundus and C. esculentus) with crops. Weed Technol. 1: 7481.CrossRefGoogle Scholar
25. Keeley, P. E. and Thullen, R. J. 1983. Influence of yellow nutsedge (Cyperus esculentus)free periods on yield of cotton (Gossypium hirsutum). Weed Sci. 31: 803807.Google Scholar
26. Kigel, J. and Koller, D. 1985. Asexual reproduction of weeds. In: Duke, S. O. (ed.), Weed Physiology. Vol. I. Reproduction and Ecophysiology. CRC Press, Inc., Boca Raton, FL. Pages 65100.Google Scholar
27. Koski, A. J., Street, J. R., and Danneberger, T. K. 1988. Prediction of Kentucky bluegrass root growth using degree-day accumulation. Crop Sci. 28: 848850.Google Scholar
28. Logan, S. H. and Boyland, P. B. 1983. Calculating heat units via a sine function. Jour. Amer. Soc. Hort. Sci. 108: 977980.Google Scholar
29. Manrique, L. A. and Hodges, T. 1989. Estimation of tuber initiation in potatoes grown in tropical environments based on different methods of computing thermal time. Am. Pot. J. 66: 425436.CrossRefGoogle Scholar
30. McGiffen, M. E. and Masiunas, J. B. 1992. Prediction of black and eastern black nightshade (Solanum nigrum and S. ptycanthum) growth using degree-days. Weed Sci. 40: 8689.CrossRefGoogle Scholar
31. Patterson, M. G., Buchanan, G. A., Street, J. E., and Crowley, R. H. 1980. Yellow nutsedge (Cyperus esculentus) competition with cotton (Gossypium hirsutum). Weed Sci. 28: 327329.Google Scholar
32. Pereira, W., Crabtree, G., and William, R. D. 1987. Herbicide action on purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1: 9298.Google Scholar
33. Radosevich, S. R. and Holt, J. S. 1984. Weed Ecology: Implications for Vegetation Management. John Wiley and Sons, Inc., New York, NY. Pages 4753.Google Scholar
34. Ross, M. A. and Lembi, C. A. 1985. Applied Weed Science. Burgess Publishing Co., Minneapolis, MN. Pages 228230.Google Scholar
35. Satorre, E. H., Ghersa, C. M., and Pataro, A. M. 1985. Prediction of Sorghum halepense (L.) Pers. rhizome sprout emergence in relation to air temperature. Weed Res. 25: 103109.Google Scholar
36. Sevacherian, V. V. M. Stern, and Mueller, A. J. 1977. Heat accumulation for timing Lygus control pressures in a safflower-cotton complex. J. Econ. Ent. 70: 399402.Google Scholar
37. Smith, E. V. and Fick, G. L. 1937. Nutgrass eradication studies: I. Relation of the life history of nutgrass, Cyperus rotundus L., to possible methods of control. J. Amer. Soc. Agron. 29: 10071013.Google Scholar
38. Stoller, E. W., Nema, D. P., and Bhan, V. M. 1972. Yellow nutsedge tuber germination and seedling development. Weed Sci. 20: 9397.Google Scholar
39. Stoller, E. W. and Wax, L. M. 1973. Yellow nutsedge shoot emergence and tuber longevity. Weed Sci. 21: 7681.Google Scholar
40. Thomas, P. E. L. 1969. Effects of desiccation and temperature on survival of Cyperus esculentus tubers and Cynodon dactylon rhizomes. Weed Res. 9: 18.Google Scholar
41. Thullen, R. J. and Keeley, P. E. 1975. Yellow nutsedge sprouting and resprouting potential. Weed Sci. 23: 333337.CrossRefGoogle Scholar
42. Tumbleson, M. E. and Kommedahl, T. 1961. Reproductive potential of Cyperus esculentus by tubers. Weeds 9: 646653.Google Scholar
43. Univ. Calif. Statewide Integrated Pest Management Project. 1990. DDU Degree-Day Utility Users Guide. Version 2.0. UCIPM Publ. 9. Div. Agric. and Nat. Res., Univ. Calif., Davis, CA.Google Scholar
44. Van Esso, M.L. and Ghersa, C. M. 1993. Improving Johnsongrass (Sorghum halepense) control in soybean and sunflower cropping systems. Weed Sci. 41: 107113.Google Scholar
45. Wang, Y., Gutierrez, A. P., Oster, G., and Daxl, R. 1977. Apopulation model for plant growth and development: Coupling cotton-herbivore interaction. Can. Ent. 109: 13591374.Google Scholar
46. Wiese, A. M. and Binning, L. K. 1987. Calculating the threshold temperature of development for weeds. Weed Sci. 35: 177179.Google Scholar
47. Wilson, L. T. and Barnett, W. W. 1983. Degree-days: An aid in crop and pest management. Calif. Agric. 37: 47.Google Scholar
48. Yang, S. J. Logan, and Coffey, D. L. 1995. Mathematical formulae for calculating the base temperature for growing degree-days. Agric. and For. Met. 74: 6174.Google Scholar
49. Zalom, F. G., Goodell, P. B., Wilson, L. T., Barnett, W. W., and Bentley, W. J. 1983. Degree-days: the calculation and use of heat units in pest management. Univ. Calif. Leaflet 21373. Univ. Calif. Div. Agric. and Natural Resources, Berkeley. 10 pp.Google Scholar