Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T22:42:10.100Z Has data issue: false hasContentIssue false

Napropamide Binding in Corn (Zea mays) Root Tissue

Published online by Cambridge University Press:  12 June 2017

Michael Barrett
Affiliation:
Bot. Dep., Univ. of Calif., Davis, CA 95616
Floyd M. Ashton
Affiliation:
Bot. Dep., Univ. of Calif., Davis, CA 95616

Abstract

Napropamide [2-(α-naphthoxy)-N,N-diethylpropionamide]-binding in excised root segments of corn (Zea mays L. ‘NC + 59′) was confined to cell wall fractions (residue and 500 g pellet) remaining after homogenization and to components of the 100 000 g supernatant. Binding increased in both the cell wall and soluble fractions with continued exposure to napropamide. Microautoradiographs revealed that the napropamide bound in the cell walls was located in epidermal, cortical, and stelar tissue. Various proteins were capable of binding napropamide in vitro; however, protease treatment did not liberate the radioactivity bound in the cell wall fragments. Carbohydrate release from the cell wall material with cellulase was not correlated with the solubilization of bound radioactivity and wall carbohydrate monomers did not appear to bind to napropamide in vitro. A portion of the radioactivity found in the soluble components (at 100 000 g) was associated with a molecule of MW > 600. The continued influx of napropamide was due to binding to cell wall components and molecules within the cell.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Albersheim, P., Nevins, D. J., English, P. D., and Karr, A. 1967. A method for the analysis of sugars in plant cell wall polysaccharides by gas-liquid chromatography. Carbohydr. Res. 5:340345.Google Scholar
2. Ashton, F. M. and Crafts, A. S. 1973. Mode of Action of Herbicides. Wiley and Sons, New York. 504.Google Scholar
3. Barrett, M. and Ashton, F. M. 1981. Napropamide uptake, transport, and metabolism in corn (Zea mays) and tomato (Lycopersicon esculentum). Weed Sci. 29:697703.CrossRefGoogle Scholar
4. Barrett, M. and Ashton, F. M. 1983. Napropamide fluxes in corn (Zea mays) root tissue. Weed Sci. 31:4348.CrossRefGoogle Scholar
5. Blumenkrantz, N. and Asboe-Hanson, G. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484489.Google Scholar
6. Boller, T. and Kende, H. 1979. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 63:11231132.Google Scholar
7. Boundy, J. A., Wall, J. S., Turner, J. E., Waychick, J. H., and Dimler, R. J. 1967. A mucopolysaccharide containing hydroxyproline from corn pericarp. J. Biol. Chem. 242:24102415.Google Scholar
8. Bukovac, M. J. 1976. Herbicide entry into plants. Pages 356364 in Audus, L. H., ed., Herbicide Physiology, Biochemistry, and Ecology, Academic Press, London.Google Scholar
9. Burke, D. Kaufman, P., McNeil, M., and Albersheim, P. 1974. The structure of plant cell walls. VI. A survey of the walls of suspension-cultured monocots. Plant Physiol. 54:109115.Google Scholar
10. Dische, Z. 1962. Color reactions of carbohydrates. pp 477512 in Whistler, R. L. and Wolform, M. L., eds., Methods in Carbohydrate Chemistry, Vol. I. Academic Press, New York.Google Scholar
11. Donaldson, T. W., Bayer, D. E., and Leonard, O. A. 1973. Absorption of 2,4-dichlorophenoxyacetic acid and 3-(p-chlorophenyl)-1,1-dimethylurea (monuron) by barley roots. Plant Physiol. 52:638645.CrossRefGoogle Scholar
12. Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347. Berkeley. 32.Google Scholar
13. Hodges, T. K. and Leonard, R. T. 1973. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. pp 392406 in Colowick, S. P. and Kaplan, N. O., eds., Methods in Enzymology, Vol. 32. Academic Press, New York.Google Scholar
14. Jensen, W. A. 1962. Botanical Histochemistry. Principles and Practices Freeman and Co., San Francisco. 408.Google Scholar
15. Kao, K. N., Gamborg, O. L., Miller, R. A., and Keller, W. A. 1971. Cell divisions in cells regenerated from protoplasts of soybean and Haplopappus gracilis. Nature (London), New Biol. 232:124.Google Scholar
16. Kende, H. and Gardner, G. 1976. Hormone binding in plants. Ann. Rev. Plant Physiol. 27:267290.Google Scholar
17. Lamport, D. T. A. 1969. The isolation and partial characterization of hydroxyprohne-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry 8:11551163.Google Scholar
18. Murphy, J. J., Didriksen, J., and Gray, R. A. 1973. Metabolism of 2-(α-napthoxy)-N,N-diethylpropionamide in tomato. Weed Sci. 21:1115.Google Scholar
19. Nelson, N. 1944. A photometric adaptation of the Samogyi method for the determination of glucose. J. Biol. Chem. 153:375380.Google Scholar
20. Noodèn, L. D. 1969. The mode of action of maleic hydrazide. Inhibition of growth. Physiol. Plant. 22:260270.Google Scholar
21. Noodèn, L. D. 1970. Metabolism and binding of 14C-maleic hydrazide. Plant Physiol. 45:4652.CrossRefGoogle ScholarPubMed
22. Orwick, P. L., Shcreiber, M. M., and Hodges, T. K. 1976. Absorption and efflux of chloro-s-triazines by Setaria roots. Weed Res. 16:139144.Google Scholar
23. Pfister, L. K., Radosevich, S. R., and Arntzen, C. J. 1979. Modification of herbicide binding to photosystem II in two biotypes of Senecio vulgaris L. Plant Physiol. 64:995999.Google Scholar
24. Radosevich, S. R., Steinback, K. E., and Arntzen, C. J. 1979. Effect of photosystem II inhibitors on thylakoid membranes of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 27:216217.Google Scholar
25. Ray, P. M., Dohrmann, U., and Hertel, R. 1977. Characterization of napthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol. 59:357364.Google Scholar
26. Samogyi, M. 1937. A reagent for the copper-iodometric determination of very small amounts of sugar. J. Biol. Chem. 117:771776.Google Scholar
27. Stoller, E. W. 1969. The kinetics of amiben absorption and metabolism as related to species sensitivity. Plant Physiol. 44:854860.CrossRefGoogle ScholarPubMed
28. Strang, R. H. and Rogers, R. L. 1971. A microautoradiographic study of 14C-diuron absorption by cotton. Weed Sci. 19:355362.Google Scholar
29. Strang, R. H. and Rogers, R. L. 1971. A microautoradiographic study of 14C-trifluralin absorption. Weed Sci. 19:363369.CrossRefGoogle Scholar
30. Tischer, W. and Strotmann, H. 1977. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochem. Biophys. Acta 460:113125.Google Scholar
31. Wallerstein, I. S., Jacoby, B., and Dincor, A. 1976. Absorption, retention, and translocation of the systemic fungicide triarimol in plants. Pestic. Biochem. Physiol. 6:530537.Google Scholar